
Analyzing the Impact of Optimization Techniques on U-Net-Based Building Detection

Performance

Suheyla Piltan Altaş, Fevzi Karsli

Karadeniz Technical University,Turkiye

Abstract

As a result of the growth of cities and the increase in migration from rural to urban areas, the urban population has grown

remarkably. Building extraction is important in many practical and strategic areas. Automatic detection of buildings from images is

important in terms of both speed and preventing interpretation errors arising from the differences in experience of experts. One of the

main difficulties encountered in studies on automatic building detection is the generalization problem originating from the difference

in the characteristics of roofs in complex environments. Recently, software and hardware systems have gained great importance due

to the development of new technologies. As a result of these innovations, studies on deep learning architecture have increased. The

training of deep learning architectures aims to minimize the loss function during learning. There are many optimization algorithms

based on various mathematical principles; however, an optimization algorithm that can be generalized to all problems and is optimal

for all conditions is still not fully defined. Therefore, the studies in literature continue to be experimental. In this study, the effects of

optimization techniques on the automatic detection of buildings with different roof types from aerial images using the U-Net

architecture are analyzed. In this study, Adam, Nadam, and RMSprop optimization techniques were used. The effects of optimization

techniques on classification performance were investigated by examining computational costs and performance metrics.

Keywords: Building Detection, Adam, Nadam, RMSProp, U-Net

1. Introduction

Migration from villages to cities has caused population density

in urban areas, and the number of buildings has increased.

Building extraction from remotely sensed images is important

in many fields, such as population monitoring, urban planning,

and geographic information systems (GIS) (Erener, 2013).

In recent years, the use of remotely sensed images has become

widespread with rapidly developing sensors, hardware and

software technologies. These images provide temporal, spatial,

and spectral information about the earth. With the diversity of

sensor types and the development of high-resolution cameras, it

is possible to obtain detailed images from aerial images.

Building types have different structures and geometric shapes

according to the characteristics of the geography where they are

located. Therefore, building extraction brings various

difficulties (Ji et al., 2018). At the same time, when the building

roofs and the ground have similar reflectance values, it

sometimes leads to background complexity. Identifying the

boundaries of densely grouped, partially contiguous small

buildings is a more challenging problem than sparse, scattered,

and large buildings (Wen et al., 2019).

Many algorithms have been developed and used for the

extraction of building details from remotely sensed images.

Although the traditionally preferred algorithms are simple, easy

to implement, and require little data, they have some

disadvantages due to their low success on variable data, their

lack of generalizability and the need for partial human

intervention.

Human beings have been in search of developing systems that

think, analyze, learn, and decide like themselves since the

beginning of their existence. This aim, which was identified

with the concept of ‘artificial intelligence’ in the past, has led to

the development of the concepts of ‘machine learning’ and

‘deep learning’ with the developing technology. With deep

learning algorithms, which are widely used, especially in the

field of image processing, it has become widespread to use

models that are fast, automatic, generalizable, highly accurate,

and able to easily process large data and require minimum

human intervention.

The aim of the deep learning network training is to ensure that

the prediction converges to ground truth as much as possible.

The difference between the predicted and ground truth is

expressed as a loss function, and this difference is minimized in

an ideal network. Model performance improves with the

learning performed throughout training, and the learning

process increases until the model is the best representation of

the ground truth (Chollet, 2021).

The optimization technique directly affects the training time and

model performance. An optimization technique goes through

several iterations to improve the accuracy of the model and

approximate the true presentation of the data (Zaheer and

Shaziya, 2019). To date, there is no theoretical background that

provides a clear framework on how to choose and implement an

optimization technique suitable for the model (Choi et al.,

2019). Therefore, the studies in relevant research and literature

are based on empirical research, assumptions, and comparisons.

Deep learning networks are optimized in several ways, such as

structural optimization of the network model in the training

phase, determining the parameters of the defined network

structure, applying pre-processing steps to the datasets, and

selecting the best optimization technique (Reyad et al., 2023).

Jawahar et al. (2023) detected the damage of Hurricane Harvey

from satellite images in their study. The researchers used Adam,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-255-2026 | © Author(s) 2026. CC BY 4.0 License.

255

RMSprop, and SGD optimizers to train the model and

emphasized that the Adam optimizer outperformed the other

optimizers with an accuracy score of 98.57%. For the same

model, the RMSprop algorithm gave 98.48% and SGD gave

98.32% accuracy scores.

