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Abstract

Reliable semantics in 3D building models support practical urban tasks such as planning, asset inventory, and maintenance. This paper
presents an approach that pairs graph-based geometry (GNN) with image-based appearance (ViT) to improve component segmentation.
A Graph Neural Network (GNN) is first applied to the building mesh to capture structural cues and produce initial labels. Multi-view
2D projections (orthographic and perspective) are then rendered and processed with a Vision Transformer (ViT) to recover visual
patterns related to windows, doors, roofs, and walls. The two streams are reconciled through a simple consensus fusion that projects
ViT predictions back onto the 3D geometry and refines the labels. In experiments, the proposed pipeline improves accuracy and class-
wise consistency over a GNN baseline, with clearer gains on small or visually ambiguous elements.

1. Introduction

The ongoing rapid urbanization and population growth across the
globe have triggered significant challenges in urban planning,
infrastructure management, and resource allocation. As urban
environments evolve into highly complex spaces, city planners,
engineers, and decision-makers increasingly rely on accurate and
detailed 3D representations of built structures for informed
decision-making. A critical aspect of generating useful 3D
building models involves semantic segmentation — assigning
meaningful and precise labels to various architectural
components such as windows, doors, roofs, and walls. These
labels enhance spatial analyses, infrastructure evaluation,
disaster mitigation strategies, energy efficiency assessments, and
various other urban management tasks (Stoter et al., 2020;
Biljecki et al., 2015).

Over recent years, substantial research has been dedicated to
developing automated approaches to accurately segment and

label 3D architectural components. Traditionally, this
segmentation has been conducted manually or semi-
automatically, involving labor-intensive workflows and

substantial reliance on expert human intervention (Alexander &
Ben, 2015). However, manual labeling often results in
inconsistent outcomes due to inherent subjectivity and human
errors. Moreover, as urban datasets grow larger and more diverse,
manual approaches are becoming increasingly impractical due to
their costs, scalability limitations, and time-consuming nature
(Rook et al., 2016).

Machine learning advancements have significantly reshaped this
landscape, providing automated methods to handle segmentation
tasks more effectively. Graph Neural Networks (GNNs), for
example, have emerged as highly promising techniques,
leveraging geometric and spatial relationships inherent in 3D
mesh data (Wu et al., 2020; Qi et al., 2017). BuildingGNN, a
specialized GNN framework specifically tailored for 3D building
models, has demonstrated notable accuracy improvements over
traditional techniques (Selvaraju et al., 2021; Rashidan et al.,
2023). Despite their promising outcomes, GNN-based
approaches continue to face limitations. Specifically, these
models can struggle to segment semantically ambiguous

structures effectively, such as doors and windows, due to their
complexity, variety, geometric similarity, and overlapping or
unclear spatial boundaries (Kundu et al., 2020).

At the same time, significant strides have been made in computer
vision techniques — particularly with the introduction of Vision
Transformers (ViTs) which have rapidly gained popularity due
to their performance in image classification, detection, and
semantic recognition tasks (Hanocka et al., 2019; Dosovitskiy et
al., 2021). Trained on large-scale datasets comprising millions of
images, ViTs leverage powerful global context capabilities
enabled by attention mechanisms, which allow them to
accurately recognize intricate visual patterns, subtle textures, and
complex structures (Radford et al., 2021; Khan et al., 2022).
Although ViTs have primarily excelled within purely 2D
domains, their potential applicability to improving 3D semantic
segmentation remains a compelling yet largely unexplored of
research.

Therefore, this study introduces a hybrid approach that combines
Graph Neural Networks (GNNs) and Vision Transformers (ViTs)
to address challenges in semantic segmentation of 3D building
models. Integrating the geometric reasoning strengths of GNNs
with the visual representation capabilities of ViTs, thus, the
proposed method aims to improve segmentation robustness and
precision. The process begins with initial segmentation using
GNNs, followed by the generation of multi-view 2D projections
from the segmented 3D meshes. These projections are then
refined using pre-trained ViT models, and the enhanced semantic
labels are mapped back onto the original 3D geometry through a
fusion process. This method is designed to overcome limitations
commonly observed in purely geometric or purely visual
segmentation approaches.

