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Abstract

This study introduces an integrated framework for assessing and predicting urban expansion, illustrated through the case of Urmia,
utilizing artificial intelligence (AI), multi-criteria decision-making (MCDM), and GIS. The multi-layer perceptron (MLP) analysis
predicted the total built-up area to be 134.29 km?, of which 82.32 km? is currently developed, leaving 51.97 km? available for future
expansion. The combined application of Support Vector Machine (SVM), Analytic Network Process (ANP), and MLP techniques
demonstrated high accuracy in land use mapping and growth predictions, highlighting the effectiveness of machine learning in
addressing urban complexities. Key factors such as geology and proximity to roads were identified as significant drivers of urban
growth, indicating the need for localized strategies in future research. This methodology can be applied to similar urban contexts,

offering a data-driven approach to sustainable urban planning and effective management of rapid urbanization.

1. Introduction

Uncontrolled urban growth and development have become crit-
ical global concerns in recent years (Castanho et al., 2022).
Researchers project a significant escalation of these issues by
2050 (Malik et al., 2017, Aziz et al., 2015). This rapid urb-
anization, coupled with industrialization over the past few dec-
ades, has made urban sustainability a universal priority (Mangi
et al.,, 2020). As cities expand physically, they are also ex-
periencing a surge in urban populations, leading to a host of
challenges, including inadequate public services, traffic conges-
tion, insufficient housing, and high rates of unemployment and
health issues (Al-Fugara et al., 2018). To address these chal-
lenges, urban planners and policymakers must develop effect-
ive strategies to monitor and manage urban characteristics and
their changes over time.

In this context, remote sensing techniques have emerged as vi-
tal tools for tackling urban development issues. Among these
techniques, satellite image classification plays a crucial role in
information extraction (Li et al., 2019, Raj et al., 2017). By
analyzing land cover patterns, researchers can derive valuable
insights about both natural and social processes, enabling them
to model various phenomena (Liang, 2008, Alizadeh Pirbasti
et al., 2021). However, satellite image analysis presents chal-
lenges, primarily due to the vast data volume and the complex-

ity of the channels through which images are acquired (Buddhiraju

and Rizvi, 2010). The accuracy and reliability of classifica-
tion processes significantly impact the quality of insights drawn
from satellite data, emphasizing the need for selecting appropri-
ate methods tailored to specific conditions and types of images.
This choice is particularly critical in fields such as urban plan-
ning and land use management, where decisions based on inac-
curate data can have far-reaching consequences.

At the technical level, image classification is essential for ad-
dressing land separation and classification challenges (Omkar et
al., 2007). Remote sensing techniques can effectively identify
changes in land cover over time (Zurqani et al., 2019), and the

integration of new image classification methods can enhance
the accuracy of results. Machine learning, for instance, repres-
ents a promising advancement in this area (Wingate et al., 2016,
Sivasubramaniyan and RajaPerumal, 2024). However, various
factors complicate land cover classification using satellite im-
agery, such as seasonal variations, spectral confusion, shadow
effects, mixed pixels, scale effects, and image acquisition con-
ditions, as well as human error (Khatami et al., 2016). These
factors can hinder the reliability of classification results, under-
scoring the necessity for robust methods that facilitate accur-
ate mapping of land cover (Rodriguez-Galiano et al., 2012).
Furthermore, utilizing temporal images that capture changes
over time is vital for effective land cover monitoring and clas-
sification. Yet, processing and analyzing the high volume of
these temporal images poses significant challenges, as tradi-
tional desktop software often lacks the capacity to handle ex-
tensive multi-decade time series data efficiently (Hird et al.,
2017).

Fortunately, advancements in remote sensing have led to the
development of effective methods for identifying different land
cover types. One particularly notable approach for multi-temporal
processing of satellite images is the use of the Google Earth En-
gine (GEE) platform, which has gained popularity among re-
mote sensing specialists (Gorelick et al., 2017, M et al., 2023).
GEE has been employed in various studies, including forest
monitoring (Omarzadeh et al., 2020, Zurgani et al., 2019), urban
environment assessment (Cao et al., 2021), and climate analysis
(Kodaka et al., 2021). The platform’s integration of machine
learning tools enhances its capability to process multi-temporal
remote sensing data effectively (Waske et al., 2009). In addition
to facilitating land use extraction in urban settings, it is essen-
tial to conduct comprehensive studies that examine the factors
influencing the physical development of urban areas.

