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Abstract 

 

Reliable semantics in 3D building models support practical urban tasks such as planning, asset inventory, and maintenance. This paper 

presents an approach that pairs graph-based geometry (GNN) with image-based appearance (ViT) to improve component segmentation. 

A Graph Neural Network (GNN) is first applied to the building mesh to capture structural cues and produce initial labels. Multi-view 

2D projections (orthographic and perspective) are then rendered and processed with a Vision Transformer (ViT) to recover visual 

patterns related to windows, doors, roofs, and walls. The two streams are reconciled through a simple consensus fusion that projects 

ViT predictions back onto the 3D geometry and refines the labels. In experiments, the proposed pipeline improves accuracy and class-

wise consistency over a GNN baseline, with clearer gains on small or visually ambiguous elements. 

 

 

1. Introduction 

The ongoing rapid urbanization and population growth across the 

globe have triggered significant challenges in urban planning, 

infrastructure management, and resource allocation. As urban 

environments evolve into highly complex spaces, city planners, 

engineers, and decision-makers increasingly rely on accurate and 

detailed 3D representations of built structures for informed 

decision-making. A critical aspect of generating useful 3D 

building models involves semantic segmentation – assigning 

meaningful and precise labels to various architectural 

components such as windows, doors, roofs, and walls. These 

labels enhance spatial analyses, infrastructure evaluation, 

disaster mitigation strategies, energy efficiency assessments, and 

various other urban management tasks (Stoter et al., 2020; 

Biljecki et al., 2015). 

 

Over recent years, substantial research has been dedicated to 

developing automated approaches to accurately segment and 

label 3D architectural components. Traditionally, this 

segmentation has been conducted manually or semi-

automatically, involving labor-intensive workflows and 

substantial reliance on expert human intervention (Alexander & 

Ben, 2015). However, manual labeling often results in 

inconsistent outcomes due to inherent subjectivity and human 

errors. Moreover, as urban datasets grow larger and more diverse, 

manual approaches are becoming increasingly impractical due to 

their costs, scalability limitations, and time-consuming nature 

(Rook et al., 2016). 

 

Machine learning advancements have significantly reshaped this 

landscape, providing automated methods to handle segmentation 

tasks more effectively. Graph Neural Networks (GNNs), for 

example, have emerged as highly promising techniques, 

leveraging geometric and spatial relationships inherent in 3D 

mesh data (Wu et al., 2020; Qi et al., 2017). BuildingGNN, a 

specialized GNN framework specifically tailored for 3D building 

models, has demonstrated notable accuracy improvements over 

traditional techniques (Selvaraju et al., 2021; Rashidan et al., 

2023). Despite their promising outcomes, GNN-based 

approaches continue to face limitations. Specifically, these 

models can struggle to segment semantically ambiguous 

structures effectively, such as doors and windows, due to their 

complexity, variety, geometric similarity, and overlapping or 

unclear spatial boundaries (Kundu et al., 2020). 

 

At the same time, significant strides have been made in computer 

vision techniques – particularly with the introduction of Vision 

Transformers (ViTs) which have rapidly gained popularity due 

to their performance in image classification, detection, and 

semantic recognition tasks (Hanocka et al., 2019; Dosovitskiy et 

al., 2021). Trained on large-scale datasets comprising millions of 

images, ViTs leverage powerful global context capabilities 

enabled by attention mechanisms, which allow them to 

accurately recognize intricate visual patterns, subtle textures, and 

complex structures (Radford et al., 2021; Khan et al., 2022). 

Although ViTs have primarily excelled within purely 2D 

domains, their potential applicability to improving 3D semantic 

segmentation remains a compelling yet largely unexplored of 

research. 

 

Therefore, this study introduces a hybrid approach that combines 

Graph Neural Networks (GNNs) and Vision Transformers (ViTs) 

to address challenges in semantic segmentation of 3D building 

models. Integrating the geometric reasoning strengths of GNNs 

with the visual representation capabilities of ViTs, thus, the 

proposed method aims to improve segmentation robustness and 

precision. The process begins with initial segmentation using 

GNNs, followed by the generation of multi-view 2D projections 

from the segmented 3D meshes. These projections are then 

refined using pre-trained ViT models, and the enhanced semantic 

labels are mapped back onto the original 3D geometry through a 

fusion process. This method is designed to overcome limitations 

commonly observed in purely geometric or purely visual 

segmentation approaches. 