Bouanane et al. (2024) used U-Net and Dense U-Net

architectures and examined the effects of Momentum GD,

NAG, AdaGrad, RMSprop, and Adam optimizers on the change

analysis. Emphasizing that model performance in a deep

learning network is directly correlated with task, dataset, and

architecture, the authors stated that optimization algorithms also

significantly affect model performance. They reported that

Adam and RMSprop optimization algorithms gave good results

in terms of performance metrics, but the Adam optimizer was

more stable at low learning rates.

Shahrabadi et al. (2023) analyzed deep learning architectures

used for bridge defect detection with different optimizers and

learning rates. They analyzed Adam, Nadam, RMSprop, and

SGD algorithms and reported the Adam algorithm provides a

stable learning period, while the Nadam and RMSprop

optimizers stand out with high performance.

Anagün et al. (2021) compared the effectiveness of SGD,

RMSprop, Adam, Adagrad, Adamax, and Nadam optimizers for

updating CNN model weights. They found that Adam and

Nadam optimizers are more stable than other optimizers, while

Adamax is faster in updating the model weight in the

backpropagation phase.

Taffese et al. (2025) used YOLO v8 architecture to detect

cracks in concrete structures in their study. They compared

SGD, AdamW, Adam, NAdam, RAdam and RMSprop

optimizers and found that the YOLO V8 model with SGD

optimizer detects cracks with outstanding accuracy and speed.

González et al. (2025) performed a YOLO v8-based analysis on

images from the Maxar GeoEye-1 satellite of the Hurricane

Maria disaster. The researchers investigated momentum SGD,

RMSprop, Adam, Adamax, NAdam, and AdamW optimizers.

As a result, they concluded that the reliability of the momentum

SGD is better than the Adam optimizer in several factors

(training robustness, fast approximation, and consistent

prediction generation).

In this study, the impact of training the U-Net architecture,

which is widely used in building extraction from images, with

different optimization techniques on model performance is

analyzed. In this context, the U-Net architecture was trained on

an open dataset, the “Massachusetts Buildings Dataset” (Mnih,

2013), with Adam, Nadam, and RMSprop optimization

techniques based on gradient descent, which are widely used in

the literature, and the effects of the techniques on classification

were examined with performance metrics.

2. Methods

2.1 U-Net Architecture

U-Net is a convolutional neural network-based algorithm.

Announced in 2015 in “U-Net: Convolutional Networks for

Biomedical Image Segmentation” (Ronneberger et al., 2015),

the model is designed for segmenting biomedical images

requiring intensive analysis and pixel-level segmentation.

Convolutional neural networks are composed of three basic

layers: input layer, convolution layer, pooling layer and fully

connected layer. These networks are built on a special

mathematical process called convolution (Goodfellow et al.,

2016).

Each step in the network learns a pattern. Once learned, the

pattern can be recognized again. This allows the network to

continue the process by building on what was learned in the

previous layer in each convolutional layer without the need for

relearning. Thus, the learning process in the training phase will

be simplified from specific to general induction (Chollet, 2021).

In a convolutional neural network, the dimensions of the feature

maps are reduced in the pooling layer. Then the feature map is

extracted. In the U-Net model, the dimension reduction is

followed by a dimension increase. Thus, the feature maps are

restored to their original resolution. In this respect, it is similar

to an encoder-decoder network. The name of the algorithm

comes from the shape of the architecture (Figure 1).

Figure 1. U-Net architecture (Ronneberger vd., 2015)

2.2 Optimization Algorithms: Adam, Nadam and RMSprop

The impact of an optimization algorithm on the model depends

on the problem, data quality, data characteristics, and model

architecture. In some cases, the techniques used can imitate

each other. The lack of a theoretical description of the impact of

the techniques on model performance has led the studies on

these techniques to rely on empirical bases and comparative

analysis. In addition, hyperparameters are crucial for model

performance. (Choi et al., 2019).

In this study, the effects of Adam (Kingma and Ba, 2014),

Nadam (Dozat, 2016), and RMSprop (Tieleman and Hinton,

2012) optimization techniques on the model performance of the

U-Net architecture are analyzed.