To complement previous investigations, the contribution of our
research lies in designing a novel pipeline that provides a com-
prehensive view of urban sprawl analysis, considering various
factors. Meanwhile, we apply reliable machine learning tech-
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Figure 1. Research Pipeline: The Land Use and Land Cover
(LULC) mapping process begins with pre-processing satellite
images, which includes spatial masking and cloud removal.
Classification is then performed using a Support Vector Machine
(SVM) in Google Earth Engine, with training data collected for
each year based on corresponding satellite images. The weight
values of each criterion are calculated using the Analytic
Hierarchy Process (ANP). Finally, a Multi-Layer Perceptron
(MLP) model with two hidden layers (14 nodes in the first layer
and 8 nodes in the second) is employed to predict potential
pixels that will be converted into built-up areas.

niques and utilize cloud-based platforms (such as GEE), to over-
come software and hardware limitations in this type of research.

On the other hand, an Al approach is applied to integrate geoscience

and computer techniques to handle multi-criteria decision ana-
lysis to evaluate the urban physical extension.

The present study consists of three main stages. In the first
stage, using the capabilities of the GEE platform and machine
learning techniques, the land use layer of Urmia for 2015 and
2020 were extracted from Sentinel-2 images. Then, in the second
stage, to study urban development, the multi-criteria decision
analysis (MCDA) technique and the analytical network pro-
cess (ANP) method were used to evaluate criteria that drive
the growth of the urban physical domain. These criteria in-
clude elevation, slope, and aspect, distance from the drainage
network derived from the DSM (Tadono et al., 2016), distance
from roads collected from Open Street Map, geology sourced
from the Natural Resources and Watershed Management Or-
ganization of West Azerbaijan, and land use extracted from
Sentinel-2 satellite images. These criteria, sourced from vari-
ous origins, were employed as physical growth drivers in the
MCDA to assess and guide urban development. Eventually, in
the third stage, an artificial neural network was used to predict
the areas appropriate for the development of urban areas, util-
izing a multi-layer perceptron (MLP) network. Figure 1 illus-
trates the pipeline of the research.

Slope  River

2. Study Area

Urmia, located in West Azerbaijan, Iran, was selected for this
study due to its rapid urban growth and proximity to the shrink-
ing Urmia Lake, which significantly impacts land use and urban
planning. Situated at 37°33 " N and 45°04 " E (see Figure 2), Ur-
mia has undergone substantial demographic and spatial trans-
formations over the decades. In 1956, the city covered an area
of 14.44 km? with a population of 164,419. By 1996, the area
expanded to 59 km2, accommodating 435,200 residents. This
growth continued, with the area reaching 112.37 km? and the
population increasing to 736,224 by 2016. Recent land use
changes have primarily concentrated in urban areas, leading
to an expansion of built-up zones. Additionally, the drying of
Urmia Lake has created opportunities to repurpose these dried
areas for new uses, such as factories, attracting more migrants
to the city and contributing to its growth. However, a study by
Rostaei highlights significant class disparities and urban spatial
inequality, revealing that the distribution of housing conditions
among residents is uneven (rostaei et al., 2020), likely a con-
sequence of unplanned urban expansion.

3. Data and Methodology

3.1 Data acquisition

The study used two data types, including Sentinel-2 satellite im-
agery with 10 meters spatial resolution for 2015 and 2020, and
spatial data, which included six criteria. Satellite images were
used to extract LULC maps. The LULC layer, coupled with six
criteria, was integrated into the MCDA framework for the ANP
process implementation. Eventually, these criteria, along with
a boolean layer representing the city’s physical extent, were in-
troduced as variables in the designed neural network.

The geology layer enabled the identification of rock types and
geological stability, which is crucial for assessing terrain suit-
ability. This dataset was obtained from the Geological Survey
and Mineral Exploration of Iran at a scale of 1:50,000 and di-
gitized for GIS integration. Elevation, which influences cli-
mate, vegetation, and construction potential, was sourced from
Global ALOS DSM data (Tadono et al., 2016) and standard-
ized to a 10-meter pixel resolution. Slope, measuring terrain
steepness and impacting water runoff, erosion, and construc-
tion feasibility, was calculated from Digital Elevation Models
(DEMs) using GIS-based slope analysis tools. The slope as-
pect, determining the direction slopes face and influencing sun-
light exposure, vegetation growth, and microclimate, was also
derived from DEMs using GIS tools to classify terrain based on
compass directions (e.g., north- or south-facing).

