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Abstract

As a result of the growth of cities and the increase in migration from rural to urban areas, the urban population has grown
remarkably. Building extraction is important in many practical and strategic areas. Automatic detection of buildings from images is
important in terms of both speed and preventing interpretation errors arising from the differences in experience of experts. One of the
main difficulties encountered in studies on automatic building detection is the generalization problem originating from the difference
in the characteristics of roofs in complex environments. Recently, software and hardware systems have gained great importance due
to the development of new technologies. As a result of these innovations, studies on deep learning architecture have increased. The
training of deep learning architectures aims to minimize the loss function during learning. There are many optimization algorithms
based on various mathematical principles; however, an optimization algorithm that can be generalized to all problems and is optimal
for all conditions is still not fully defined. Therefore, the studies in literature continue to be experimental. In this study, the effects of
optimization techniques on the automatic detection of buildings with different roof types from aerial images using the U-Net
architecture are analyzed. In this study, Adam, Nadam, and RMSprop optimization techniques were used. The effects of optimization
techniques on classification performance were investigated by examining computational costs and performance metrics.
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1. Introduction with the concept of ‘artificial intelligence’ in the past, has led to

Migration from villages to cities has caused population density
in urban areas, and the number of buildings has increased.
Building extraction from remotely sensed images is important
in many fields, such as population monitoring, urban planning,
and geographic information systems (GIS) (Erener, 2013).

In recent years, the use of remotely sensed images has become
widespread with rapidly developing sensors, hardware and
software technologies. These images provide temporal, spatial,
and spectral information about the earth. With the diversity of
sensor types and the development of high-resolution cameras, it
is possible to obtain detailed images from aerial images.

Building types have different structures and geometric shapes
according to the characteristics of the geography where they are
located. Therefore, building extraction brings various
difficulties (Ji et al., 2018). At the same time, when the building
roofs and the ground have similar reflectance values, it
sometimes leads to background complexity. Identifying the
boundaries of densely grouped, partially contiguous small
buildings is a more challenging problem than sparse, scattered,
and large buildings (Wen et al., 2019).

Many algorithms have been developed and used for the
extraction of building details from remotely sensed images.
Although the traditionally preferred algorithms are simple, easy
to implement, and require little data, they have some
disadvantages due to their low success on variable data, their
lack of generalizability and the need for partial human
intervention.

Human beings have been in search of developing systems that
think, analyze, learn, and decide like themselves since the
beginning of their existence. This aim, which was identified

the development of the concepts of ‘machine learning’ and
‘deep learning’ with the developing technology. With deep
learning algorithms, which are widely used, especially in the
field of image processing, it has become widespread to use
models that are fast, automatic, generalizable, highly accurate,
and able to easily process large data and require minimum
human intervention.

The aim of the deep learning network training is to ensure that
the prediction converges to ground truth as much as possible.
The difference between the predicted and ground truth is
expressed as a loss function, and this difference is minimized in
an ideal network. Model performance improves with the
learning performed throughout training, and the learning
process increases until the model is the best representation of
the ground truth (Chollet, 2021).

The optimization technique directly affects the training time and
model performance. An optimization technique goes through
several iterations to improve the accuracy of the model and
approximate the true presentation of the data (Zaheer and
Shaziya, 2019). To date, there is no theoretical background that
provides a clear framework on how to choose and implement an
optimization technique suitable for the model (Choi et al.,
2019). Therefore, the studies in relevant research and literature
are based on empirical research, assumptions, and comparisons.

Deep learning networks are optimized in several ways, such as
structural optimization of the network model in the training
phase, determining the parameters of the defined network
structure, applying pre-processing steps to the datasets, and
selecting the best optimization technique (Reyad et al., 2023).

Jawahar et al. (2023) detected the damage of Hurricane Harvey
from satellite images in their study. The researchers used Adam,
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RMSprop, and SGD optimizers to train the model and
emphasized that the Adam optimizer outperformed the other
optimizers with an accuracy score of 98.57%. For the same
model, the RMSprop algorithm gave 98.48% and SGD gave
98.32% accuracy scores.

