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Abstract 

Urbanization represents a major challenge, driving the conversion of agricultural land into high-value uses such as residential, 

industrial, and commercial developments, largely due to rapid population growth. To address these challenges and enhance urban 

sustainability, it is essential to incorporate spatial planning strategies that integrate urban and peri-urban agriculture. We consider 

urban and peri-urban agriculture to be of vital importance in ensuring food security and meeting citizens' needs. Thus, our proposal is 

based on integrating agriculture into open spaces in urban and peri urban areas, such as community gardens, rooftops and 

greenhouses. In this way, we will be able to exploit these spaces for the cultivation of agricultural commodities common in the 

region, such as cereals and market garden crops. This project aims to extract those vacant spaces and rooftops using various methods. 

For vacant space extraction, three classifiers were used: Support Vector Machine (SVM), Minimum Distance, and Random Forest. 

With a 75% precision, the SVM classifier had the highest accuracy. For rooftop extraction, three methods were tested, including 

object-based classification using SVM, the pre-trained and optimized deep learning model Footprint Building Extraction-USA, and 

Mapflow's building model. According to our analysis, the last two approaches achieved the highest accuracy with F-Factor values 

above 77%. 
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1. Introduction

Urbanization is increasing worldwide. Currently, over half of 

the world's population resides in urban areas. This number is 

projected to increase to 67% by 2050 (World Bank, 2020). This 

increase in the urban population is mainly concentrated in 

metropolitan areas and cities with economic and industrial 

activities (UN Environment Global, 2019). 

In Morocco, the situation is far from exceptional, urban 

expansion is becoming increasingly alarming and consuming 

agricultural land. This phenomenon is especially visible in 

metropolitan cities such as Casablanca (HCP, 2014). 

Due to internal migration and rural emigration, the Casablanca 

region is experiencing extremely rapid population expansion, 

which raises demand for infrastructure, employment, housing, 

and services. 

According to data from the High Commission for Planning 

(HCP), the built-up area in the Casablanca-Settat region 

increased by 77% between 2016 and 2020, rising from 

1,259,407 m² in 2016 to 2,234,103 m² in 2020 (HCP, 2023). 

This vulnerability can lead to food insecurity issues as the 

population increases and food demand rises, while agricultural 

production fluctuates or decreases due to climate change or the 

conversion of agricultural land to barren or developed land 

(Aubry et al., 2013). 

To address these challenges, many initiatives are promoting 

sustainable urbanization by encouraging the concept of green 

and smart cities. 

Morocco is implementing strategies and policies aimed at 

developing sustainable agriculture and mitigating the impacts of 

urbanization on agricultural production. 

Investments in the agricultural sector and innovative solutions 

for resilient agriculture are being encouraged (Toumi, 2008). 

Urban and peri-urban agriculture (UPA) is increasingly 

recognized as a sustainable solution to address those various 

socio-economic and environmental challenges. Firstly, it 

provides a tangible response to food insecurity by enabling local 

production and direct distribution of fresh food to urban 

populations, thereby reducing reliance on food imports and 

enhancing access to a nutritious and balanced diet. Furthermore, 

UPA can contribute to job creation and the reduction of 

underemployment by offering employment opportunities in 

food production, processing, and distribution sectors, as well as 

in the management of green spaces and community gardens 

(Pearson et al., 2010). 

Geospatial technology plays a key role in this approach by 

mapping and modeling the open spaces for agriculture. 

It identifies optimal locations for installing vertical structures by 

taking into account sunlight exposure, orientation, and 

infrastructure (Grard et al., 2018): Plants are classified into 

different categories according to their light requirements, the 

cultivation area is located on the ground floor or on the roof of a 

building, it must be easily accessible to inhabitants and 

maintenance staff. When choosing the location for the 

installation, the wind must be taken into account, which can 

have an influence on plant growth because the plants will tilt 

and the soil will dry out (gidsduurzamegebouwen,2017). 
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Identifying suitable rooftops and unoccupied spaces for 

agricultural installations is the main subject of this study. High- 

resolution satellite images from Google Earth Pro served as the 

study's data source. 

ideal and strategic area in which to develop such a projects and 

initiatives. 

