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Abstract 

As a result of the growth of cities and the increase in migration from rural to urban areas, the urban population has grown 

remarkably. Building extraction is important in many practical and strategic areas. Automatic detection of buildings from images is 

important in terms of both speed and preventing interpretation errors arising from the differences in experience of experts. One of the 

main difficulties encountered in studies on automatic building detection is the generalization problem originating from the difference 

in the characteristics of roofs in complex environments. Recently, software and hardware systems have gained great importance due 

to the development of new technologies. As a result of these innovations, studies on deep learning architecture have increased. The 

training of deep learning architectures aims to minimize the loss function during learning. There are many optimization algorithms 

based on various mathematical principles; however, an optimization algorithm that can be generalized to all problems and is optimal 

for all conditions is still not fully defined. Therefore, the studies in literature continue to be experimental. In this study, the effects of 

optimization techniques on the automatic detection of buildings with different roof types from aerial images using the U-Net 

architecture are analyzed. In this study, Adam, Nadam, and RMSprop optimization techniques were used. The effects of optimization 

techniques on classification performance were investigated by examining computational costs and performance metrics. 

Keywords: Building Detection, Adam, Nadam, RMSProp, U-Net 

1. Introduction

Migration from villages to cities has caused population density 

in urban areas, and the number of buildings has increased. 

Building extraction from remotely sensed images is important 

in many fields, such as population monitoring, urban planning, 

and geographic information systems (GIS) (Erener, 2013). 

In recent years, the use of remotely sensed images has become 

widespread with rapidly developing sensors, hardware and 

software technologies. These images provide temporal, spatial, 

and spectral information about the earth. With the diversity of 

sensor types and the development of high-resolution cameras, it 

is possible to obtain detailed images from aerial images. 

Building types have different structures and geometric shapes 

according to the characteristics of the geography where they are 

located. Therefore, building extraction brings various 

difficulties (Ji et al., 2018). At the same time, when the building 

roofs and the ground have similar reflectance values, it 

sometimes leads to background complexity. Identifying the 

boundaries of densely grouped, partially contiguous small 

buildings is a more challenging problem than sparse, scattered, 

and large buildings (Wen et al., 2019). 

Many algorithms have been developed and used for the 

extraction of building details from remotely sensed images. 

Although the traditionally preferred algorithms are simple, easy 

to implement, and require little data, they have some 

disadvantages due to their low success on variable data, their 

lack of generalizability and the need for partial human 

intervention. 

Human beings have been in search of developing systems that 

think, analyze, learn, and decide like themselves since the 

beginning of their existence. This aim, which was identified 

with the concept of ‘artificial intelligence’ in the past, has led to 

the development of the concepts of ‘machine learning’ and 

‘deep learning’ with the developing technology. With deep 

learning algorithms, which are widely used, especially in the 

field of image processing, it has become widespread to use 

models that are fast, automatic, generalizable, highly accurate, 

and able to easily process large data and require minimum 

human intervention. 

The aim of the deep learning network training is to ensure that 

the prediction converges to ground truth as much as possible. 

The difference between the predicted and ground truth is 

expressed as a loss function, and this difference is minimized in 

an ideal network. Model performance improves with the 

learning performed throughout training, and the learning 

process increases until the model is the best representation of 

the ground truth (Chollet, 2021). 

The optimization technique directly affects the training time and 

model performance. An optimization technique goes through 

several iterations to improve the accuracy of the model and 

approximate the true presentation of the data (Zaheer and 

Shaziya, 2019). To date, there is no theoretical background that 

provides a clear framework on how to choose and implement an 

optimization technique suitable for the model (Choi et al., 

2019). Therefore, the studies in relevant research and literature 

are based on empirical research, assumptions, and comparisons. 

Deep learning networks are optimized in several ways, such as 

structural optimization of the network model in the training 

phase, determining the parameters of the defined network 

structure, applying pre-processing steps to the datasets, and 

selecting the best optimization technique (Reyad et al., 2023). 

Jawahar et al. (2023) detected the damage of Hurricane Harvey 

from satellite images in their study. The researchers used Adam, 
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RMSprop, and SGD optimizers to train the model and 

emphasized that the Adam optimizer outperformed the other 

optimizers with an accuracy score of 98.57%. For the same 

model, the RMSprop algorithm gave 98.48% and SGD gave 

98.32% accuracy scores. 