The RMSprop optimization technique uses adaptive learning

rates. It can use a variable learning rate according to the

parameters in the optimization process. During the step sizes are

iteratively changed according to the gradient magnitudes during

the update. Thus, the learning rate for each parameter can be

adaptively determined, and this technique is often preferred,

especially in memory-limited situations.

Another well-known optimization technique, Adam uses

momentum and the gradient square to update the model

weights. It is an efficient technique with low memory

requirements. The directional changes of the weights can be

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-255-2026 | © Author(s) 2026. CC BY 4.0 License.

256

adjusted by determining both the direction and the size of the

steps.

The Nadam optimization technique emerged by integrating

Nesterov momentum into the Adam technique. Thus, the

convergence speed is increased, and high performance is

achieved (Ruder, 2016).

2.3 Dataset

The dataset used in the study is the Massachusetts Buildings

Dataset, which consists of 151 aerial images of the Boston area

(Mnih, 2013). The publicly available dataset consists of 137

training, 10 test, and 4 validation images. Each image is

1500×1500 pixels for an area of 2.25 km² (Figure 2).

Accuracy is the proportion of correct predictions out of all

predictions made by the architecture during the testing phase

(1). Precision is a metric that shows the number of true positives

within positive predictions (2). Recall measures the proportion

of true positives to correct predictions (3). The harmonic mean

of precision and recall values gives the F1 score (4).

IoU (Intersection over Union) is a metric that expresses how

much the predicted sample overlaps with the ground truth. It is

frequently used, especially in classification problems. It is an

indicator of how well the model distinguishes between building

and background. It is represented by values ranging between 0

and 1. A value of 1 represents the best overlap, and 0 represents

the worst overlap (5).

Accuracy =
TP+TN

TP+TN+FP+FN

Precision =
TP

TP+FP

Recall =
TP

TP+FN

F1 Score =
2 × Precision × Recall

Precision + Recall

IoU =
Area of Overlap

Area of Union

(1)

(2)

(3)

(4)

(5)

where TP: True Positive - Correct detection of predictions

that are actually building

TN True Negative - Correct detection of forecasts that

are not actually buildings

FP: False Positive - A building that is not actually a

building but is identified as a building as a result of

estimation

FN: False Negative - A building that is actually a

building but is not identified as a building as a result

of estimation

Area of Overlap: The intersection of ground truth and

prediction

Area of Union: Combination set of ground truth and

prediction

Figure 2. Massachusetts buildings dataset examples

(Mnih, 2013)

2.4 Performance Metrics

Performance metrics are used to evaluate the success of deep

learning models. In this study, the success of the U-Net model

trained with Adam, Nadam, and RMSprop optimization

techniques is analyzed by considering the accuracy (1),

precision (2), recall (3), F1-score (4) and IoU (5) values

commonly used in literature. In addition, the training time of

the models are analyzed. In this context, true positive (TP), true

negative (TN), false positive (FP), and false negative (FN)

values are used.

Model performances are visually analyzed with the ROC curve

graph. ROC curve contains false positive rate values in the row

and true positive rate values in the column. This curve is

frequently used in the evaluation of models. The closer the

curve converges to the upper left corner, the more successful the

model is. AUC represents the area under the curve and has a

maximum value of 1.

The training time of the 3 trainings, the epoch value of the

moment when the training was stopped by early stopping, and

the epoch value of the moment when the minimum validation

loss value was reached were recorded and analyzed about the

training process.

Once training is complete, predictions are generated using the

new test images received. This metric, called Inference Time, is

in seconds. FPS refers to the data processed by the model in one

second. By recording these metrics, the adaptability of the

model to real-time applications is discussed.

2.5. Parameters

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-255-2026 | © Author(s) 2026. CC BY 4.0 License.

257

In this study, the parameter values of these algorithms, which

are frequently used in literature, are used to evaluate the

performance of the optimization algorithms accurately and are

given in Table 1. However, the learning rates were tested

experimentally, and the training was completed by determining

the most appropriate learning rate for the model.

Parameters Values

Adam Nadam RMSprop

Learning Rate (α) 0.001 0.001 0.0001
β₁ 0.9 0.975 -

β₂ 0.999 0.999 -
rho - - 0.9

ε 1e-8 1e-8 1e-8

Table 1. Optimizer parameters

In the training step, ReLU is used as the activation function on

the U-Net model, and sigmoid functions are used in the output

layer; the binary cross-entropy function is used as the loss

function. Dropout rate is set to 0.2, and batch size is set to 2.