Bouanane et al. (2024) used U-Net and Dense U-Net
architectures and examined the effects of Momentum GD,
NAG, AdaGrad, RMSprop, and Adam optimizers on the change
analysis. Emphasizing that model performance in a deep
learning network is directly correlated with task, dataset, and
architecture, the authors stated that optimization algorithms also
significantly affect model performance. They reported that
Adam and RMSprop optimization algorithms gave good results
in terms of performance metrics, but the Adam optimizer was
more stable at low learning rates.

Shahrabadi et al. (2023) analyzed deep learning architectures
used for bridge defect detection with different optimizers and
learning rates. They analyzed Adam, Nadam, RMSprop, and
SGD algorithms and reported the Adam algorithm provides a
stable learning period, while the Nadam and RMSprop
optimizers stand out with high performance.

Anagiin et al. (2021) compared the effectiveness of SGD,
RMSprop, Adam, Adagrad, Adamax, and Nadam optimizers for
updating CNN model weights. They found that Adam and
Nadam optimizers are more stable than other optimizers, while
Adamax is faster in updating the model weight in the
backpropagation phase.

Taffese et al. (2025) used YOLO v8 architecture to detect
cracks in concrete structures in their study. They compared
SGD, AdamW, Adam, NAdam, RAdam and RMSprop
optimizers and found that the YOLO V8 model with SGD
optimizer detects cracks with outstanding accuracy and speed.

Gonzélez et al. (2025) performed a YOLO v8-based analysis on
images from the Maxar GeoEye-1 satellite of the Hurricane
Maria disaster. The researchers investigated momentum SGD,
RMSprop, Adam, Adamax, NAdam, and AdamW optimizers.
As a result, they concluded that the reliability of the momentum
SGD is better than the Adam optimizer in several factors
(training robustness, fast approximation, and consistent
prediction generation).

In this study, the impact of training the U-Net architecture,
which is widely used in building extraction from images, with
different optimization techniques on model performance is
analyzed. In this context, the U-Net architecture was trained on
an open dataset, the “Massachusetts Buildings Dataset” (Mnih,
2013), with Adam, Nadam, and RMSprop optimization
techniques based on gradient descent, which are widely used in
the literature, and the effects of the techniques on classification
were examined with performance metrics.

2. Methods
2.1 U-Net Architecture

U-Net is a convolutional neural network-based algorithm.
Announced in 2015 in “U-Net: Convolutional Networks for
Biomedical Image Segmentation” (Ronneberger et al., 2015),
the model is designed for segmenting biomedical images
requiring intensive analysis and pixel-level segmentation.

Convolutional neural networks are composed of three basic
layers: input layer, convolution layer, pooling layer and fully
connected layer. These networks are built on a special
mathematical process called convolution (Goodfellow et al.,
2016).

Each step in the network learns a pattern. Once learned, the
pattern can be recognized again. This allows the network to
continue the process by building on what was learned in the
previous layer in each convolutional layer without the need for
relearning. Thus, the learning process in the training phase will
be simplified from specific to general induction (Chollet, 2021).

In a convolutional neural network, the dimensions of the feature
maps are reduced in the pooling layer. Then the feature map is
extracted. In the U-Net model, the dimension reduction is
followed by a dimension increase. Thus, the feature maps are
restored to their original resolution. In this respect, it is similar
to an encoder-decoder network. The name of the algorithm
comes from the shape of the architecture (Figure 1).
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Figure 1. U-Net architecture (Ronneberger vd., 2015)
2.2 Optimization Algorithms: Adam, Nadam and RMSprop

The impact of an optimization algorithm on the model depends
on the problem, data quality, data characteristics, and model
architecture. In some cases, the techniques used can imitate
each other. The lack of a theoretical description of the impact of
the techniques on model performance has led the studies on
these techniques to rely on empirical bases and comparative
analysis. In addition, hyperparameters are crucial for model
performance. (Choi et al., 2019).

In this study, the effects of Adam (Kingma and Ba, 2014),
Nadam (Dozat, 2016), and RMSprop (Tieleman and Hinton,
2012) optimization techniques on the model performance of the
U-Net architecture are analyzed.

The RMSprop optimization technique uses adaptive learning
rates. It can use a variable learning rate according to the
parameters in the optimization process. During the step sizes are
iteratively changed according to the gradient magnitudes during
the update. Thus, the learning rate for each parameter can be
adaptively determined, and this technique is often preferred,
especially in memory-limited situations.