 

The structure of the paper is as follows: Section 2 reviews related 

work, summarizing existing methods and their respective 

advantages and constraints. Section 3 outlines the proposed 

method GNN+ViT. Section 4 presents the experimental 

evaluation, highlighting improvements in segmentation 

performance. Section 5 concludes the study and outlines potential 

directions for future research. 
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2. Related Work 

2.1 Semantic Segmentation of 3D Building Models 

Semantic segmentation is a crucial process in GIS and urban 

modeling, assigning meaningful labels to discrete building 

components, thereby improving data interoperability, 

visualization, and analytical capabilities (Biljecki & Ohori, 2015; 

Rook et al., 2016). Traditional manual and semi-automatic 

methods have long dominated this domain, primarily relying on 

user-assisted labeling procedures (Demir et al., 2015; Alexander 

& Ben, 2015). However, the labor-intensive nature and lack of 

scalability of these approaches are increasingly recognized as 

significant bottlenecks, especially with growing urban datasets 

and complex architectural styles (Kalogerakis et al., 2010). 

 

Automated methodologies leveraging computer vision and 

machine learning techniques have rapidly gained momentum to 

overcome these challenges. Neural network-based approaches 

such as PointNet++ (Qi et al., 2017) and MeshCNN (Hanocka et 

al., 2019) have significantly improved semantic labeling 

accuracy by effectively capturing complex spatial and geometric 

relationships inherent in 3D models. However, challenges 

remain, particularly in accurately segmenting complex 

architectural features, dealing with large-scale datasets, and 

managing varying data quality (Hu et al., 2021). 

 

2.2 Graph Neural Networks (GNNs) in 3D Segmentation 

GNN-based approaches have specifically shown promising 

results in addressing segmentation challenges for 3D 

architectural models (Wu et al., 2020; Selvaraju et al., 2021). 

GNNs leverage graph structures representing 3D models, 

incorporating both local and global spatial relationships through 

neural message-passing mechanisms (Zhou et al., 2020). 

Methods such as BuildingGNN have demonstrated high 

accuracy, particularly in segmenting common building 

components like roofs and walls (Selvaraju et al., 2021). 

However, limitations persist, particularly in segmenting 

ambiguous and geometrically similar components such as doors 

and windows  as experimented by Rashidan et al., (2023). 

 

2.3 Vision Transformers and Image-based Segmentation 

Vision Transformers (ViTs) have rapidly transformed computer 

vision tasks, demonstrating superior accuracy in image 

recognition, detection, and semantic segmentation tasks 

(Dosovitskiy et al., 2021). Unlike traditional CNNs, ViTs utilize 

attention mechanisms, allowing them to model long-range 

contextual relationships effectively, critical in accurate visual 

recognition (Radford et al., 2021; Khan et al., 2022). The success 

of ViTs in identifying subtle visual features and handling 

complex visual datasets strongly suggests their potential utility in 

refining geometric segmentation results visually. 

 

2.4 Multi-View Projection Techniques and Semantic Fusion 

Multi-view projection techniques have successfully enhanced 

semantic understanding by representing 3D structures across 

multiple 2D views, providing robust coverage against occlusion, 

ambiguity, and viewpoint variation (Kundu et al., 2020). View-

fusion algorithms combine multiple semantic predictions across 

views, significantly improving segmentation reliability (Zhang et 

al., 2019). Despite these successes, limited research has explicitly 

combined these multi-view methods with GNN-based 

segmentation results to capitalize on the strengths of both visual 

and geometric segmentation methods. 

 

Recognizing the complementary strengths and limits of prior 

methods, this study introduces an integrated framework that 

combines a GNN with a ViT. The design exploits the GNN’s 

spatial and structural sensitivity and the ViT’s capacity for global 

visual context, yielding improved segmentation accuracy - 

especially for challenging semantic classes. The approach offers 

a practical refinement over existing techniques, addressing 

common sources of error and opening avenues for detailed urban 

analysis and future research. 

