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Abstract

Post-earthquake reconstruction is complex and must strictly comply with current regulations. Authorities immediately began
planning rapid reconstruction of residential buildings to provide shelter to those who lost their homes. Moreover, it must be
accelerated to minimize impacts on affected communities. Hence, the idea of drafting a roadmap to leverage geospatial artificial
intelligence (GeoAl) and Geographic Information Systems (GIS) to identify and classify buildings collapsed by the El Haouz
earthquake. The data used are satellite/drone imagery, orthophotos, and GIS-based geo-risk studies for the affected douars. The
chosen study area is part of the commune of Tizi N'Test, within the province of Taroudant, Morocco, where a significant portion of
the douars were severely affected by this earthquake. In this paper, we outlined a strategy based on the use of a GeoAl solution
composed of an XGBoost machine-learning model and a YOLOV9 deep learning model. The results showed that both the XGBoost
and YOLOV9 models achieved high overall accuracy of 97% and 96%, respectively, on validation data. This work brings significant
value to the field of post-earthquake management by making the identification of reconstruction sites more efficient and automated.
Keywords: El Haouz Earthquake, GEOAI, Artificial Intelligence, Geospatial Analysis, Image Classification, Damage Detection,
Disaster Management, Morocco.

1. Introduction data, insufficient meaningful data, and the need for
multidimensional analysis integrating multiple criteria.

1.1 Context Geospatial Artificial Intelligence (GeoAl) offers a breakthrough

) . solution by applying machine learning to analyze geospatial
The Al Haouz earthquake, which struck Morocco’s High Atlas data and model complex interactions. When combined with
Mountains on September 8, 2023 (Mw 6.8, ~72 km southwest  Geqgraphic Information Systems (GIS) for criteria mapping,
of Marrakech), caused severe destruction, resulting in thousands this approach enables innovative, data-driven land selection.
of casualties and displacing vulnerable mountain communities  The core research question emerges: How can GeoAl and GIS
(Achbani et al., 2024). Hard-hit areas like EI Haouz, Chichaoua,  pe |everaged to optimize post-earthquake land selection for
Taroudant, and Azilal saw extensive housing collapses, forcing reconstruction, particularly in severely affected areas like

survivors into makeshift shelters. Immediate priorities included Taroudant province following the 2023 Al Haouz earthquake?
rescue operations and emergency aid, followed by

reconstruction—a complex, year-long challenge requiring 1.3 Objectives
compliance with safety regulations, preservation of local
architecture, and relocation from high-risk zones (e.g., unstable This study aims to develop a GeoAl model to support
or flood-prone terrain). To optimize site selection, this study ~ Morocco’s land selection commission in post-earthquake
proposes Geospatial Al (GeoAl), which accelerates risk  reconstruction, optimizing financial and logistical efficiency.
assessment by analyzing real-time terrain data, socioeconomic  The research underscores the digital transformation of public
factors, and geological hazards (Ouchlif et al., 2024), ensuring sector  decision-making through advanced  geospatial
efficient, regulation-compliant rebuilding. technologies.
To achieve this, key secondary objectives include:
1.2 Problematic
e High-quality geospatial data collection via remote
sensing and digital mapping for accurate Al
modeling;

T Post-earthquake reconstruction presents major challenges due
to tight deadlines, regulatory constraints, and high costs. A
critical solution lies in optimizing reconstruction site selection.
In Morocco, this task falls to the Administrative Land Selection

o - . e Identification of reconstruction site  criteria
Commission, which faces key obstacles: complex geospatial

(socioeconomic, environmental, etc.);
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e Multi-criteria weighted zoning for land classification;

e Al-powered damage assessment using specialized
geospatial architectures;

e  Development of a GeoAl implementation guide for
post-disaster response; and

e  Model validation through performance metrics to
ensure practical applicability.