Another well-known optimization technique, Adam uses
momentum and the gradient square to update the model
weights. It is an efficient technique with low memory
requirements. The directional changes of the weights can be
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adjusted by determining both the direction and the size of the
steps.

The Nadam optimization technique emerged by integrating
Nesterov momentum into the Adam technique. Thus, the
convergence speed is increased, and high performance is
achieved (Ruder, 2016).

2.3 Dataset

The dataset used in the study is the Massachusetts Buildings
Dataset, which consists of 151 aerial images of the Boston area
(Mnih, 2013). The publicly available dataset consists of 137
training, 10 test, and 4 validation images. Each image is
1500%1500 pixels for an area of 2.25 km? (Figure 2).

Ground Truth 1

Original Image 1

>

Figure 2. Massachusetts buildings dataset examples
(Mnih, 2013)

2.4 Performance Metrics

Performance metrics are used to evaluate the success of deep
learning models. In this study, the success of the U-Net model
trained with Adam, Nadam, and RMSprop optimization
techniques is analyzed by considering the accuracy (1),
precision (2), recall (3), Fl-score (4) and loU (5) values
commonly used in literature. In addition, the training time of
the models are analyzed. In this context, true positive (TP), true
negative (TN), false positive (FP), and false negative (FN)
values are used.

Accuracy is the proportion of correct predictions out of all
predictions made by the architecture during the testing phase
(1). Precision is a metric that shows the number of true positives
within positive predictions (2). Recall measures the proportion
of true positives to correct predictions (3). The harmonic mean
of precision and recall values gives the F1 score (4).

loU (Intersection over Union) is a metric that expresses how
much the predicted sample overlaps with the ground truth. It is
frequently used, especially in classification problems. It is an
indicator of how well the model distinguishes between building
and background. It is represented by values ranging between 0
and 1. A value of 1 represents the best overlap, and 0 represents
the worst overlap (5).

TP+TN
Accuracy=___________ ()
TP+TN+FP+FN
. TP
Precision = )
TP+FP
TP
Recall = (3)
TP+FN
2 X Precision X Recall
F1Score = ——MMMM——— 4)
Precision + Recall
Area of Overlap
[oU = Arcaoioverap
oU Area of Union (5)

where TP: True Positive - Correct detection of predictions
that are actually building

TN True Negative - Correct detection of forecasts that
are not actually buildings

FP: False Positive - A building that is not actually a
building but is identified as a building as a result of
estimation

FN: False Negative - A building that is actually a
building but is not identified as a building as a result
of estimation

Area of Overlap: The intersection of ground truth and
prediction

Area of Union: Combination set of ground truth and
prediction

Model performances are visually analyzed with the ROC curve
graph. ROC curve contains false positive rate values in the row
and true positive rate values in the column. This curve is
frequently used in the evaluation of models. The closer the
curve converges to the upper left corner, the more successful the
model is. AUC represents the area under the curve and has a
maximum value of 1.

The training time of the 3 trainings, the epoch value of the
moment when the training was stopped by early stopping, and
the epoch value of the moment when the minimum validation
loss value was reached were recorded and analyzed about the
training process.

Once training is complete, predictions are generated using the
new test images received. This metric, called Inference Time, is
in seconds. FPS refers to the data processed by the model in one
second. By recording these metrics, the adaptability of the
model to real-time applications is discussed.

2.5. Parameters
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In this study, the parameter values of these algorithms, which
are frequently used in literature, are used to evaluate the
performance of the optimization algorithms accurately and are
given in Table 1. However, the learning rates were tested
experimentally, and the training was completed by determining
the most appropriate learning rate for the model.

Parameters Values
Adam Nadam | RMSprop
Learning Rate (a) 0.001 0.001 0.0001
By 0.9 0.975 -
B2 0.999 0.999 -
rho - - 0.9
€ le-8 1le-8 le-8

Table 1. Optimizer parameters

In the training step, ReLU is used as the activation function on
the U-Net model, and sigmoid functions are used in the output
layer; the binary cross-entropy function is used as the loss
function. Dropout rate is set to 0.2, and batch size is set to 2.
The limitations of the graphics card are considered in choosing
these values. To prevent overfitting, the training started with
100 epochs, and the early stopping technique is used to
automatically stop the training if the validation loss of the
model does not improve in 5 epochs.

