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Abstract 

Post-earthquake reconstruction is complex and must strictly comply with current regulations. Authorities immediately began 

planning rapid reconstruction of residential buildings to provide shelter to those who lost their homes. Moreover, it must be 

accelerated to minimize impacts on affected communities. Hence, the idea of drafting a roadmap to leverage geospatial artificial 

intelligence (GeoAI) and Geographic Information Systems (GIS) to identify and classify buildings collapsed by the El Haouz 

earthquake. The data used are satellite/drone imagery, orthophotos, and GIS-based geo-risk studies for the affected douars. The 

chosen study area is part of the commune of Tizi N'Test, within the province of Taroudant, Morocco, where a significant portion of 

the douars were severely affected by this earthquake. In this paper, we outlined a strategy based on the use of a GeoAI solution 

composed of an XGBoost machine-learning model and a YOLOv9 deep learning model. The results showed that both the XGBoost 

and YOLOv9 models achieved high overall accuracy of 97% and 96%, respectively, on validation data. This work brings significant 

value to the field of post-earthquake management by making the identification of reconstruction sites more efficient and automated. 

Keywords: El Haouz Earthquake, GEOAI, Artificial Intelligence, Geospatial Analysis, Image Classification, Damage Detection, 

Disaster Management, Morocco. 

1.1 Context 

1. Introduction data, insufficient meaningful data, and the need for 

multidimensional analysis integrating multiple criteria. 

Geospatial Artificial Intelligence (GeoAI) offers a breakthrough 

solution by applying machine learning to analyze geospatial 
The Al Haouz earthquake, which struck Morocco’s High Atlas 
Mountains on September 8, 2023 (Mw 6.8, ~72 km southwest 

of Marrakech), caused severe destruction, resulting in thousands 

of casualties and displacing vulnerable mountain communities 

(Achbani et al., 2024). Hard-hit areas like El Haouz, Chichaoua, 

Taroudant, and Azilal saw extensive housing collapses, forcing 

survivors into makeshift shelters. Immediate priorities included 

rescue operations and emergency aid, followed by 

reconstruction—a complex, year-long challenge requiring 

compliance with safety regulations, preservation of local 

architecture, and relocation from high-risk zones (e.g., unstable 

or flood-prone terrain). To optimize site selection, this study 

proposes Geospatial AI (GeoAI), which accelerates risk 

assessment by analyzing real-time terrain data, socioeconomic 

factors, and geological hazards (Ouchlif et al., 2024), ensuring 

efficient, regulation-compliant rebuilding. 

1.2 Problematic 

T Post-earthquake reconstruction presents major challenges due 

to tight deadlines, regulatory constraints, and high costs. A 

critical solution lies in optimizing reconstruction site selection. 

In Morocco, this task falls to the Administrative Land Selection 

Commission, which faces key obstacles: complex geospatial 

data and model complex interactions. When combined with 

Geographic Information Systems (GIS) for criteria mapping, 

this approach enables innovative, data-driven land selection. 

The core research question emerges: How can GeoAI and GIS 

be leveraged to optimize post-earthquake land selection for 

reconstruction, particularly in severely affected areas like 

Taroudant province following the 2023 Al Haouz earthquake? 

1.3 Objectives 

This study aims to develop a GeoAI model to support 

Morocco’s land selection commission in post-earthquake 

reconstruction, optimizing financial and logistical efficiency. 

The research underscores the digital transformation of public 

sector decision-making through advanced geospatial 

technologies. 

To achieve this, key secondary objectives include: 

• High-quality geospatial data collection via remote

sensing and digital mapping for accurate AI

modeling;

• Identification of reconstruction site criteria 

(socioeconomic, environmental, etc.);
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• Multi-criteria weighted zoning for land classification; 

• AI-powered damage assessment using specialized 

geospatial architectures; 

• Development of a GeoAI implementation guide for 

post-disaster response; and 

• Model validation through performance metrics to 

ensure practical applicability. 