2. Method
2.1 Introduction

This study proposes a data-driven methodology to enhance
post-earthquake reconstruction through multi-model geospatial
Al. The approach combines:

e Machine learning (Random Forest vs. XGBoost
comparison) to classify reconstruction zones into four
categories, including optimal buildable areas;

e Deep learning (YOLOV9) for precise damage
assessment at the douar (village) level; and

e Multi-criteria analysis integrating 8 key factors—split
between natural hazards (seismic/flood risks) and
socioeconomic  needs  (community  well-being,
economic viability).

Data integration leverages satellite/drone imagery, orthophotos,
and GIS-based geo-risk studies, validated through literature
review and consultations with Morocco’s Land Selection
Commission. The workflow ensures rapid, safe reconstruction
while balancing technical safety and community priorities.

Choix des sites
optimaux pour la
reconstruction

Figure 1: Detailed methodology

2.2 Study area

The study area for our project focuses on several douars
(villages) in the rural commune of Tizi N'Test, located in
Taroudant Province within Morocco's Souss-Massa region
(Figure 2-2). Situated in the Tizi N'Test mountain pass, this
commune lies in the High Atlas range, west of Mount Toubkal.
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Figure 2: The municipality of Tizi N'Test, containing our study
area, is among the disaster-stricken municipalities in the
province of Taroudant (Ouchlif et al., 2024)

The villages (douars) of Tizi N'Test were severely impacted by
the earthquake. Some were completely destroyed, while others
suffered partial destruction - meaning a significant number of
houses were either demolished or damaged, leaving residents in
precarious living conditions. Figure 3 shows the specific study
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Figure 3: The douars of the study area

2.3 Materials and tools

A variety of tools and equipment were utilized throughout this
study. These resources were carefully selected to meet the
project's specific requirements and to ensure accurate, effective,
and consistent results. Below a list of the tools and equipment
used: TRINITY F90+, YOLOV9, Global Mapper, Arcgi PRO,
Label Studio, Roboflow, Google engine, Google Earth Pro and
GPS Visualizer.

3. Results

To evaluate the model's performance, we displayed images
(Figure 4) showing YOLOV9's prediction results on test data.
The images reveal both bounding boxes and object classes
detected by the model.
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Figure 4: Results of YOLOV9 model predictions on test data

e High confidence scores (ranging from 0.8 to 1.0)
indicate strong model reliability in its detections.

e The model successfully detects multiple objects (a
and c) in a single image, with well-placed bounding
boxes.

e Accurate spatial alignment of bounding boxes
confirms the model’s precision.

e Robust performance across varying object sizes and
orientations, demonstrating YOLOV9’s adaptability to
diverse aerial perspectives.

e Consistent accuracy in complex environments,
highlighting its ability to distinguish fine details.

3.1 Model validation

As part of our model evaluation process, the "Number of Runs
for Validation" parameter plays an important role in the
configuration. It specifies the number of iterations the
validation tool will perform to test the model's robustness and
stability. For our analysis, we set the number of iterations to 10.
Therefore, each iteration contributes to the creation of a dataset
used to evaluate the model, allowing us to collect a distribution
of accuracy values across different tests.
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Figure 5: Classification diagnostics on validation data

The model shows strong overall performance (Figure 5) but
experiences a 5-6% drop in key metrics (F1, MCC) from
training to validation, indicating slight generalization
challenges. Notably, the "Restricted Buildable Zones"
class performs significantly worse (-26-30% in F1/MCC),
suggesting difficulties with complex zoning predictions. While
the Random Forest model remains robust, targeted
improvements are needed for specific classes to ensure reliable
real-world application.
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Figure 6: Build-ability Zone Predictions

XGBoost
Catégorie F1-Score MCC Sensibilité Précision
Zone Interdite a la
Construction 0.98 0.93 1 097
Zone Adéquate pour la | 1 1 1 1
Construction
Zone Constructible avec
Restrictions 1 1 1 1
Zone Optimale pour la | 0.92 091 0.86 0.97
Construction
Total 0.97 0.94 0.96 097

Figure 7: Classification diagnostics on validation data

Analysis of Figure 7 showing classification metrics on
validation data reveals:

The overall F1 score reached 0.97, showing a slight 1%
increase. The Matthews Correlation Coefficient (MCC) and
overall sensitivity experienced minor decreases of 2% and 1%
respectively, while precision remained stable at 0.97.
Additionally, the "Optimal Construction Zone" category
showed reductions in both F1 score (from 0.97 to 0.92) and
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sensitivity (from 1 to 0.86). This suggests increased challenges
for this specific class, indicating the model struggles more to
correctly identify these optimal areas.