3. Results

The dataset is preprocessed, and each image is divided into
256x256 pixel areas. The dataset consists of 1000 training, 100
validation, and 150 test images, totaling 1250 images.

The U-Net model is trained three times using Adam, Nadam,
and RMSprop optimizers on 1000 images using TensorFlow
and Keras libraries on GTX 1060 in a Python environment.

The epoch count is initially defined as 100 for all training. Loss
Over Epoch (Figure 3) plots are generated for each training
process, and model training is evaluated by monitoring the
changes in training loss and validation loss. The graphs show
the epoch at which the early stopping method used to prevent
overfitting stops training and the epoch at which the model
receives its last updated weights.

The trained model is analyzed with performance metrics using
test images (Table 2). The performance metrics used are as
follows: accuracy, precision, recall, F1 score, and loU.

Performance U-Net with Optimization
Metrics Algorithms
Adam Nadam | RMSprop

Accuracy 0.9132 | 0.9189 0.9158

Precision 0.8436 | 0.7940 0.7906

Recall 0.6437 | 0.7499 0.7326

F1 Score 0.7302 | 0.7713 0.7605

loU 0.5751 | 0.6278 0.6136

Table 2. Performance results

In addition, information on training time, inference time, FPS
metrics, and the number of epochs is given in Table 3. Epoch
(@) in the table is the number of manual epochs entered by the
user at the beginning of the training. Epoch (b) is the epoch
when the early stopping method stops training. Epoch (c) is the
number of epochs of the weights that were restored after the
training was stopped.

Other U-Net with Optimization
Metrics Algorithms
Adam Nadam | RMSprop
Training Time (min) | 36.38 54.27 47.16
Inference Time () 4.56 4.50 4.44
FPS 329 33.36 33.77
Epoch (a) 100 100 100
Epoch (b) 22 29 27
Epoch (c) 17 24 22

Table 3. Other metrics
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Figure 3. Loss over epochs with early stopping point
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ROC curves for each training are obtained (Figure 4). An ROC
curve contains false positive rate values in the row and true
positive rate values in the column. This curve is often used to
test the classification success of models.
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Figure 4. ROC curves

The performance of the trained models was analyzed with test
images. Figure 5 is a representation of a sample image. The first
column of the figure is composed of test images from the
Massachusetts Buildings Dataset and their masks. In the second
column, the model prediction for the same test image is placed.
To discuss the findings of the building detection, the notable
cases are marked. Comments on these cases will be discussed in
the Discussion & Conclusion section.

U-Net + Adam
Original + Ground Truth
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Figure 5. Ground truth and prediction on a sample test image
4. Discussion&Conclusion

The data set used in the study is a medium-scale data set. Model
training and testing phases were performed on a GTX 1060
GPU.

Loss Over Epoch graphs were analyzed, and validation loss and
training loss values were monitored to make inferences about
the training performance of the model (Figure 3).

For the model trained with the Adam optimizer, the initial
epoch value was defined by the user as 100 for all training.
Early stopping stopped the training at epoch 22 to avoid
overfitting. Throughout 22 epochs, the validation loss got the
smallest value at epoch 17. Therefore, the weights at epoch 17
were loaded back, and the model training was completed.

Since the initial model weights were chosen randomly, the
training loss was initially as high as 0.40 and decreased to 0.15
in the last epoch.
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The validation loss tends to decrease over the 22 epochs but
shows a fluctuating curve. The curve formed many local
minima. From epoch 17 onwards, validation loss increased
again.

Training with the Nadam optimizer is not consistent in the first
epochs compared to training with the Adam optimizer. After 3 -
4 epochs, both training loss and validation loss decreased stably.

The lowest validation loss value was obtained at epoch 24.
After this epoch, both curves followed a fluctuating trend. Since
the validation loss value did not decrease during 5 epochs, the
training was stopped at epoch 29, and the model weights at
epoch 24 were used to construct the current weights.

The graph where the validation loss curve shows the most
deviation belongs to the training with RMSprop. At epoch 22,
the minimum degree was reached. The training loss curve is
more stable than the validation loss curve and decreases
steadily. Early stopping stopped training at epoch 27.