Bouanane et al. (2024) used U-Net and Dense U-Net 

architectures and examined the effects of Momentum GD, 

NAG, AdaGrad, RMSprop, and Adam optimizers on the change 

analysis. Emphasizing that model performance in a deep 

learning network is directly correlated with task, dataset, and 

architecture, the authors stated that optimization algorithms also 

significantly affect model performance. They reported that 

Adam and RMSprop optimization algorithms gave good results 

in terms of performance metrics, but the Adam optimizer was 

more stable at low learning rates. 

 

Shahrabadi et al. (2023) analyzed deep learning architectures 

used for bridge defect detection with different optimizers and 

learning rates. They analyzed Adam, Nadam, RMSprop, and 

SGD algorithms and reported the Adam algorithm provides a 

stable learning period, while the Nadam and RMSprop 

optimizers stand out with high performance. 

 

Anagün et al. (2021) compared the effectiveness of SGD, 

RMSprop, Adam, Adagrad, Adamax, and Nadam optimizers for 

updating CNN model weights. They found that Adam and 

Nadam optimizers are more stable than other optimizers, while 

Adamax is faster in updating the model weight in the 

backpropagation phase. 

Taffese et al. (2025) used YOLO v8 architecture to detect 

cracks in concrete structures in their study. They compared 

SGD, AdamW, Adam, NAdam, RAdam and RMSprop 

optimizers and found that the YOLO V8 model with SGD 

optimizer detects cracks with outstanding accuracy and speed. 

 

González et al. (2025) performed a YOLO v8-based analysis on 

images from the Maxar GeoEye-1 satellite of the Hurricane 

Maria disaster. The researchers investigated momentum SGD, 

RMSprop, Adam, Adamax, NAdam, and AdamW optimizers. 

As a result, they concluded that the reliability of the momentum 

SGD is better than the Adam optimizer in several factors 

(training robustness, fast approximation, and consistent 

prediction generation). 

 

In this study, the impact of training the U-Net architecture, 

which is widely used in building extraction from images, with 

different optimization techniques on model performance is 

analyzed. In this context, the U-Net architecture was trained on 

an open dataset, the “Massachusetts Buildings Dataset” (Mnih, 

2013), with Adam, Nadam, and RMSprop optimization 

techniques based on gradient descent, which are widely used in 

the literature, and the effects of the techniques on classification 

were examined with performance metrics. 

 

2. Methods 

2.1 U-Net Architecture 

U-Net is a convolutional neural network-based algorithm. 

Announced in 2015 in “U-Net: Convolutional Networks for 

Biomedical Image Segmentation” (Ronneberger et al., 2015), 

the model is designed for segmenting biomedical images 

requiring intensive analysis and pixel-level segmentation. 

Convolutional neural networks are composed of three basic 

layers: input layer, convolution layer, pooling layer and fully 

connected layer. These networks are built on a special 

mathematical process called convolution (Goodfellow et al., 

2016). 

Each step in the network learns a pattern. Once learned, the 

pattern can be recognized again. This allows the network to 

continue the process by building on what was learned in the 

previous layer in each convolutional layer without the need for 

relearning. Thus, the learning process in the training phase will 

be simplified from specific to general induction (Chollet, 2021). 

 

In a convolutional neural network, the dimensions of the feature 

maps are reduced in the pooling layer. Then the feature map is 

extracted. In the U-Net model, the dimension reduction is 

followed by a dimension increase. Thus, the feature maps are 

restored to their original resolution. In this respect, it is similar 

to an encoder-decoder network. The name of the algorithm 

comes from the shape of the architecture (Figure 1). 
 

 

Figure 1. U-Net architecture (Ronneberger vd., 2015) 

 

2.2 Optimization Algorithms: Adam, Nadam and RMSprop 

The impact of an optimization algorithm on the model depends 

on the problem, data quality, data characteristics, and model 

architecture. In some cases, the techniques used can imitate 

each other. The lack of a theoretical description of the impact of 

the techniques on model performance has led the studies on 

these techniques to rely on empirical bases and comparative 

analysis. In addition, hyperparameters are crucial for model 

performance. (Choi et al., 2019). 

 

In this study, the effects of Adam (Kingma and Ba, 2014), 

Nadam (Dozat, 2016), and RMSprop (Tieleman and Hinton, 

2012) optimization techniques on the model performance of the 

U-Net architecture are analyzed. 

 

The RMSprop optimization technique uses adaptive learning 

rates. It can use a variable learning rate according to the 

parameters in the optimization process. During the step sizes are 

iteratively changed according to the gradient magnitudes during 

the update. Thus, the learning rate for each parameter can be 

adaptively determined, and this technique is often preferred, 

especially in memory-limited situations. 