 

 

3. Methodology 

This research presents an integrated methodology aimed at 

improving semantic segmentation in 3D building models. The 

proposed multi-stage framework combines the geometric 

reasoning capabilities of Graph Neural Networks (GNNs) with 

the contextual visual recognition strengths of Vision 

Transformers (ViTs). The workflow comprises three main 

stages: (1) initial segmentation performed using a GNN model, 

(2) generation of multi-view projections and semantic refinement 

through ViT-based visual inference, and (3) projection of refined 

semantic labels back onto the 3D geometry using a multi-view 

fusion algorithm. Each stage is described in detail below, 

including relevant mathematical formulations, underlying 

process rationale, and implementation considerations. 

 

3.1 GNN-based Initial Segmentation 

Initially, the raw 3D building models, represented in mesh 

format, are semantically segmented using a Graph Neural 

Network framework. Specifically, the BuildingGNN approach 

introduced by Selvaraju et al. (2021) is employed due to its 

proven efficacy in handling complex architectural structures. 

 

3.1.1 Data Preparation 

 

An essential aspect of developing the semantic segmentation 

model involves acquiring labelled dataset. The dataset chosen for 

the model training comes from the BuildingNet dataset, and 

accessible at buildingnet.org. This dataset functions as a 

comprehensive repository of 3D building models, each uniformly 

labelled with exterior annotations for various architectural 

components. BuildingNet exhibits diversity, encompassing a 

range of architectural styles, sizes, and complexities.  

 

 

3.1.2 Semantic Label Prediction 

 

The semantic labeling process using BuildingGNN involves a 

structured, three-step pipeline aimed at capturing both geometric 

and relational features from 3D building mesh data as shown in 

the Figure 1. The process begins with node initialization, where 

each subgroup within the mesh is treated as a distinct node. These 

nodes are assigned initial representations derived from the 

subgroup's intrinsic geometric attributes such as orientation, 

surface area, and centroid position. This representation serves as 

the foundational feature vector that is refined throughout 

subsequent processing stages. 
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BuildingGNN 

Input: 3D building mesh with subgroup 

Output: Labels per subgroup 

Step 1: Node Initialization 

- Create nodes representing each subgroup in the 

mesh. 

- Initialize node representations based on subgroup 

attributes. 

Step 2: Establish edges to capture relationships 

- Proximity (based on spatial distance). 

- Supportive relations (upright axis correlation). 

- Similarity (detecting symmetric arrangements). 

- Containment (subgroup enclosure). 

Step 3: GNN Processing 

- Update node and edge representations. 

- Employ neural message passing and MLPs. 

- Decode node to assign labels through softmax. 

End 

 

Figure 1. Overview of the main stages involved in labeling a 

3D building mesh using BuildingGNN. 

 

Following initialization, graph construction is performed by 

establishing edges that encode meaningful spatial and structural 

relationships between nodes. Four types of relationships are 

considered critical for semantic interpretation: (1) Proximity, 

which captures closeness between subgroups based on Euclidean 

distance; (2) Supportive relations, which assess vertical 

alignment and upright axis correlation – useful for detecting 

vertical structures like walls and doors; (3) Similarity, which 

measures visual or geometric resemblance between components, 

such as repeated window patterns; and (4) Containment, which 

checks whether one subgroup encloses another – an important 

clue for detecting nested or hierarchical components. 

 

In the final stage, GNN processing is executed through iterative 

message passing. Both node and edge representations are updated 

across multiple layers, with information propagated between 

connected nodes. Each node aggregates feature information from 

its neighbours, allowing the model to capture complex spatial 

dependencies. This is followed by a multi-layer perceptron 

(MLP) and softmax classifier, which decode the enriched node 

representations into semantic labels such as wall, roof, window, 

or door. Through this combination of geometric initialization and 

relational learning, BuildingGNN provides a foundation for 

semantic segmentation in 3D building modeling. 

 

 

3.2 Multi-view Rendering and Semantic Refinement Using 

Vision Transformer 

The output from GNN segmentation serves as an input to the 

second stage, where the segmented meshes are refined using 

Vision Transformers. 