Comparing the 3 plots, it is observed that the training loss curve
fluctuates during the training phase with the Nadam optimizer.
Adam and Nadam showed similar performance, but Adam is
more stable in both validation loss and training loss curves.

When the ROC curves (Figure 4) were analyzed, it can be said
that all models are ideal in class distinction. It was found that
the model with the best class separation belongs to the Nadam
optimizer. In this respect, the model is a more successful
classifier than the others.

When the results of the performance metrics are analyzed
(Table 2), the highest accuracy score belongs to the Nadam
optimizer, with 0.9189. In the test phase, both classes (buildings
and background) were correctly predicted by this model with a
high score.

The highest precision score belongs to the Adam optimizer,
with 0.8436. The majority of the pixels predicted to belong to
the building class were correctly predicted by this model.

The highest recall score belongs to the Nadam optimizer, with
0.7499. This metric indicates the proportion of the total pixels
that should have been identified as buildings.

The Nadam optimizer is a successful optimizer with an F1 score
of 0.7713. The F1 score is especially important for analyzing
imbalanced data sets. This metric balances between precision
and recall.

Intersection Over Union (loU) calculates the overlap between
the model's prediction and the ground truth. The Nadam
optimizer also performed quite successfully in this metric,
achieving the highest score of 0.6278.

Table 3 shows that the model trained with the Adam optimizer
is the fastest-trained model, with a time of 36.38 min. It reached
the lowest validation loss in its graph in the shortest time. The
use of the Nadam optimizer instead of Adam in the training
resulted in a significant increase in the training time.

When the inference time (s), which is a measure of the
prediction time of the trained model on new images, and the
FPS metrics, which express the amount of data the model
processes in one second, are examined, it is found that the

model trained with the RMSprop optimizer is faster than the
others.

Figure 5 shows that the Adam optimizer found buildings overall
but had difficulty in detecting small and closely located
buildings. However, the model produced fewer false labels
compared to the other two.

The Nadam optimizer is more successful than Adam in
detecting small and close buildings. It also managed to detect
many buildings. However, it produced false building labels,
especially in areas with similar spectral characteristics as the
building roof.

The RMSprop optimizer is the training optimizer that preserves
the geometric shapes of buildings the least. Building corners
that are sharp in the ground truth are detected as soft by the
model. False building generation in the background is
noticeable.

In this study, building segmentation was performed on a
medium-sized dataset. The Massachusetts Buildings Dataset
(Mnih, 2013) is a dataset used in many studies. After
preprocessing the dataset, training and testing phases were
completed using a total of 1250 images with 256x256
resolution.

The study was carried out with a video card with 6 GB of
memory. This requires experimental tuning of the selected
parameters.

Studies on the dataset show that the U-Net model trained with
the Nadam optimizer has a stronger overall performance than
the other models. The model trained with this optimizer
performs best in the majority of the success metrics. Although
there were serious fluctuations in the first epochs during the
model training, a stable learning process was realized in the rest
of the training process. However, training with the Nadam
optimizer took longer compared to the other two.

The RMSprop optimizer contributed to speeding up the model.
The model trained with this optimizer is the closest to real-time
applications. However, it was inferior to the other optimizers in
terms of fluctuations in the training process, performance
metrics results, and smoothing sharp building boundaries.

The model trained with the Adam optimizer is generally
successful but has difficulty in detecting small buildings. It is
less suitable for real-time applications than other optimizers.

The findings show that the selected optimization algorithm
significantly affects the model’s success and its compatibility
with real-time applications.

Existing optimization techniques are directly affected by data-
dependent properties such as data set size, class distribution,
and the capacity of the system used in the training phase. The
behavior of optimization algorithms sometimes makes it
difficult to generalize. For this reason, existing studies in
literature continue experimentally.

Consequently, this study investigates the effects of optimization
algorithms on the performance of the U-Net architecture for the
building segmentation task on a medium-sized dataset. In
addition, the effects of the selected optimizer on the suitability
of the model for real-time applications are examined.
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Future work will examine the effects of more optimizers on
various large datasets and high-end environments to provide a
general perspective on optimizers. In addition, the effects of
optimizers on data sets with unbalanced class distributions will
be investigated.
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