The limitations of the graphics card are considered in choosing

these values. To prevent overfitting, the training started with

100 epochs, and the early stopping technique is used to

automatically stop the training if the validation loss of the

model does not improve in 5 epochs.

3. Results

The dataset is preprocessed, and each image is divided into

256×256 pixel areas. The dataset consists of 1000 training, 100

validation, and 150 test images, totaling 1250 images.

The U-Net model is trained three times using Adam, Nadam,

and RMSprop optimizers on 1000 images using TensorFlow

and Keras libraries on GTX 1060 in a Python environment.

The epoch count is initially defined as 100 for all training. Loss

Over Epoch (Figure 3) plots are generated for each training

process, and model training is evaluated by monitoring the

changes in training loss and validation loss. The graphs show

the epoch at which the early stopping method used to prevent

overfitting stops training and the epoch at which the model

receives its last updated weights.

The trained model is analyzed with performance metrics using

test images (Table 2). The performance metrics used are as

follows: accuracy, precision, recall, F1 score, and IoU.

Performance
Metrics

U-Net with Optimization
Algorithms

Adam Nadam RMSprop

Accuracy 0.9132 0.9189 0.9158

Precision 0.8436 0.7940 0.7906

Recall 0.6437 0.7499 0.7326
F1 Score 0.7302 0.7713 0.7605

IoU 0.5751 0.6278 0.6136

Table 2. Performance results

In addition, information on training time, inference time, FPS

metrics, and the number of epochs is given in Table 3. Epoch

(a) in the table is the number of manual epochs entered by the

user at the beginning of the training. Epoch (b) is the epoch

when the early stopping method stops training. Epoch (c) is the

number of epochs of the weights that were restored after the

training was stopped.

Other
Metrics

U-Net with Optimization
Algorithms

Adam Nadam RMSprop

Training Time (min) 36.38 54.27 47.16

Inference Tıme (s) 4.56 4.50 4.44

FPS 32.9 33.36 33.77

Epoch (a) 100 100 100

Epoch (b)

Epoch (c)

22

17

29

24

27

22

Table 3. Other metrics

Figure 3. Loss over epochs with early stopping point

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-255-2026 | © Author(s) 2026. CC BY 4.0 License.

258

ROC curves for each training are obtained (Figure 4). An ROC

curve contains false positive rate values in the row and true

positive rate values in the column. This curve is often used to

test the classification success of models.

Figure 4. ROC curves

The performance of the trained models was analyzed with test

images. Figure 5 is a representation of a sample image. The first

column of the figure is composed of test images from the

Massachusetts Buildings Dataset and their masks. In the second

column, the model prediction for the same test image is placed.

To discuss the findings of the building detection, the notable

cases are marked. Comments on these cases will be discussed in

the Discussion & Conclusion section.

Figure 5. Ground truth and prediction on a sample test image

4. Discussion&Conclusion

The data set used in the study is a medium-scale data set. Model

training and testing phases were performed on a GTX 1060

GPU.

Loss Over Epoch graphs were analyzed, and validation loss and

training loss values were monitored to make inferences about

the training performance of the model (Figure 3).

For the model trained with the Adam optimizer, the initial

epoch value was defined by the user as 100 for all training.

Early stopping stopped the training at epoch 22 to avoid

overfitting. Throughout 22 epochs, the validation loss got the

smallest value at epoch 17. Therefore, the weights at epoch 17

were loaded back, and the model training was completed.

Since the initial model weights were chosen randomly, the

training loss was initially as high as 0.40 and decreased to 0.15

in the last epoch.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-255-2026 | © Author(s) 2026. CC BY 4.0 License.

259

The validation loss tends to decrease over the 22 epochs but

shows a fluctuating curve. The curve formed many local

minima. From epoch 17 onwards, validation loss increased

again.

Training with the Nadam optimizer is not consistent in the first

epochs compared to training with the Adam optimizer. After 3 -

4 epochs, both training loss and validation loss decreased stably.

The lowest validation loss value was obtained at epoch 24.

After this epoch, both curves followed a fluctuating trend. Since

the validation loss value did not decrease during 5 epochs, the

training was stopped at epoch 29, and the model weights at

epoch 24 were used to construct the current weights.