Proximity to natural drainage systems, such as rivers and streams,
was used to assess flood risk and water availability. Drain-
age networks were delineated from DEMs through hydrological
modeling, and distances were calculated using GIS-based Euc-
lidean distance functions. Similarly, accessibility was evaluated
by measuring proximity to road networks, which is essential for
urban and infrastructure planning. Road data was sourced from
OpenStreetMap, and distances were computed using Euclidean
distance functions in GIS. All raster layers used in this study
were standardized to a 10-meter pixel resolution, and the cri-
teria employed in the MCDA process were classified into five
categories in raster format (Figure 4). Following the extraction
of land use data, a boolean map generated by the neural network
served as the dependent variable in the analysis.
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Figure 2. Location of the Study Area
3.2 Methodology

Following the research pipeline, the first stage involved gener-
ating an LULC map of the study area using machine learning
techniques. Methods like neural networks, random forests, sup-
port vector machines, and genetic algorithms are widely used
for modeling environmental processes (LeCun et al., 2015, Chen
etal., 2021). In this study, Sentinel-2 satellite images were clas-
sified using the Google Earth Engine (GEE) platform, which
provides access to datasets such as Landsat, Sentinel, and Modis,
along with customizable algorithms for image classification and
cloud masking (Amani et al., 2019). Specifically, SVM, RF, and
MD were tested for classification. Accuracy was assessed us-
ing overall accuracy (OA), user accuracy (UA), producer accur-
acy (PA), and the kappa coefficient, with validation from field-
observed data and cadastral data obtained from the Municipality
of Urmia City. Based on its superior accuracy, the SVM results
were selected for use in the remainder of the research.

The following equations represent the use of each metric in the
accuracy assessment task. Where UA represents User Accur-
acy, PA stands for Producer Accuracy, OA denotes Overall Ac-
curacy, T is the sum of correctly classified pixels in both row
k and column k for class k, x4, is the total number of predicted
instances in column k, x4+ represents the total number of pre-
dicted instances in row k, and N signifies the total number of
pixels. The kappa coefficient, denoted as &, is calculated with
the expected agreement (F.) as:

Soii(Ai x By

P. = 5

M

Here, k is the number of categories, A; is the sum of the row
totals for category i, B; is the sum of the column totals for
category 4, and NN is the total number of observations.
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In the next stage, the Analytic Network Process (ANP), a Multi-
Criteria Decision Analysis (MCDA) method was applied to ad-
dress complex spatial problems by considering interdependen-
cies among criteria and alternatives (Feizizadeh et al., 2021).
ANP is widely used in GIS for site selection, natural resource
management, and urban planning (Jamali et al., 2023), offering
advantages in incorporating subjective factors and accounting
for direct and indirect influences (Alizadeh et al., 2018). To im-
plement ANP, we reviewed existing research in urban studies,
GIS, remote sensing, and geology, using pairwise comparisons
to evaluate criteria and establish weights for the analysis.

The employed ANP involved the construction of pairwise com-
parison matrices ( 6), the calculation of priority vectors, and the
formation of supermatrices, as outlined in the method’s frame-
work. These matrices were derived using expert judgment and
supported by empirical data, comparing the relative importance
of each criterion against every other criterion in pairs using a
standardized scale introduced by (Saaty, 1996). Typically, a
scale of 1 to 9 was used, where 1 indicates equal importance,
and 9 represents extreme importance of one criterion over an-
other (Saaty, 1996).

(6)
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The diagonal of the matrix is always 1 since each criterion is
equally essential to itself. The next step, after obtaining the
pairwise comparison matrix, is the calculation of the priority
vector.

Aw = )\maxw (7)

Where w represents the matrix multiplication of the pairwise
comparison matrix A and the priority vector w. And AmaxW
represents the product of the maximum eigenvalue Amax and the
priority vector w. To obtain the final weights of each factor,
the supermatrix was operated as the following structure: The
supermatrix W is given by:

Win Wiz Wiz Wia Wis Wie
Wa1 Waa Waz Way Was Wag
W= Wi Wiz Wiz Wsis Wis Wae ®)
War Wi Wiz Wiy Wis Wie
Ws1 Wsa Wss Wsa Wss Wse
We1 Wea Wes Wsa Wss Wee
Where each block W;; is defined as:
Wi
ws
Ws
Wi; = w; 9
W;
W;
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Figure 3. The criteria used in the MCDA to evaluate urban
development include: a) the binary layer of built-up areas
derived from the LULC map (binary for MLP), b) LULC map,
¢) Geology, d) Distance to drainage, e) Distance to roads, f)
Elevation, g) Slope, and h) Slope aspect. All layers, except for
the Boolean one, were standardized, and assigned weights
acquired from the ANP process. These weighted layers were
then imported into the MLP model, with the Boolean layer
serving as the dependent variable and the remaining layers as
independent variables, to predict potential built-up areas.