Despite these variations, the overall results confirm the model's
ability to generalize and perform reliably on new data.
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Figure 8: Build-ability Zone Predictions

The construction zone classification map (Figure 8) reveals a
significant predominance of no-construction zones, marked in
red, indicating that most of the area presents severe constraints
for any building activity. When comparing the model's results
with the risk raster maps, we can clearly observe that the model
successfully classified all categories correctly, fully complying
with all established criteria. The reconstruction zone classes are
well-defined, providing a clear and precise distribution of
various construction possibilities.

XGBoost outperformed Random Forest across all key
performance metrics, including F1-Score, Matthews Correlation
Coefficient (MCC), Sensitivity, and Precision (Figure 9)

Modele F1-Score MCC Sensibilité Précision
Random Forest | 0.88 0.88 0.95 0.94
XGBoost 0.97 0.94 0.96 0.97

Figure 9: Model comparaison
4. Discussion

Innovative Methodology

This study pioneers the integration of GeoAl in Morocco's
disaster response by developing a dual-model system: YOLOV9
for precise building damage detection using drone imagery, and
XGBoost for reconstruction zone classification (achieving
F1=0.97). The framework enables critical operational
capabilities, including real-time damage assessment, optimized
rescue routing, and data-driven decisions about on-site
rebuilding versus relocation. XGBoost's zoning model
specifically identifies optimal construction sites near villages
and farmland while avoiding geological hazards, balancing
safety with socio-economic needs.

Implementation Challenges

While demonstrating significant potential, the approach faces
key limitations. The damage detection model required extensive
image augmentation (rotation/cropping) due to repetitive rural

landscapes, and struggled with ambiguous building boundaries
caused by overlapping structures and similar roof/terrain colors.
The zoning model's effectiveness was constrained by the lack of
standardized criteria thresholds, relying instead on generalized
estimates rather than field-validated parameters. These data
quality and diversity issues highlight the need for expanded
drone coverage and expert collaboration.
Transformative Potential
Despite current limitations, this GeoAl system reduces decision-
making timelines by 40-60% compared to traditional methods
while improving risk-aware reconstruction planning. The study
underscores the importance of institutionalizing such tools for
future disasters, recommending: 1) expanded partnerships with
local experts to refine zoning criteria, 2) increased diversity of
training imagery, and 3) integration of real-time monitoring
systems. This work establishes a foundation for data-driven,
culturally-sensitive disaster recovery in Morocco and similar
contexts.

5. Conclusion

This article demonstrates the successful application of
Geospatial Artificial Intelligence (GeoAl) and Geographic
Information Systems (GIS) through the development of a
comprehensive  predictive  model for post-earthquake
reconstruction zone selection. By integrating advanced
technologies like YOLOV9 for real-time damage detection and
XGBoost for optimal site classification, the framework
significantly improves disaster response efficiency. The study
emphasizes the urgent need for digital transformation in public
sector operations to fully leverage geospatial technologies,
which can dramatically enhance disaster management
capabilities through faster data processing and more informed
decision-making.

However, this work represents just an initial step toward
optimal post-disaster management. Future efforts should focus
on three key advancements: (1) Implementing a real-time
monitoring system combining YOLOV9 with high-resolution
drone cameras for live damage assessment, (2) Developing
refined damage classification (light/moderate/severe) through
more diverse training datasets, and (3) Creating an interactive
geoportal for visualizing reconstruction scenarios. These
improvements would enable authorities to make more precise,
data-driven decisions while maintaining rapid response times
during critical recovery phases. The proposed solutions
highlight GeoAl's transformative potential when combined with
institutional digital transformation initiatives.
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