 

Another well-known optimization technique, Adam uses 

momentum and the gradient square to update the model 

weights. It is an efficient technique with low memory 

requirements. The directional changes of the weights can be 
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adjusted by determining both the direction and the size of the 

steps. 

 

The Nadam optimization technique emerged by integrating 

Nesterov momentum into the Adam technique. Thus, the 

convergence speed is increased, and high performance is 

achieved (Ruder, 2016). 

 

2.3 Dataset 

The dataset used in the study is the Massachusetts Buildings 

Dataset, which consists of 151 aerial images of the Boston area 

(Mnih, 2013). The publicly available dataset consists of 137 

training, 10 test, and 4 validation images. Each image is 

1500×1500 pixels for an area of 2.25 km² (Figure 2). 

 

Accuracy is the proportion of correct predictions out of all 

predictions made by the architecture during the testing phase 

(1). Precision is a metric that shows the number of true positives 

within positive predictions (2). Recall measures the proportion 

of true positives to correct predictions (3). The harmonic mean 

of precision and recall values gives the F1 score (4). 

IoU (Intersection over Union) is a metric that expresses how 

much the predicted sample overlaps with the ground truth. It is 

frequently used, especially in classification problems. It is an 

indicator of how well the model distinguishes between building 

and background. It is represented by values ranging between 0 

and 1. A value of 1 represents the best overlap, and 0 represents 

the worst overlap (5). 
 

Accuracy = 
TP+TN 

TP+TN+FP+FN 
 

 

Precision =  
TP 

TP+FP 
 

Recall =  
TP 

TP+FN 

 

F1 Score = 
2 × Precision × Recall 

Precision + Recall 

 

IoU = 
Area of Overlap 

Area of Union 

(1) 

 

 
(2) 

 

(3) 

 
(4) 

 

(5) 

where  TP: True Positive - Correct detection of predictions 

that are actually building 

TN True Negative - Correct detection of forecasts that 

are not actually buildings 

FP: False Positive - A building that is not actually a 

building but is identified as a building as a result of 

estimation 

FN: False Negative - A building that is actually a 

building but is not identified as a building as a result 

of estimation 

Area of Overlap: The intersection of ground truth and 

prediction 

Area of Union: Combination set of ground truth and 

prediction 
 

 

 

 

 

 

 

 

 

Figure 2. Massachusetts buildings dataset examples 

(Mnih, 2013) 

 

2.4 Performance Metrics 

Performance metrics are used to evaluate the success of deep 

learning models. In this study, the success of the U-Net model 

trained with Adam, Nadam, and RMSprop optimization 

techniques is analyzed by considering the accuracy (1), 

precision (2), recall (3), F1-score (4) and IoU (5) values 

commonly used in literature. In addition, the training time of 

the models are analyzed. In this context, true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN) 

values are used. 

Model performances are visually analyzed with the ROC curve 

graph. ROC curve contains false positive rate values in the row 

and true positive rate values in the column. This curve is 

frequently used in the evaluation of models. The closer the 

curve converges to the upper left corner, the more successful the 

model is. AUC represents the area under the curve and has a 

maximum value of 1. 

 

The training time of the 3 trainings, the epoch value of the 

moment when the training was stopped by early stopping, and 

the epoch value of the moment when the minimum validation 

loss value was reached were recorded and analyzed about the 

training process. 

 

Once training is complete, predictions are generated using the 

new test images received. This metric, called Inference Time, is 

in seconds. FPS refers to the data processed by the model in one 

second. By recording these metrics, the adaptability of the 

model to real-time applications is discussed. 

 

2.5. Parameters 
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In this study, the parameter values of these algorithms, which 

are frequently used in literature, are used to evaluate the 

performance of the optimization algorithms accurately and are 

given in Table 1. However, the learning rates were tested 

experimentally, and the training was completed by determining 

the most appropriate learning rate for the model. 

 
Parameters Values 

 
Adam Nadam RMSprop 

Learning Rate (α) 0.001 0.001 0.0001 
β₁ 0.9 0.975 - 

β₂ 0.999 0.999 - 
rho - - 0.9 

ε 1e-8 1e-8 1e-8 

Table 1. Optimizer parameters 

 

In the training step, ReLU is used as the activation function on 

the U-Net model, and sigmoid functions are used in the output 

layer; the binary cross-entropy function is used as the loss 

function. Dropout rate is set to 0.2, and batch size is set to 2. 