 

2. Method 

2.1 Introduction 

This study proposes a data-driven methodology to enhance 

post-earthquake reconstruction through multi-model geospatial 

AI. The approach combines: 

 

• Machine learning (Random Forest vs. XGBoost 

comparison) to classify reconstruction zones into four 

categories, including optimal buildable areas; 

• Deep learning (YOLOv9) for precise damage 

assessment at the douar (village) level; and 

• Multi-criteria analysis integrating 8 key factors—split 

between natural hazards (seismic/flood risks) and 

socioeconomic needs (community well-being, 

economic viability). 

 

Data integration leverages satellite/drone imagery, orthophotos, 

and GIS-based geo-risk studies, validated through literature 

review and consultations with Morocco’s Land Selection 

Commission. The workflow ensures rapid, safe reconstruction 

while balancing technical safety and community priorities. 

 

Figure 1: Detailed methodology 

 

2.2 Study area 

The study area for our project focuses on several douars 

(villages) in the rural commune of Tizi N'Test, located in 

Taroudant Province within Morocco's Souss-Massa region 

(Figure 2-2). Situated in the Tizi N'Test mountain pass, this 

commune lies in the High Atlas range, west of Mount Toubkal. 

 

Figure 2: The municipality of Tizi N'Test, containing our study 

area, is among the disaster-stricken municipalities in the 

province of Taroudant (Ouchlif et al., 2024) 

 

The villages (douars) of Tizi N'Test were severely impacted by 

the earthquake. Some were completely destroyed, while others 

suffered partial destruction - meaning a significant number of 

houses were either demolished or damaged, leaving residents in 

precarious living conditions. Figure 3 shows the specific study 

area villages: Ighil Nwareg, Mgat Nwareg, and Tizi Nwareg. 

 

Figure 3: The douars of the study area 

 

2.3 Materials and tools 

A variety of tools and equipment were utilized throughout this 

study. These resources were carefully selected to meet the 

project's specific requirements and to ensure accurate, effective, 

and consistent results. Below a list of the tools and equipment 

used: TRINITY F90+, YOLOv9, Global Mapper, Arcgi PRO, 

Label Studio, Roboflow, Google engine, Google Earth Pro and 

GPS Visualizer. 

 

3. Results 

To evaluate the model's performance, we displayed images 

(Figure 4) showing YOLOv9's prediction results on test data. 

The images reveal both bounding boxes and object classes 

detected by the model. 
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Figure 4: Results of YOLOv9 model predictions on test data 

 

• High confidence scores (ranging from 0.8 to 1.0) 

indicate strong model reliability in its detections. 

• The model successfully detects multiple objects (a 

and c) in a single image, with well-placed bounding 

boxes. 

• Accurate spatial alignment of bounding boxes 

confirms the model’s precision. 

• Robust performance across varying object sizes and 

orientations, demonstrating YOLOv9’s adaptability to 

diverse aerial perspectives. 

• Consistent accuracy in complex environments, 

highlighting its ability to distinguish fine details. 

 

3.1 Model validation 

As part of our model evaluation process, the "Number of Runs 

for Validation" parameter plays an important role in the 

configuration. It specifies the number of iterations the 

validation tool will perform to test the model's robustness and 

stability. For our analysis, we set the number of iterations to 10. 

Therefore, each iteration contributes to the creation of a dataset 

used to evaluate the model, allowing us to collect a distribution 

of accuracy values across different tests. 

 

Random Forest: 

 

Figure 5: Classification diagnostics on validation data 

The model shows strong overall performance (Figure 5) but 

experiences a 5-6% drop in key metrics (F1, MCC) from 

training to validation, indicating slight generalization 

challenges. Notably, the "Restricted Buildable Zones" 

class performs significantly worse (-26-30% in F1/MCC), 

suggesting difficulties with complex zoning predictions. While 

the Random Forest model remains robust, targeted 

improvements are needed for specific classes to ensure reliable 

real-world application. 
 

Figure 6: Build-ability Zone Predictions 

 

XGBoost 

 

Figure 7: Classification diagnostics on validation data 

Analysis of Figure 7 showing classification metrics on 

validation data reveals: 

The overall F1 score reached 0.97, showing a slight 1% 

increase. The Matthews Correlation Coefficient (MCC) and 

overall sensitivity experienced minor decreases of 2% and 1% 

respectively, while precision remained stable at 0.97. 