The graph where the validation loss curve shows the most

deviation belongs to the training with RMSprop. At epoch 22,

the minimum degree was reached. The training loss curve is

more stable than the validation loss curve and decreases

steadily. Early stopping stopped training at epoch 27.

Comparing the 3 plots, it is observed that the training loss curve

fluctuates during the training phase with the Nadam optimizer.

Adam and Nadam showed similar performance, but Adam is

more stable in both validation loss and training loss curves.

When the ROC curves (Figure 4) were analyzed, it can be said

that all models are ideal in class distinction. It was found that

the model with the best class separation belongs to the Nadam

optimizer. In this respect, the model is a more successful

classifier than the others.

When the results of the performance metrics are analyzed

(Table 2), the highest accuracy score belongs to the Nadam

optimizer, with 0.9189. In the test phase, both classes (buildings

and background) were correctly predicted by this model with a

high score.

The highest precision score belongs to the Adam optimizer,

with 0.8436. The majority of the pixels predicted to belong to

the building class were correctly predicted by this model.

The highest recall score belongs to the Nadam optimizer, with

0.7499. This metric indicates the proportion of the total pixels

that should have been identified as buildings.

The Nadam optimizer is a successful optimizer with an F1 score

of 0.7713. The F1 score is especially important for analyzing

imbalanced data sets. This metric balances between precision

and recall.

Intersection Over Union (IoU) calculates the overlap between

the model's prediction and the ground truth. The Nadam

optimizer also performed quite successfully in this metric,

achieving the highest score of 0.6278.

Table 3 shows that the model trained with the Adam optimizer

is the fastest-trained model, with a time of 36.38 min. It reached

the lowest validation loss in its graph in the shortest time. The

use of the Nadam optimizer instead of Adam in the training

resulted in a significant increase in the training time.

When the inference time (s), which is a measure of the

prediction time of the trained model on new images, and the

FPS metrics, which express the amount of data the model

processes in one second, are examined, it is found that the

model trained with the RMSprop optimizer is faster than the

others.

Figure 5 shows that the Adam optimizer found buildings overall

but had difficulty in detecting small and closely located

buildings. However, the model produced fewer false labels

compared to the other two.

The Nadam optimizer is more successful than Adam in

detecting small and close buildings. It also managed to detect

many buildings. However, it produced false building labels,

especially in areas with similar spectral characteristics as the

building roof.

The RMSprop optimizer is the training optimizer that preserves

the geometric shapes of buildings the least. Building corners

that are sharp in the ground truth are detected as soft by the

model. False building generation in the background is

noticeable.

In this study, building segmentation was performed on a

medium-sized dataset. The Massachusetts Buildings Dataset

(Mnih, 2013) is a dataset used in many studies. After

preprocessing the dataset, training and testing phases were

completed using a total of 1250 images with 256×256

resolution.

The study was carried out with a video card with 6 GB of

memory. This requires experimental tuning of the selected

parameters.

Studies on the dataset show that the U-Net model trained with

the Nadam optimizer has a stronger overall performance than

the other models. The model trained with this optimizer

performs best in the majority of the success metrics. Although

there were serious fluctuations in the first epochs during the

model training, a stable learning process was realized in the rest

of the training process. However, training with the Nadam

optimizer took longer compared to the other two.

The RMSprop optimizer contributed to speeding up the model.

The model trained with this optimizer is the closest to real-time

applications. However, it was inferior to the other optimizers in

terms of fluctuations in the training process, performance

metrics results, and smoothing sharp building boundaries.

The model trained with the Adam optimizer is generally

successful but has difficulty in detecting small buildings. It is

less suitable for real-time applications than other optimizers.

The findings show that the selected optimization algorithm

significantly affects the model’s success and its compatibility

with real-time applications.

Existing optimization techniques are directly affected by data-

dependent properties such as data set size, class distribution,

and the capacity of the system used in the training phase. The

behavior of optimization algorithms sometimes makes it

difficult to generalize. For this reason, existing studies in

literature continue experimentally.

Consequently, this study investigates the effects of optimization

algorithms on the performance of the U-Net architecture for the

building segmentation task on a medium-sized dataset. In

addition, the effects of the selected optimizer on the suitability

of the model for real-time applications are examined.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-255-2026 | © Author(s) 2026. CC BY 4.0 License.

260

Future work will examine the effects of more optimizers on

various large datasets and high-end environments to provide a

general perspective on optimizers. In addition, the effects of

optimizers on data sets with unbalanced class distributions will

be investigated.