Wi, is the block matrix representing the priority vector of cri-
terion ¢ with respect to criterion j. - w; is the priority vector of
the ¢-th criterion. Diagonal Blocks (W;;): Each diagonal block
Wi, contains the priority vector for the i-th criterion. These
blocks show the relative importance of each criterion with re-
spect to itself, typically reflecting uniform values on the di-
agonal. Off-Diagonal Blocks (W;; where i # j): Each off-
diagonal block W;; represents the relative importance of cri-
terion ¢ with respect to criterion j. In practice, these would
be filled with specific values based on pairwise comparisons,
but here, for simplicity, they are shown as containing the prior-
ity vector w;. This block structure allows for the combination
of individual priority vectors into a supermatrix, which integ-
rates the different criteria and their relative importance in the
decision-making process.

Finally, we use a Multilayer Perceptron (MLP) model to pre-
dict potential built-up areas based on land-use/land-cover maps
and physical factors (Figure 1). The MLP is trained on LULC
data from 2015 to 2020, with six physical layers (elevation,
slope aspects, slope, proximity to roads, proximity to rivers,
and geology) as input features (Figure 3). The MLP neural
network model, commonly referred to as a ’backpropagation”
network (Ozturk, 2015), is a robust method for performing non-
parametric regression analysis. The typical structure of an MLP
includes an input layer, one or more hidden layers, and an out-
put layer (Razavi, 2014). The output of the model consists of a
neuron map and a predicted membership map, which together
represent the forecasted urban expansion based on the defined
independent variables (Eastman, 2012).

The MLP operates through two critical phases: forward and
backward propagation, which are used to iteratively adjust the
connection weights between neurons. For a single node, the
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Figure 4. The final weights of the geographical layers
influencing urban growth are calculated through the ANP
process. The ANP incorporates pairwise comparisons and

feedback relationships among criteria to assign these weights.
The bar plot identifies Geology and Road as the most influential
factors, reflecting their significant role in driving urban
expansion relative to other layers (equation 7).

weighted input is computed using Equation 10:

net; = » _ Wi; O; (10)

=1

where W;; represents the weights between nodes i and j, and
O; is the output of node i. The output of the node j is then
determined using Equation 11:

O; = f(net;) an

In this study, the activation function f is a sigmoid function,
which applies the weights before transmitting signals to the sub-
sequent layer. After the forward pass, the model compares the
output nodes with the expected outcomes to compute the er-
ror. Our MLP model architecture includes two hidden layers
with 14 and 8 nodes, respectively, and uses the ReL U activation
function. The model was trained over 1000 iterations, allow-
ing it to effectively capture complex, non-linear relationships
between geographical features and land-use changes. To eval-
uate its predictive capability, the model utilized one dependent
variable and eight independent variables. The urban transitions
between 2015 and 2020 were designated as the dependent vari-
able, defined in binary terms: if land converted from non-urban
to urban within this period, its value was set to Y = 1; other-
wise, it was set to Y = 0. The results of these transitions are
illustrated in Figure 4 a.

After training, the MLP generates a probability map predicting
areas likely to become built up in the future. A boolean layer
is applied to constrain the predictions to suitable areas, result-
ing in a final map that highlights the most probable locations for
urban expansion. This approach integrates neural network mod-
eling with GIS data to provide a robust tool for urban growth
forecasting.

4. Results

In this study, machine learning techniques were employed to
detect and classify Land Use and Land Cover (LULC) changes
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for the years 2015 and 2020, focusing on monitoring phys-
ical urban expansion through objective and data-driven meth-
ods. The analysis utilized exclusively physical data, such as
elevation, slope, geology, and satellite-derived LULC changes,
without incorporating qualitative factors like population, eco-
nomics, or policy-based variables. This approach highlights the
potential of remote sensing and GIS technologies in urban stud-
ies, leveraging consistently available satellite imagery to cap-
ture land-use transitions accurately.