 

2.2 Rooftop Detection 

2. Method 

2.1 Study area 

Our study area is the metropolitan city of Casablanca, 

specifically the arrondissement Hay Hassani (Fig1). 
 

Casablanca serves as the economic capital and largest city of 

the Kingdom of Morocco. It is situated in the central-western 

part of the country, located along the Atlantic coast at 

coordinates 33°36′N latitude and 07°36′W longitude. The city is 

characterized by its population estimated at 3 218 036 residents, 

encompassing an area of approximately 1,615 square kilometers 

(RGPH1, 2024). Indeed, agricultural land in this metropolitan 

city is under heavy pressure, hence the importance of urban and 

peri-urban agriculture which can help offset the decline in 

agricultural land by using urban spaces such as rooftops, 

terraces, balconies and public spaces to grow food. 

 

The region of Casablanca has a Mediterranean climate with an 

oceanic coastline. The average annual temperature is 17.8°C 

and the average annual rainfall is around 430 mm (HASSANI et 

al ,2021). 

 

 

 

 

 

 

 

 

 

Figure 2: Methodology 

 

The workflow of this step involves automatically extracting 

rooftop footprints from a satellite image downloaded from the 

ArcGIS Pro satellite basemap, by adjusting parameters such as 

spatial resolution, spectral resolution, projection system, image 

size, and bit depth according to the specific needs of our study. 

To perform this automatic extraction, we address the 

identification of building rooftops using three distinct methods. 

 

The first method relies on deep learning, using the pre-trained 

and optimized model “Building Footprint Extraction – USA,” 

which is based on the Mask R-CNN architecture within ArcGIS 

Pro. Next, we apply the Mapflow method in QGIS, also based 

on deep learning, followed by the use of an object-based 

classification method. 

 

Finally, to ensure the reliability of these approaches, we carry 

out a qualitative and quantitative validation of the results 

obtained from the three methods, allowing for an in-depth 

evaluation of their effectiveness and accuracy. 

 

2.2.1 MASKRCNN Architecture 
 
 

 

 

 

Legend 

 
 
 
 
 

 
Regions of Morocco Study area 

This method is based on the pre-trained and optimized deep 

learning model “Building Footprint Extraction – USA”, which 

automatically digitizes building footprints for each individual 

rooftop using the Mask R-CNN architecture implemented 

Figure 1 : Study area 

 

El Hanaa district, part of the Hay Hassani arrondissement, 

occupies a strategically significant geographical position. It lies 

in the city of Casablanca undergoing rapid economic expansion, 

with a growing attraction for investment. The presence of the 

Casa Finance City zone further enhances its role as a central 

economic hub within the Casablanca-Settat region. Secondly, 

the population density of the area is high, reaching 11,472 

inhabitants per square kilometer. Hay Hassani is also 

characterized by its diversity of urban uses. There are a variety 

of zones, including villas, residential, industrial and 

commercial. This diversity offers opportunities for different 

types of projects. In view of these factors, Hay Hassani is an 

through   the   ArcGIS   API   for   Python3 

Mask R-CNN focuses on instance segmentation of objects 

(rooftops), which is a computer vision technique that identifies 

and separates individual objects in an image by detecting their 

boundaries and assigning a unique label to each object, treating 

each as a distinct entity. This is in contrast to semantic 

segmentation, which aims to extract objects by assigning a 

single pixel class to all instances of the same type. (ArcGIS API 

for Python) 

 

2.2.2 Mapflow model 

 

Mapflow is a plugin that enables linking and connection to the 

Mapflow processing API to perform AI feature extraction and 

add layered output to the QGIS workspace. This plugin is based 
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on AI mapping models using semantic segmentation and other 

deep learning techniques. 

To start processing with this plugin, we selected our (AOI) 

study area by specifying the existing layer, our satellite image 

compliant with Mapflow's requirements, and the AI model we 

used for our case, namely "BUILDINGS". 

 

2.2.3 Object-oriented approach for roof detection 

The object-oriented approach consists in processing grouped 

pixel units rather than individual pixels, using several criteria 

such as spectral, geometric and contextual information. For our 

purposes, we have exploited the Orfeo Toolbox plugin with two 

main steps: segmentation using the Meanshift algorithm and 

classification using support vector machines (SVM). 