The limitations of the graphics card are considered in choosing 

these values. To prevent overfitting, the training started with 

100 epochs, and the early stopping technique is used to 

automatically stop the training if the validation loss of the 

model does not improve in 5 epochs. 

 

3. Results 

The dataset is preprocessed, and each image is divided into 

256×256 pixel areas. The dataset consists of 1000 training, 100 

validation, and 150 test images, totaling 1250 images. 

 

The U-Net model is trained three times using Adam, Nadam, 

and RMSprop optimizers on 1000 images using TensorFlow 

and Keras libraries on GTX 1060 in a Python environment. 

The epoch count is initially defined as 100 for all training. Loss 

Over Epoch (Figure 3) plots are generated for each training 

process, and model training is evaluated by monitoring the 

changes in training loss and validation loss. The graphs show 

the epoch at which the early stopping method used to prevent 

overfitting stops training and the epoch at which the model 

receives its last updated weights. 

The trained model is analyzed with performance metrics using 

test images (Table 2). The performance metrics used are as 

follows: accuracy, precision, recall, F1 score, and IoU. 
 

Performance 
Metrics 

U-Net with Optimization 
Algorithms 

 
Adam Nadam RMSprop 

Accuracy 0.9132 0.9189 0.9158 

Precision 0.8436 0.7940 0.7906 

Recall 0.6437 0.7499 0.7326 
F1 Score 0.7302 0.7713 0.7605 

IoU 0.5751 0.6278 0.6136 

Table 2. Performance results 

In addition, information on training time, inference time, FPS 

metrics, and the number of epochs is given in Table 3. Epoch 

(a) in the table is the number of manual epochs entered by the 

user at the beginning of the training. Epoch (b) is the epoch 

when the early stopping method stops training. Epoch (c) is the 

number of epochs of the weights that were restored after the 

training was stopped. 
 

Other 
Metrics 

U-Net with Optimization 
Algorithms 

 
Adam Nadam RMSprop 

Training Time (min) 36.38 54.27 47.16 

Inference Tıme (s) 4.56 4.50 4.44 

FPS 32.9 33.36 33.77 

Epoch (a) 100 100 100 

Epoch (b) 

Epoch (c) 

22 

17 

29 

24 

27 

22 

Table 3. Other metrics 

 

 

 

Figure 3. Loss over epochs with early stopping point 
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ROC curves for each training are obtained (Figure 4). An ROC 

curve contains false positive rate values in the row and true 

positive rate values in the column. This curve is often used to 

test the classification success of models. 

 

 

Figure 4. ROC curves 

The performance of the trained models was analyzed with test 

images. Figure 5 is a representation of a sample image. The first 

column of the figure is composed of test images from the 

Massachusetts Buildings Dataset and their masks. In the second 

column, the model prediction for the same test image is placed. 

To discuss the findings of the building detection, the notable 

cases are marked. Comments on these cases will be discussed in 

the Discussion & Conclusion section. 

 

 

Figure 5. Ground truth and prediction on a sample test image 

 

4. Discussion&Conclusion 

The data set used in the study is a medium-scale data set. Model 

training and testing phases were performed on a GTX 1060 

GPU. 

 

Loss Over Epoch graphs were analyzed, and validation loss and 

training loss values were monitored to make inferences about 

the training performance of the model (Figure 3). 

 

For the model trained with the Adam optimizer, the initial 

epoch value was defined by the user as 100 for all training. 

Early stopping stopped the training at epoch 22 to avoid 

overfitting. Throughout 22 epochs, the validation loss got the 

smallest value at epoch 17. Therefore, the weights at epoch 17 

were loaded back, and the model training was completed. 

 

Since the initial model weights were chosen randomly, the 

training loss was initially as high as 0.40 and decreased to 0.15 

in the last epoch. 
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The validation loss tends to decrease over the 22 epochs but 

shows a fluctuating curve. The curve formed many local 

minima. From epoch 17 onwards, validation loss increased 

again. 

 

Training with the Nadam optimizer is not consistent in the first 

epochs compared to training with the Adam optimizer. After 3 - 

4 epochs, both training loss and validation loss decreased stably. 

 

The lowest validation loss value was obtained at epoch 24. 

After this epoch, both curves followed a fluctuating trend. Since 

the validation loss value did not decrease during 5 epochs, the 

training was stopped at epoch 29, and the model weights at 

epoch 24 were used to construct the current weights. 

The graph where the validation loss curve shows the most 

deviation belongs to the training with RMSprop. At epoch 22, 

the minimum degree was reached. The training loss curve is 

more stable than the validation loss curve and decreases 

steadily. Early stopping stopped training at epoch 27. 