Additionally, the "Optimal Construction Zone" category 

showed reductions in both F1 score (from 0.97 to 0.92) and 
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sensitivity (from 1 to 0.86). This suggests increased challenges 

for this specific class, indicating the model struggles more to 

correctly identify these optimal areas. 

Despite these variations, the overall results confirm the model's 

ability to generalize and perform reliably on new data. 

landscapes, and struggled with ambiguous building boundaries 

caused by overlapping structures and similar roof/terrain colors. 

The zoning model's effectiveness was constrained by the lack of 

standardized criteria thresholds, relying instead on generalized 

estimates rather than field-validated parameters. These data 

quality and diversity issues highlight the need for expanded 

drone coverage and expert collaboration. 

Transformative Potential 

Despite current limitations, this GeoAI system reduces decision- 

making timelines by 40-60% compared to traditional methods 

while improving risk-aware reconstruction planning. The study 

underscores the importance of institutionalizing such tools for 

future disasters, recommending: 1) expanded partnerships with 

local experts to refine zoning criteria, 2) increased diversity of 

training imagery, and 3) integration of real-time monitoring 

systems. This work establishes a foundation for data-driven, 

culturally-sensitive disaster recovery in Morocco and similar 

contexts. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Build-ability Zone Predictions 

The construction zone classification map (Figure 8) reveals a 

significant predominance of no-construction zones, marked in 

red, indicating that most of the area presents severe constraints 

for any building activity. When comparing the model's results 

with the risk raster maps, we can clearly observe that the model 

successfully classified all categories correctly, fully complying 

with all established criteria. The reconstruction zone classes are 

well-defined, providing a clear and precise distribution of 

various construction possibilities. 

XGBoost outperformed Random Forest across all key 

performance metrics, including F1-Score, Matthews Correlation 

Coefficient (MCC), Sensitivity, and Precision (Figure 9) 

 

Figure 9: Model comparaison 

4. Discussion 

Innovative Methodology 

This study pioneers the integration of GeoAI in Morocco's 

disaster response by developing a dual-model system: YOLOv9 

for precise building damage detection using drone imagery, and 

XGBoost for reconstruction zone classification (achieving 

F1=0.97). The framework enables critical operational 

capabilities, including real-time damage assessment, optimized 

rescue routing, and data-driven decisions about on-site 

rebuilding versus relocation. XGBoost's zoning model 

specifically identifies optimal construction sites near villages 

and farmland while avoiding geological hazards, balancing 

safety with socio-economic needs. 

Implementation Challenges 

While demonstrating significant potential, the approach faces 

key limitations. The damage detection model required extensive 

image augmentation (rotation/cropping) due to repetitive rural 

5. Conclusion 

This article demonstrates the successful application of 

Geospatial Artificial Intelligence (GeoAI) and Geographic 

Information Systems (GIS) through the development of a 

comprehensive predictive model for post-earthquake 

reconstruction zone selection. By integrating advanced 

technologies like YOLOv9 for real-time damage detection and 

XGBoost for optimal site classification, the framework 

significantly improves disaster response efficiency. The study 

emphasizes the urgent need for digital transformation in public 

sector operations to fully leverage geospatial technologies, 

which can dramatically enhance disaster management 

capabilities through faster data processing and more informed 

decision-making. 

However, this work represents just an initial step toward 

optimal post-disaster management. Future efforts should focus 

on three key advancements: (1) Implementing a real-time 

monitoring system combining YOLOv9 with high-resolution 

drone cameras for live damage assessment, (2) Developing 

refined damage classification (light/moderate/severe) through 

more diverse training datasets, and (3) Creating an interactive 

geoportal for visualizing reconstruction scenarios. These 

improvements would enable authorities to make more precise, 

data-driven decisions while maintaining rapid response times 

during critical recovery phases. The proposed solutions 

highlight GeoAI's transformative potential when combined with 

institutional digital transformation initiatives. 
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