 

After creating a new geometric point vector layer and adding an 

attribute column named "class", we proceeded to fill this layer 

with points belonging to two distinct classes: "roof" and "non- 

roof". 

The main objective of SVM is to optimally separate groups of 

supervised classes, which in our case are “ROOF” and “NON- 

ROOF”. Using the data from these classes, also known as 

“support vectors”, the SVM creates an optimized separation 

hyperplane during the training phase (Maulik,2017). 

2.2.4 Validation of roof extraction methods using satellite 

imagery 

 

The results obtained from the proposed workflow were 

evaluated through a verification process based on a two-level 

structure. 

 

2.2.4.1 Qualitative validation 

 

Firstly, at the level of the roof extraction results, we compared 

the results of the three proposed methods with the cleaned 

restitution, taking into account several evaluation criteria. 

Secondly, we evaluated the segmentation step of the third 

method by assigning several evaluation factors. 

 

2.2.4.2 Quantitative validation 

 

To assess the quality of predictions, we used several statistical 

indicators such as: 

▪ Recall Index: measures the proportion of total results that are 

correctly classified; 

▪ Precision Index: measures the proportion of correctly 

identified positive entities; 

▪ F-score: derived from the two previous indices, it provides an 

overall measure of classification performance. 

 

2.3 Vacant Areas Detection 

Vacant areas detection involves the use of various data sources 

and analytical methods such as remote sensing, geographic 

information systems (GIS), image classification, and machine 

learning to locate, classify, and analyze land that is not actively 

built upon or used for infrastructure, agriculture, or other 

intensive land uses. It is commonly applied in urban planning, 

sustainable development, agriculture, and land-use monitoring. 

2.3.1 Random Forest 

The Random Forest algorithm is a supervised classification 

method that classifies data by constructing multiple decision 

trees, aiming to improve prediction accuracy. This technique is 

applied to a test dataset, where several trees are built and their 

individual outputs are aggregated to determine the final class 

label. (Shaik et Srinivasan, 2019). 

 

2.3.2 Support vector machine 

 

Support Vector Machine (SVM) is a supervised learning 

algorithm primarily used for classification tasks. It aims to 

identify the optimal hyperplane that maximizes the margin 

between different classes in a linearly separable space. To 

effectively handle non-linear separability, SVM employs 

various kernel functions such as the Radial Basis Function 

(RBF) and polynomial kernels that project data into higher- 

dimensional spaces. This approach enables robust classification 

performance, even with limited training samples (Mustafa 

Abdullah et Mohsin Abdulazeez, 2021). 

 

2.3.3 Minimum distance 

 

This classifier is based on the use of training data to categorize 

unknown images by measuring proximity within a 

multidimensional feature space. Each image is assigned to the 

class to which it is closest — that is, the class that minimizes 

the distance between the image and the class center in this 

space. The similarity index is thus represented by this distance: 

the smaller the distance, the greater the similarity between the 

image and the class (Jog et Dixit, 2016). 

3. Result 

3.1 Rooftop Extraction results 

3.1.1 MASKRCNN Result 

 

We conducted several tests by adjusting the confidence 

threshold to achieve roof detection that covers all rooftops with 

minimal outliers. The table below presents the most 

representative test among those performed. 

 Parameters Results 

T
es

t 
1 

Padding 128  

 

 

Batch size 4 

Threshold 0.9 
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Table 1: Result of test MASKRCNN Architecture 

 

Finally, to improve the result of the building footprints 

extracted in test 4, we proceeded to regularize their shapes using 

the parameters recommended such as right angles. The table 

below shows the results before and after regularizing the 

building footprints with the selected parameters. 

 

3.1.2 Mapflow result 

 

A visual inspection of the obtained results revealed several 

anomalies in the extracted rooftops. In Zone 1, issues related to 

the orientation of the detected segments were observed. Zones 2 

and 3 also exhibited confusion between rooftops and other 

characteristic urban features. Additionally, the extracted 

segments consistently displayed a similar rectangular shape. 