The structure of the paper is as follows: Section 2 reviews related
work, summarizing existing methods and their respective
advantages and constraints. Section 3 outlines the proposed
method GNN+VIT. Section 4 presents the experimental
evaluation, highlighting improvements in segmentation
performance. Section 5 concludes the study and outlines potential
directions for future research.
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2. Related Work
2.1 Semantic Segmentation of 3D Building Models

Semantic segmentation is a crucial process in GIS and urban
modeling, assigning meaningful labels to discrete building
components, thereby improving data interoperability,
visualization, and analytical capabilities (Biljecki & Ohori, 2015;
Rook et al., 2016). Traditional manual and semi-automatic
methods have long dominated this domain, primarily relying on
user-assisted labeling procedures (Demir et al., 2015; Alexander
& Ben, 2015). However, the labor-intensive nature and lack of
scalability of these approaches are increasingly recognized as
significant bottlenecks, especially with growing urban datasets
and complex architectural styles (Kalogerakis et al., 2010).

Automated methodologies leveraging computer vision and
machine learning techniques have rapidly gained momentum to
overcome these challenges. Neural network-based approaches
such as PointNet++ (Qi et al., 2017) and MeshCNN (Hanocka et
al., 2019) have significantly improved semantic labeling
accuracy by effectively capturing complex spatial and geometric
relationships inherent in 3D models. However, challenges
remain, particularly in accurately segmenting complex
architectural features, dealing with large-scale datasets, and
managing varying data quality (Hu et al., 2021).

2.2 Graph Neural Networks (GNNs) in 3D Segmentation

GNN-based approaches have specifically shown promising
results in addressing segmentation challenges for 3D
architectural models (Wu et al., 2020; Selvaraju et al., 2021).
GNNs leverage graph structures representing 3D models,
incorporating both local and global spatial relationships through
neural message-passing mechanisms (Zhou et al., 2020).
Methods such as BuildingGNN have demonstrated high
accuracy, particularly in segmenting common building
components like roofs and walls (Selvaraju et al., 2021).
However, limitations persist, particularly in segmenting
ambiguous and geometrically similar components such as doors
and windows as experimented by Rashidan et al., (2023).

2.3 Vision Transformers and Image-based Segmentation

Vision Transformers (ViTs) have rapidly transformed computer
vision tasks, demonstrating superior accuracy in image
recognition, detection, and semantic segmentation tasks
(Dosovitskiy et al., 2021). Unlike traditional CNNs, ViTs utilize
attention mechanisms, allowing them to model long-range
contextual relationships effectively, critical in accurate visual
recognition (Radford et al., 2021; Khan et al., 2022). The success
of ViTs in identifying subtle visual features and handling
complex visual datasets strongly suggests their potential utility in
refining geometric segmentation results visually.

2.4 Multi-View Projection Techniques and Semantic Fusion

Multi-view projection techniques have successfully enhanced
semantic understanding by representing 3D structures across
multiple 2D views, providing robust coverage against occlusion,
ambiguity, and viewpoint variation (Kundu et al., 2020). View-
fusion algorithms combine multiple semantic predictions across
views, significantly improving segmentation reliability (Zhang et
al., 2019). Despite these successes, limited research has explicitly
combined these multi-view methods with GNN-based
segmentation results to capitalize on the strengths of both visual
and geometric segmentation methods.

Recognizing the complementary strengths and limits of prior
methods, this study introduces an integrated framework that
combines a GNN with a ViT. The design exploits the GNN’s
spatial and structural sensitivity and the ViT’s capacity for global
visual context, yielding improved segmentation accuracy -
especially for challenging semantic classes. The approach offers
a practical refinement over existing techniques, addressing
common sources of error and opening avenues for detailed urban
analysis and future research.