 

Comparing the 3 plots, it is observed that the training loss curve 

fluctuates during the training phase with the Nadam optimizer. 

Adam and Nadam showed similar performance, but Adam is 

more stable in both validation loss and training loss curves. 

When the ROC curves (Figure 4) were analyzed, it can be said 

that all models are ideal in class distinction. It was found that 

the model with the best class separation belongs to the Nadam 

optimizer. In this respect, the model is a more successful 

classifier than the others. 

 

When the results of the performance metrics are analyzed 

(Table 2), the highest accuracy score belongs to the Nadam 

optimizer, with 0.9189. In the test phase, both classes (buildings 

and background) were correctly predicted by this model with a 

high score. 

The highest precision score belongs to the Adam optimizer, 

with 0.8436. The majority of the pixels predicted to belong to 

the building class were correctly predicted by this model. 

 

The highest recall score belongs to the Nadam optimizer, with 

0.7499. This metric indicates the proportion of the total pixels 

that should have been identified as buildings. 

 

The Nadam optimizer is a successful optimizer with an F1 score 

of 0.7713. The F1 score is especially important for analyzing 

imbalanced data sets. This metric balances between precision 

and recall. 

Intersection Over Union (IoU) calculates the overlap between 

the model's prediction and the ground truth. The Nadam 

optimizer also performed quite successfully in this metric, 

achieving the highest score of 0.6278. 

Table 3 shows that the model trained with the Adam optimizer 

is the fastest-trained model, with a time of 36.38 min. It reached 

the lowest validation loss in its graph in the shortest time. The 

use of the Nadam optimizer instead of Adam in the training 

resulted in a significant increase in the training time. 

 

When the inference time (s), which is a measure of the 

prediction time of the trained model on new images, and the 

FPS metrics, which express the amount of data the model 

processes in one second, are examined, it is found that the 

model trained with the RMSprop optimizer is faster than the 

others. 

Figure 5 shows that the Adam optimizer found buildings overall 

but had difficulty in detecting small and closely located 

buildings. However, the model produced fewer false labels 

compared to the other two. 

 

The Nadam optimizer is more successful than Adam in 

detecting small and close buildings. It also managed to detect 

many buildings. However, it produced false building labels, 

especially in areas with similar spectral characteristics as the 

building roof. 

The RMSprop optimizer is the training optimizer that preserves 

the geometric shapes of buildings the least. Building corners 

that are sharp in the ground truth are detected as soft by the 

model. False building generation in the background is 

noticeable. 

In this study, building segmentation was performed on a 

medium-sized dataset. The Massachusetts Buildings Dataset 

(Mnih, 2013) is a dataset used in many studies. After 

preprocessing the dataset, training and testing phases were 

completed using a total of 1250 images with 256×256 

resolution. 

 

The study was carried out with a video card with 6 GB of 

memory. This requires experimental tuning of the selected 

parameters. 

 

Studies on the dataset show that the U-Net model trained with 

the Nadam optimizer has a stronger overall performance than 

the other models. The model trained with this optimizer 

performs best in the majority of the success metrics. Although 

there were serious fluctuations in the first epochs during the 

model training, a stable learning process was realized in the rest 

of the training process. However, training with the Nadam 

optimizer took longer compared to the other two. 

The RMSprop optimizer contributed to speeding up the model. 

The model trained with this optimizer is the closest to real-time 

applications. However, it was inferior to the other optimizers in 

terms of fluctuations in the training process, performance 

metrics results, and smoothing sharp building boundaries. 

 

The model trained with the Adam optimizer is generally 

successful but has difficulty in detecting small buildings. It is 

less suitable for real-time applications than other optimizers. 

 

The findings show that the selected optimization algorithm 

significantly affects the model’s success and its compatibility 

with real-time applications. 

 

Existing optimization techniques are directly affected by data- 

dependent properties such as data set size, class distribution, 

and the capacity of the system used in the training phase. The 

behavior of optimization algorithms sometimes makes it 

difficult to generalize. For this reason, existing studies in 

literature continue experimentally. 

Consequently, this study investigates the effects of optimization 

algorithms on the performance of the U-Net architecture for the 

building segmentation task on a medium-sized dataset. In 

addition, the effects of the selected optimizer on the suitability 

of the model for real-time applications are examined. 
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Future work will examine the effects of more optimizers on 

various large datasets and high-end environments to provide a 

general perspective on optimizers. In addition, the effects of 

optimizers on data sets with unbalanced class distributions will 

be investigated. 
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