These irregularities may be explained by the nature and 

composition of the model's training dataset, as well as by the 

inherent complexity of rooftop geometries in the Moroccan 

urban context. 

Figure 3: Result obtained by applying the "Mapflow" building 

model with an enlargement of visually detected anomalies. 

 

3.1.3 Object-oriented classification result 

After analyzing the results obtained by the Deep Learning and 

Artificial Intelligence model, we decided to explore object- 

oriented classification in order to evaluate the performance of 

these models. To this end, we carried out tests by varying the 

parameter combinations to perform meanshift segmentation, 

followed by small-segment fusion and vectorization. We 

observed that the results obtained were similar, with the 

detection of roofs in certain parts of the study area using several 

fragments. 
 

 

 

Figure 4: Object-oriented classification result 

 

These results highlight anomalies in roof extraction. We 

observed that zone 2 and zone 1 had precisely segmented roofs. 

Zone 3 and Zone 4, on the other hand, showed roofs divided 

into several fragments. This fragmentation can be attributed to 

the nature of the roofs present in the actual zone, which is 

characterized by villas. Villa roofs tend to be fragmented due to 

the presence of elements such as solar panels, air conditioners, 

chimneys and other equipment. 

 

3.1.4 Evaluation result 

To assess the reliability of the proposed extraction workflow, 

both quantitative and qualitative evaluations were conducted. 

T
es

t 
2 

Padding 128  

 

 

Batch size 4 

Threshold 0.1 

T
es

t 
3 

Padding 128 
 

 

Batch size 6 

Threshold 0.6 

T
es

t 
4 

Padding 128  

 

Batch size 6 

Threshold 0.6 
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3.1.4.1 Qualitative validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Overlay of the layers of results obtained with the 

restitution layer. (A) With method 1, (B) With method 2, (C) 

With method 3. 

 

After a visual evaluation of this overlay, we found that the 

results of method 1 and method 2 show similar flaws, such as 

the detection of roofs that do not exist in the restitution, the non- 

detection of some roofs actually present in the restitution and 

the grouping of several roofs under the same segment. On the 

other hand, the results of the third method also show significant 

aberrations, as mentioned above, despite their ability to 

correctly detect the location of roofs that actually exist. 

Consequently, based on this visual comparison, we can 

conclude that method 3 does not meet the objectives of our 

study in terms of performance. 

 

3.1.4.2 Quantitative validation 

 

For methods 1 and 2, we carried out quantitative validation by 

comparing the results with the restitution layer. An area of the 

El Hana district, comprising 504 roofs from the restitution layer, 

was selected and superimposed with the results of each method. 

Next, the parameters (TP, FN and FP) were calculated for each 

method. The table below presents the results of the calculation 

of these indices, which allow us to evaluate the performance of 

each method in terms of roof detection compared to the 

restitution layer: 

 
 Building footprint 

MASKRCNN 

Mapflow 

Recall Precision F-score Recal 

l 

Precision F-score 

/Nbre 

of 

roofs 

0.76 0.77 0.77 0.78 0.92 0.85 

/Area 

of 
roofs 

0.83 0.91 0.87 0.77 0.98 0.86 

Table 2: Metrics evaluation of method 1 and 2 

 

The results show that method 1 and method 2 perform relatively 

similarly in terms of roof detection, both as a function of 

number and roof area, with an F-factor greater 77%. 

With regard to accuracy, method 2 shows better accuracy than 

method 1, whether for the detection of the number or surface 

area of roofs, with a percentage greater than 92%. This means 

that 92% of the area and number of roofs detected are actually 

real. 

The selection between the two methods will be determined by 

the specific objectives of the study and the priorities concerning 

recall and precision. In our case, where it is essential to 

accurately detect the area of each existing roof in order to assign 

an appropriate type of vertical farming project, precision 

representing the proportion of correctly detected area is of 

particular importance. Based on this analysis, both methods are 

valid and suitable for our study. 