 

3.2.1 Multi-view 2D Rendering 

 

To leverage visual semantic recognition, each 3D mesh is 

projected into multiple 2D images, including orthographic (top, 

front, side) and perspective views. The rendering process is  

 

• Orthographic projection transforms 3D coordinates  (x, 

y, z) to 2D coordinates (x’, y’): 

 

(x’, y’) = (x, y),  z’ = 0 

 

• Perspective projection is computed as: 

 

x’ = x / (f · z),  y’ = y / (f · z) 

 

where f is the focal length determining perspective 

intensity. 

 

Multiple projections from varying viewpoints ensure larger 

semantic coverage, reducing the risk of missing semantic 

information due to occlusions or complex geometries.  

 

3.2.2 Semantic Inference via Vision Transformer 

 

Rendered images are input to a ViT model (e.g., CLIP by 

OpenAI), chosen due to its extensive knowledge of visual 

semantics, obtained from large-scale image datasets. ViTs rely 

on self-attention mechanisms to understand complex visual 

structures. 

 

 

3.3 Multi-view Semantic Fusion and Mapping to 3D 

Geometry 

In the last stage, semantic labels predicted from multiple 2D 

views are aggregated and mapped onto the original 3D mesh 

geometry. Given semantic predictions from multiple views, a 

consensus-based fusion approach is implemented. For each mesh 

face, semantic labels from all views are aggregated, and the final 

semantic label is computed using weighted voting. 

 

Final labels are mapped onto the corresponding 3D faces of the 

original mesh model. We use ray-casting or inverse projection 

algorithms to determine correspondence between 2D pixel 

predictions and 3D mesh faces. This mapping ensures precise 

spatial alignment between 2D semantic predictions and 3D 

geometric elements. 

Post-processing techniques are applied to further enhance label 

accuracy and consistency: 

 

• Spatial label smoothing – labels are spatially smoothed 

across connected mesh elements to reduce noise and 

isolated misclassifications. 

• Geometric consistency check ensures that labels 

assigned to geometrically similar faces remain 

consistent across neighbouring regions. 

 

The integrated method involves substantial computational steps, 

requiring careful optimization to ensure efficiency. To address 

this, parallel computation is leveraged throughout key stages, 

including rendering, inference, and fusion. Efficient GPU 

implementation, along with the use of optimized data structures 

such as sparse tensors and spatial indexing, enables the system to 

handle large-scale urban datasets effectively. 

 

3.4 Evaluation and Validation 

The effectiveness of the proposed GNN+ViT method was 

assessed using quantitative evaluation method. The primary 

evaluation metric used in this study is the Intersection-over-

Union (IoU), a standard metric widely applied in semantic 

segmentation tasks to measure the accuracy of predicted labels 

against ground truth labels. Additionally, visual analysis was 

conducted to assess the quality of segmentation outputs and to 

identify specific areas of improvement. 
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Intersection-over-Union (IoU) calculates the overlap between the 

predicted labels, and the ground truth labels for each semantic 

class. The IoU for each class is defined as the ratio of the 

intersection to the union of the predicted and ground truth sets. 

The formula used for IoU calculation is as follows: 

 

IoU =
| A ∩ B |

| A ∪ B |
 

 

where A represents the set of predicted labels for a specific class, 

such as Roof, Wall, Window, or Door, and B denotes the set of 

ground truth labels for the same class. The numerator | A ∩ B | 
refers to the number of correctly predicted labels, representing 

the intersection between the prediction and ground truth sets. The 

denominator | A ∪ B | refers to the total number of elements in 

both sets, representing the union of the prediction and ground 

truth labels. IoU values range from 0 to 1, where a value of 1 

indicates a perfect overlap, and a value of 0 indicates no overlap. 

 

In this study, IoU values were calculated separately for each 

semantic class to assess the segmentation performance of both 

the GNN-only model and the GNN+ViT model. The calculation 

process involved two distinct stages. First, the initial 

segmentation was performed using the GNN model, where 

semantic labels were assigned based solely on geometric features 

extracted from the 3D mesh. For each class, the number of 

correctly predicted labels (intersection) and the total number of 

labels (union) were recorded, and the IoU values were calculated 

based on the above formula. 