References

Anagün, Y., Işık, Ş., 2021: Contribution Analysis of

Optimization Methods on Super-Resolution. Afyon Kocatepe

Univ. J. Sci. Eng., 21(6), 1343–1352.

Bouanane, K., Dokkar, B., Allaoui, M., Meddour, B., Kherfi, M.

L., Hedjam, R., 2024: Behaviors of first-order optimizers in the

context of sparse data and sparse models: a comparative study.

Digit. Signal Process., 153, 104637.

Choi, D., Shallue, C. J., Nado, Z., Lee, J., Maddison, C. J.,

Dahl, G. E., 2019: On empirical comparisons of optimizers for

deep learning. arXiv preprint arXiv:1910.05446.

Chollet, F., 2021: Deep Learning with Python. 2nd ed.,

Manning Publications, Shelter Island, New York, USA.

Dozat, T., 2016: Incorporating Nesterov Momentum into Adam.

In: Proc. 4th Int. Conf. Learning Representations (ICLR),

Workshop Track, San Juan, Puerto Rico, 2–4 May 2016, 1–4.

Erener, A., 2013: Classification method, spectral diversity, band

combination and accuracy assessment evaluation for urban

feature detection. Int. J. Appl. Earth Obs. Geoinf., 21, 397–408.

González, C. L. M., Montoya, G. A., Garzón, C. L., 2025:

Toward Reliable Post-Disaster Assessment: Advancing Building

Damage Detection Using You Only Look Once Convolutional

Neural Network and Satellite Imagery. Mathematics, 13(7), 1–

29.

Goodfellow, I., Bengio, Y., Courville, A., 2016: Deep Learning.

MIT Press.

Jawahar, M., Jani Anbarasi, L., Jasmine S, G., Daya JL, F.,

Ravi, V., Chakrabarti, P., 2023: TRS-Net: Tropical revolving

storm disasters analysis and classification based on

multispectral images using 2-D deep convolutional neural

network. Multimed. Tools Appl., 82(30), 46651–46671.

Ji, S., Wei, S., Lu, M., 2018: Fully convolutional networks for

multisource building extraction from an open aerial and satellite

imagery data set. IEEE Trans. Geosci. Remote Sens., 57(1),

574–586.

Kingma, D. P., Ba, J., 2014: Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980.

Mnih, V., 2013: Machine Learning for Aerial Image Labeling.

Doctoral Dissertation, University of Toronto, Canada.

Reyad, M., Sarhan, A. M., Arafa, M., 2023: A modified Adam

algorithm for deep neural network optimization. Neural

Comput. Appl., 35(23), 17095–17112.

Ronneberger, O., Fischer, P., Brox, T., 2015: U-Net:

Convolutional networks for biomedical image segmentation. In:

Med. Image Comput. Comput.-Assist. Interv. – MICCAI 2015,

18(3), 234–241. Springer.

Ruder, S., 2016: An overview of gradient descent optimization

algorithms. arXiv preprint arXiv:1609.04747.

Shahrabadi, S., Gonzalez, D., Sousa, N., Adão, T., Peres, E.,

Magalhães, L., 2023: Benchmarking deep learning models and

hyperparameters for bridge defects classification. Procedia

Comput. Sci., 219, 345–353.

Taffese, W.Z., Sharma, R., Afsharmovahed, M.H., Manogaran,

G., Chen, G., 2025: Benchmarking YOLOv8 for Optimal Crack

Detection in Civil Infrastructure. arXiv preprint

arXiv:2501.06922.

Tieleman, T., Hinton G., 2012: Lecture 6.5—RMSProp: Divide

the gradient by a running average of its recent magnitude.

COURSERA: Neural Networks for Machine Learning, 4(2), 26.

Wen, Q., Jiang, K., Wang, W., Liu, Q., Guo, Q., Li, L., Wang, P.,

2019: Automatic building extraction from Google Earth images

under complex backgrounds based on deep instance

segmentation network. Sensors, 19(2), 333.

Zaheer, R., Shaziya, H., 2019: A study of the optimization

algorithms in deep learning. In: Proc. 3rd Int. Conf. Inventive

Systems and Control (ICISC), 536–539.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-255-2026 | © Author(s) 2026. CC BY 4.0 License.

261