3.2 Vacant areas Detection 

In this study, three distinct machine learning algorithms were 

employed to classify vacant areas and constructed zones, which 

are essential for urban land cover mapping. The algorithms 

selected Minimum Distance, Support Vector Machine (SVM), 

and Random Forest were chosen based on their ability to handle 

both spatial features and image-based data, making them 

suitable for the complexity of urban environments. By using 

these diverse algorithms, the study aimed to identify which 

method is most effective at distinguishing between vacant and 

constructed zones. 

The results of the precision analysis highlighted the varying 

effectiveness of each algorithm in urban classification tasks. 

The Minimum Distance algorithm achieved a relatively low 

precision of 67%. This method may be insufficient for complex 

urban landscapes where the boundaries between land cover 

types are less distinct. Random Forest algorithm obtained a 

relatively modest precision of 67%. On the other hand, the SVM 

algorithm demonstrated the highest precision (75%), which can 

be attributed to its ability to handle non-linear decision 

boundaries effectively, making it well-suited for classifying 

intricate urban environments. These results emphasize the 

importance of selecting the right algorithm based on the 

complexity of the classification task and the nature of the urban 

environment. 

 

 

 

 

 
Roads 

Vacant areas 

Construction 

 

 

 

 

 

 

Figure 3: Classification results of vacant areas in Elhana district 

 

4. Discussion and Conclusion 

Urban agriculture, including vertical farming on rooftops and 

the use of vacant areas, represents an innovative solution to the 

challenges of increasing urbanization and the rapid growth of 

urban environments. 

Berger (2013) investigates the potential for rooftop urban 

agriculture in New York City through a GIS-based spatial 

analysis. He developed a model publicly accessible datasets to 

Extracted Layer 

Restitution Layer 
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identify buildings with the highest suitability for rooftop 

farming, including greenhouses and intensive green roofs. The 

model also evaluates rooftops for their structural capacity to 

support extensive green roofs with non-agricultural functions. A 

refined application of the model focuses on the industrial zone 

of North Brooklyn, situated south of Newtown Creek, revealing 

over 50 acres of rooftop area suitable for agricultural initiatives. 

The study aims to promote investment and enhance awareness 

among the public, policymakers, and stakeholders regarding the 

opportunities presented by urban agriculture and green roof 

infrastructure. 

 

A similar initiative aimed at assessing the potential of rooftops 

for green infrastructure was undertaken by Dominique et al. 

(2013) in Paris, offering valuable insights into the 

methodological approaches and urban planning implications. 

Led by the Parisian Workshop of Urban Planning in 

collaboration with the Urban Planning Department and the 

Department of Green Spaces and Environment, the research 

aimed to support urban planning decisions by establishing a 

comprehensive inventory and diagnostic of existing green roofs 

across the city. The study sought to enhance understanding of 

the current rooftop vegetation stock, address the evolving 

challenges of rooftop transformations, and identify the potential 

for expanding green roof coverage. Through the integration of 

multiple spatial data layers, a qualitative assessment of the 

rooftops adaptability to green roof systems was carried out. 

Notably, this work contributed to the city's 2020 Biodiversity 

Plan, which targeted the creation of 7 hectares of new green 

roofs. The methodology and findings of this study underscore 

the importance of geospatial analysis in identifying and 

promoting rooftop greening opportunities within dense urban 

environments. 

Urban vacant areas such as unused parcels, abandoned spaces, 

or open lands between buildings represent a valuable 

opportunity for sustainable urban agriculture. These 

underutilized spaces can be repurposed to: 

 

• Enhance local food production, especially in densely 
populated cities with limited arable land. 

• Strengthen food security by bringing food sources 
closer to consumers. 

• Promote environmental sustainability through green 
space creation, stormwater absorption, and improved 
air quality. 

 

Using rooftops and vacant areas for growing food helps reduce 

the pressure on limited ground space and supports local food 

security. However, it can be difficult to choose the right type of 

crop, as this depends on the season. Evaluating the potential of 

each rooftop for this kind of agriculture is another important 

challenge. 

Following the extraction of rooftops and vacant spaces, the 

upcoming phase of the study will involve the integration of 

several key criteria such as accessibility, solar exposure, and 

wind conditions in order to determine the most suitable crop 

types for each rooftop and open space in the urban area. 
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