3. Methodology

This research presents an integrated methodology aimed at
improving semantic segmentation in 3D building models. The
proposed multi-stage framework combines the geometric
reasoning capabilities of Graph Neural Networks (GNNs) with
the contextual visual recognition strengths of Vision
Transformers (ViTs). The workflow comprises three main
stages: (1) initial segmentation performed using a GNN model,
(2) generation of multi-view projections and semantic refinement
through ViT-based visual inference, and (3) projection of refined
semantic labels back onto the 3D geometry using a multi-view
fusion algorithm. Each stage is described in detail below,
including relevant mathematical formulations, underlying
process rationale, and implementation considerations.

3.1 GNN-based Initial Segmentation

Initially, the raw 3D building models, represented in mesh
format, are semantically segmented using a Graph Neural
Network framework. Specifically, the BuildingGNN approach
introduced by Selvaraju et al. (2021) is employed due to its
proven efficacy in handling complex architectural structures.
3.1.1 Data Preparation

An essential aspect of developing the semantic segmentation
model involves acquiring labelled dataset. The dataset chosen for
the model training comes from the BuildingNet dataset, and
accessible at buildingnet.org. This dataset functions as a
comprehensive repository of 3D building models, each uniformly
labelled with exterior annotations for various architectural
components. BuildingNet exhibits diversity, encompassing a
range of architectural styles, sizes, and complexities.

3.1.2  Semantic Label Prediction

The semantic labeling process using BuildingGNN involves a
structured, three-step pipeline aimed at capturing both geometric
and relational features from 3D building mesh data as shown in
the Figure 1. The process begins with node initialization, where
each subgroup within the mesh is treated as a distinct node. These
nodes are assigned initial representations derived from the
subgroup's intrinsic geometric attributes such as orientation,
surface area, and centroid position. This representation serves as
the foundational feature vector that is refined throughout
subsequent processing stages.
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BuildingGNN

Input: 3D building mesh with subgroup
Output: Labels per subgroup
Step 1: Node Initialization
- Create nodes representing each subgroup in the
mesh.
- Initialize node representations based on subgroup
attributes.
Step 2: Establish edges to capture relationships
- Proximity (based on spatial distance).
- Supportive relations (upright axis correlation).
- Similarity (detecting symmetric arrangements).
- Containment (subgroup enclosure).
Step 3: GNN Processing
- Update node and edge representations.
- Employ neural message passing and MLPs.
- Decode node to assign labels through softmax.
End

Figure 1. Overview of the main stages involved in labeling a
3D building mesh using BuildingGNN.

Following initialization, graph construction is performed by
establishing edges that encode meaningful spatial and structural
relationships between nodes. Four types of relationships are
considered critical for semantic interpretation: (1) Proximity,
which captures closeness between subgroups based on Euclidean
distance; (2) Supportive relations, which assess vertical
alignment and upright axis correlation — useful for detecting
vertical structures like walls and doors; (3) Similarity, which
measures visual or geometric resemblance between components,
such as repeated window patterns; and (4) Containment, which
checks whether one subgroup encloses another — an important
clue for detecting nested or hierarchical components.

In the final stage, GNN processing is executed through iterative
message passing. Both node and edge representations are updated
across multiple layers, with information propagated between
connected nodes. Each node aggregates feature information from
its neighbours, allowing the model to capture complex spatial
dependencies. This is followed by a multi-layer perceptron
(MLP) and softmax classifier, which decode the enriched node
representations into semantic labels such as wall, roof, window,
or door. Through this combination of geometric initialization and
relational learning, BuildingGNN provides a foundation for
semantic segmentation in 3D building modeling.