The LULC classification process was carried out on the Google
Earth Engine (GEE) platform, utilizing three machine learning
algorithms: Decision Tree, Support Vector Machine (SVM) and
Minimum Distance (MD). A data set comprised 5,150 samples
representing five key categories: water, bare land, orchards, cul-
tivated land, and settlements. Of these, 4,000 samples were
used for training the models, while 1,150 samples were reserved
for testing and validation, ensuring a thorough evaluation of
each classifier’s performance. Among the tested algorithms, the
Support Vector Machine (SVM) demonstrated the highest ac-
curacy, achieving Kappa coefficients of 0.84 for the 2020 clas-
sification and 0.82 for the 2015 classification. These results in-
dicate a strong agreement between classified maps and ground-
truth data, affirming the reliability of SVM in identifying urban
expansion areas. Although the Decision Tree and Minimum
Distance classifiers were effective, they did not achieve the pre-
cision and accuracy of the SVM algorithm (see Table 1 and
Figure 5).

Due to its superior performance, the SVM results were selec-
ted for further analysis of LULC changes. The findings reveal
significant urban growth patterns between 2015 and 2020, with
notable transitions from cultivated land and bare land to urban
settlements. The high accuracy of the classifications, combined
with the use of consistently available physical data, underscores
the robustness of the proposed methodology in monitoring urban
development. These results provide valuable insights into the
dynamics of urban expansion over time and establish a reliable
framework for future studies.

In addition to classifying the changes in LULC, this study also
aimed to predict areas of future urban growth potential using a
multilayer perceptron model (MLP). The MLP was configured
with two hidden layers (14 and 8 nodes, respectively) and trained
in more than 1,000 iterations using the LULC map from 2015,
as well as six criteria identified through the Analytical Network
Process (ANP) as independent variables. The binary layer of
built-up areas derived from the 2020 LULC map served as the
dependent variable.

To evaluate the quality of MLP predictions, built-up areas from
2024 were used for comparison. These areas were extracted
from high-resolution Google Earth imagery, allowing a direct
evaluation of the model’s predictions against the actual urban
growth observed four years after the LULC map used in train-
ing. The comparison revealed that urban growth patterns align
closely with the model predictions, demonstrating its reliabil-
ity. A quantitative assessment showed an 87% overlap between
the predicted and actual built-up areas, further underscoring the
model’s accuracy.

Despite its strong performance, the model exhibited some lim-
itations. A detailed analysis of misclassified pixels revealed
that areas with mixed land uses or rapidly changing conditions
presented challenges for the MLP. These findings emphasize
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Figure 5. Land Use and Land Cover Maps for 2015 (left) and
2020 (right): Highlighting distinctive urban areas classified
through high-accuracy SVM classification.

the importance of high-quality input data and the potential need
for additional criteria to further improve the predictions.

The predictive results of the MLP model, visualized in Figure
6, effectively demonstrate its ability to predict urban growth.
The model’s integration of physical criteria provides a robust
framework for monitoring and anticipating urban expansion,
with potential applications in urban planning and management.

The predicted areas of urban growth from the MLP closely
aligned with actual observed changes in LULC, reinforcing the
model’s predictive power. This suggests that the model ef-
fectively captured the complex interactions between physical
factors and urban development, offering valuable insights into
how these factors shape the city’s growth patterns.

Moreover, the results of this study, based on SVM, ANP, and
MLP, present a comprehensive understanding of Urmia’s urban
landscape. The LULC maps from 2015 and 2020 provided a
detailed depiction of land-use dynamics, while the MLP model
identified zones prone to future physical expansion. This in-
tegrative approach underscores the importance of using multi-
criteria decision-making and machine learning for urban plan-
ning, with 51.97 km? of available land offering a critical re-
source for future development in Urmia.

Overall, this study demonstrates the effectiveness of combining
machine learning algorithms, multi-criteria decision systems,
and remote sensing techniques in urban studies. The SVM tech-
nique showed strong performance in LULC classification, and
the ANP-MLP combination highlighted critical factors driving
urban expansion, ultimately offering valuable insights for urban
planners and policymakers.

5. Discussion & Conclusions

Future urban expansion will likely cluster near existing urban
zones and road networks, highlighting the influence of prox-
imity to infrastructure on growth patterns. The model predicts
urbanization will follow road networks, similar to past develop-
ment. Factors like lower elevation, gentle slopes, and vulner-
able land uses, such as agricultural areas near city boundaries,
further support this trend. These findings underscore the role
of natural constraints, land use dynamics, and infrastructure ac-
cessibility in shaping urban growth.