 

In the second stage, the ViT model was employed to refine the 

segmentation output generated by the GNN. The GNN-labeled 

output was rendered into multiple 2D views, including front and 

side views. The ViT model processed each view to refine the 

semantic labels by leveraging visual information. The multiple 

view predictions were then combined using a consensus-based 

voting mechanism to determine the final label for each mesh face. 

Following this refinement process, IoU values were recalculated 

for each class, considering the updated labels generated by the 

ViT.  

 

 

4. Results and Discussion 

To evaluate the effectiveness of the proposed method Graph 

Neural Network (GNN) and Vision Transformer (ViT) approach 

for semantic segmentation of 3D building models, a 

comprehensive set of experiments was conducted using a diverse 

dataset comprising residential buildings sourced from 

buildingnet.org. The dataset includes variations in architectural 

styles, structural complexity, and component detailing, providing 

a robust basis for performance assessment. 

 

The evaluation employs metrics such as Intersection-over-Union 

(IoU), focusing on four semantic classes: Roof, Wall, Window, 

and Door. Visualizations are included to support the analysis of 

improvements in segment consistency and semantic fidelity.  

 

Figure 2 illustrates examples of segmentation outputs from both 

the GNN-only pipeline (left) and the proposed GNN + ViT model 

(right). Noticeable improvements in the roof and dormer regions, 

where the ViT-enhanced model produced more coherent roof 

plane boundaries and reduced class fragmentation. These 

refinements suggest that the Vision Transformer’s global context 

awareness allows the model to capture structural patterns beyond 

local geometric relationships, which are often insufficient when 

using GNNs alone. 

 

   
 

Figure 2. Segmentation comparison between the GNN (left) and  

GNN + ViT (right) models, showing smoother roof planes and 

improved consistency. 

 

Similarly, Figure 3 presents close-up views of the wall and 

window regions, comparing the GNN and GNN + ViT output. 

The proposed method demonstrates improved delineation 

between window frames and wall surfaces, minimizing 

misclassification and edge noise. This enhancement indicates 

that the multi-view fusion strategy employed in the ViT 

component effectively leverages visual redundancy, facilitating 

better feature alignment and error correction. 

 

   
 

Figure 3. Close-up of wall and window segmentation, where the 

proposed model provides fewer misclassifications. 

 

Quantitatively, the mean IoU increased from 69.85% in the 

GNN-only configuration to 78.05% when incorporating the 

Vision Transformer, representing a performance improvement of 

approximately 8%. These results confirm that the combination of 

topological representation learning (through GNNs) and visual 

context modeling (via ViTs) enhances both spatial reasoning and 

semantic precision in 3D model interpretation. 

 

 

5. Conclusion 

The results show that combining GNN and ViT improves the 

semantic segmentation of 3D building models compared to using 

only GNNs. The combined approach performs better, especially 

when labelling challenging components like doors and windows, 

which are typically harder to segment accurately due to their 

smaller size and visual similarities. These improvements 

highlight the benefits of using both geometric structure and visual 

information together. 

 

Although this combined method has advantages, there are also 

some limitations to consider. One significant issue is the high 

computational resources needed, especially because more 

generated images mean greater demands on computing power. 

This limitation can make the method harder to scale up for large 

urban datasets or for tasks that require real-time segmentation. 

Another limitation is related to the range of building designs used 

in this study. Since the current tests only involved limited types 

of building structures, the method’s ability to handle a wider 

variety of building styles remains uncertain. 

 

To further advance this research, future studies could focus on 

addressing these limitations. Reducing computational costs by 

developing lighter models, simplifying the multi-view approach, 
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or optimizing the way images are processed could make the 

method more practical and easier to use. Testing the model on a 

broader set of building designs (e.g. tropical Asian buildings), 

including more complex or unusual architectural styles, would 

help improve its robustness. 

 

In conclusion, the combination of GNN and ViT shows potential 

in improving the accuracy of building labelling. Nonetheless, 

further work is needed to enhance computational efficiency and 

evaluate the method across broader test scenarios to support its 

practical use in real-world GIS applications. 
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