3.2 Multi-view Rendering and Semantic Refinement Using
Vision Transformer

The output from GNN segmentation serves as an input to the
second stage, where the segmented meshes are refined using
Vision Transformers.

3.2.1  Multi-view 2D Rendering
To leverage visual semantic recognition, each 3D mesh is
projected into multiple 2D images, including orthographic (top,

front, side) and perspective views. The rendering process is

e  Orthographic projection transforms 3D coordinates (x,
Yy, z) to 2D coordinates (x’, y’):

&, y)=(xy), =0
e  Perspective projection is computed as:
xX=x/({-2), y=y/(" 2

where f is the focal length determining perspective
intensity.

Multiple projections from varying viewpoints ensure larger
semantic coverage, reducing the risk of missing semantic
information due to occlusions or complex geometries.

3.2.2  Semantic Inference via Vision Transformer

Rendered images are input to a ViT model (e.g., CLIP by
OpenAl), chosen due to its extensive knowledge of visual
semantics, obtained from large-scale image datasets. ViTs rely
on self-attention mechanisms to understand complex visual
structures.

3.3 Multi-view Semantic Fusion and Mapping to 3D
Geometry

In the last stage, semantic labels predicted from multiple 2D
views are aggregated and mapped onto the original 3D mesh
geometry. Given semantic predictions from multiple views, a
consensus-based fusion approach is implemented. For each mesh
face, semantic labels from all views are aggregated, and the final
semantic label is computed using weighted voting.

Final labels are mapped onto the corresponding 3D faces of the
original mesh model. We use ray-casting or inverse projection
algorithms to determine correspondence between 2D pixel
predictions and 3D mesh faces. This mapping ensures precise
spatial alignment between 2D semantic predictions and 3D
geometric elements.

Post-processing techniques are applied to further enhance label
accuracy and consistency:

e  Spatial label smoothing — labels are spatially smoothed
across connected mesh elements to reduce noise and
isolated misclassifications.

e  Geometric consistency check ensures that labels
assigned to geometrically similar faces remain
consistent across neighbouring regions.

The integrated method involves substantial computational steps,
requiring careful optimization to ensure efficiency. To address
this, parallel computation is leveraged throughout key stages,
including rendering, inference, and fusion. Efficient GPU
implementation, along with the use of optimized data structures
such as sparse tensors and spatial indexing, enables the system to
handle large-scale urban datasets effectively.

3.4 Evaluation and Validation

The effectiveness of the proposed GNN+ViT method was
assessed using quantitative evaluation method. The primary
evaluation metric used in this study is the Intersection-over-
Union (IoU), a standard metric widely applied in semantic
segmentation tasks to measure the accuracy of predicted labels
against ground truth labels. Additionally, visual analysis was
conducted to assess the quality of segmentation outputs and to
identify specific areas of improvement.
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Intersection-over-Union (IoU) calculates the overlap between the
predicted labels, and the ground truth labels for each semantic
class. The IoU for each class is defined as the ratio of the
intersection to the union of the predicted and ground truth sets.
The formula used for IoU calculation is as follows:

loU |ANB|
U TIAUB|

where A represents the set of predicted labels for a specific class,
such as Roof, Wall, Window, or Door, and B denotes the set of
ground truth labels for the same class. The numerator | A N B |
refers to the number of correctly predicted labels, representing
the intersection between the prediction and ground truth sets. The
denominator | A U B | refers to the total number of elements in
both sets, representing the union of the prediction and ground
truth labels. IoU values range from O to 1, where a value of 1
indicates a perfect overlap, and a value of 0 indicates no overlap.

In this study, IoU values were calculated separately for each
semantic class to assess the segmentation performance of both
the GNN-only model and the GNN+ViT model. The calculation
process involved two distinct stages. First, the initial
segmentation was performed using the GNN model, where
semantic labels were assigned based solely on geometric features
extracted from the 3D mesh. For each class, the number of
correctly predicted labels (intersection) and the total number of
labels (union) were recorded, and the IoU values were calculated
based on the above formula.