The methodology developed in this study offers a valuable frame-
work for assessing and predicting urban expansion, as demon-
strated in Urmia. Integrating AI, MCDM, and GIS, provides

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-4-W17-2025-227-2026 | © Author(s) 2026. CC BY 4.0 License. 231



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 — 10th International Conference on Geolnformation Advances, 29-30 May 2025, Marrakech, Morocco

Table 1. Accuracy assessment of the Support Vector Machine (SVM) classification for 2015 and 2020. The table presents the number
of correctly classified samples (correct), total samples (SUM), and producer’s accuracy (PA) for each land cover class. The results
show improvements in classification accuracy, particularly in the Bare lands and Residential classes in both years. PA is calculated by
dividing the number of correctly predicted samples for each class by the total number of samples used to evaluate the accuracy of that
class. (See equation 3)

Year Classes Water Croplands Agricultural Residential Bare lands SUM

2015 Correct 38 199 167 200 293 897
SUM 55 226 217 216 287 1001
PA 69.09 88.05 76.95 92.59 95.47

2020  Correct 43 106 162 271 175 757
SUM 55 143 201 294 185 878
PA 78.18 74.13 80.60 92.18 89.19

robust insights applicable to diverse urban contexts. SVM ana-
lysis revealed that the 2020 built-up area covered 82.32 km?,
aligning with Omrani et al’s findings (Omrani, 2019). The
study identified 134.29 km? of potential urban growth areas,
with 51.97 km? available for future development. These results
equip planners and policymakers with a strategic foundation for
sustainable and well-managed urban expansion.

The combination of SVM, ANP, and MLP techniques demon-
strated high accuracy in both land use and land cover (LULC)
mapping and urban growth predictions. This highlights the
effectiveness of using machine learning and MCDM tools to
address the complexities of urban expansion. However, while
the methodology appears generalizable, its performance in dif-
ferent geographical and socio-economic contexts remains un-
proven. This limitation suggests a need for further validation to
ensure broader applicability and reliability.

Additionally, the ANP method’s reliance on pairwise compar-
isons and subjective judgments to derive criteria weights intro-
duces potential bias, which could affect the robustness of the
model. Urban expansion is driven not only by physical factors
but also by complex socio-economic dynamics, which were not
fully considered in this study. Future research should aim to in-
tegrate socio-economic variables alongside physical factors to
better capture the multifaceted nature of urbanization processes.

This study underscores the importance of key physical factors,

such as geology and proximity to roads, in shaping urban growth.

While these factors are critical, refining the methodology to in-
clude socio-economic drivers and tailoring it to specific local
contexts could enhance its utility. Moreover, the success of
combining SVM, ANP, and MLP techniques in this study high-
lights the potential of machine learning and MCDM tools to
address urban growth challenges effectively.

Looking ahead, the application of deep learning models and ad-
vanced Al techniques could further enhance predictive accur-
acy. Neural networks, for example, hold promise for forecast-
ing urban growth in cities with development patterns similar
to Urmia. Future research could explore these advanced ap-
proaches to improve model precision and adaptability.

The results of this study highlighted the importance of data-
driven decision-making in urban planning. With 51.97 km?
identified as available for future development, policymakers in

K # Predictions
& Built-up

Figure 6. The predicted future urban expansion (green areas) is
overlaid on the current built-up areas (black areas) derived from
the 2024 Google Earth imagery. The green regions highlight
areas identified by the MLP model as likely to transition into
built-up zones in the future.

Urmia can use these findings to implement sustainable land use
strategies that minimize environmental degradation while max-
imizing infrastructural efficiency. The integration of Al-driven
urban analysis can support proactive policy measures, ensuring
controlled and well-planned expansion in rapidly growing cit-
ies.

In conclusion, this study provides a comprehensive toolset for
urban planners to proactively address the challenges of rapid
urbanization. While there are areas for improvement, such as
addressing biases in ANP and incorporating socio-economic
drivers, the methodology offers a strong foundation for sustain-
able urban planning. By expanding the scope of this approach
to diverse urban contexts, researchers and practitioners can de-
velop more effective strategies for managing future urban de-
velopment in harmony with environmental and infrastructural
capacities.
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