In the second stage, the ViT model was employed to refine the
segmentation output generated by the GNN. The GNN-labeled
output was rendered into multiple 2D views, including front and
side views. The ViT model processed each view to refine the
semantic labels by leveraging visual information. The multiple
view predictions were then combined using a consensus-based
voting mechanism to determine the final label for each mesh face.
Following this refinement process, loU values were recalculated
for each class, considering the updated labels generated by the
ViT.

4. Results and Discussion

To evaluate the effectiveness of the proposed method Graph
Neural Network (GNN) and Vision Transformer (ViT) approach
for semantic segmentation of 3D building models, a
comprehensive set of experiments was conducted using a diverse
dataset comprising residential buildings sourced from
buildingnet.org. The dataset includes variations in architectural
styles, structural complexity, and component detailing, providing
a robust basis for performance assessment.

The evaluation employs metrics such as Intersection-over-Union
(IoU), focusing on four semantic classes: Roof, Wall, Window,
and Door. Visualizations are included to support the analysis of
improvements in segment consistency and semantic fidelity.

Figure 2 illustrates examples of segmentation outputs from both
the GNN-only pipeline (left) and the proposed GNN + ViT model
(right). Noticeable improvements in the roof and dormer regions,
where the ViT-enhanced model produced more coherent roof
plane boundaries and reduced class fragmentation. These
refinements suggest that the Vision Transformer’s global context
awareness allows the model to capture structural patterns beyond
local geometric relationships, which are often insufficient when
using GNNss alone.

Figure 2. Segmentation comparison between the GNN (left) and
GNN + ViT (right) models, showing smoother roof planes and
improved consistency.

Similarly, Figure 3 presents close-up views of the wall and
window regions, comparing the GNN and GNN + ViT output.
The proposed method demonstrates improved delineation
between window frames and wall surfaces, minimizing
misclassification and edge noise. This enhancement indicates
that the multi-view fusion strategy employed in the ViT
component effectively leverages visual redundancy, facilitating
better feature alignment and error correction.

Figure 3. Close-up of wall and window segmentation, where the
proposed model provides fewer misclassifications.

Quantitatively, the mean IoU increased from 69.85% in the
GNN-only configuration to 78.05% when incorporating the
Vision Transformer, representing a performance improvement of
approximately 8%. These results confirm that the combination of
topological representation learning (through GNNs) and visual
context modeling (via ViTs) enhances both spatial reasoning and
semantic precision in 3D model interpretation.

5. Conclusion

The results show that combining GNN and ViT improves the
semantic segmentation of 3D building models compared to using
only GNNs. The combined approach performs better, especially
when labelling challenging components like doors and windows,
which are typically harder to segment accurately due to their
smaller size and visual similarities. These improvements
highlight the benefits of using both geometric structure and visual
information together.

Although this combined method has advantages, there are also
some limitations to consider. One significant issue is the high
computational resources needed, especially because more
generated images mean greater demands on computing power.
This limitation can make the method harder to scale up for large
urban datasets or for tasks that require real-time segmentation.
Another limitation is related to the range of building designs used
in this study. Since the current tests only involved limited types
of building structures, the method’s ability to handle a wider
variety of building styles remains uncertain.

To further advance this research, future studies could focus on
addressing these limitations. Reducing computational costs by
developing lighter models, simplifying the multi-view approach,
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or optimizing the way images are processed could make the
method more practical and easier to use. Testing the model on a
broader set of building designs (e.g. tropical Asian buildings),
including more complex or unusual architectural styles, would
help improve its robustness.

In conclusion, the combination of GNN and ViT shows potential
in improving the accuracy of building labelling. Nonetheless,
further work is needed to enhance computational efficiency and
evaluate the method across broader test scenarios to support its
practical use in real-world GIS applications.
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