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Abstract

Urbanization represents a major challenge, driving the conversion of agricultural land into high-value uses such as residential,
industrial, and commercial developments, largely due to rapid population growth. To address these challenges and enhance urban
sustainability, it is essential to incorporate spatial planning strategies that integrate urban and peri-urban agriculture. We consider
urban and peri-urban agriculture to be of vital importance in ensuring food security and meeting citizens' needs. Thus, our proposal is
based on integrating agriculture into open spaces in urban and peri urban areas, such as community gardens, rooftops and
greenhouses. In this way, we will be able to exploit these spaces for the cultivation of agricultural commodities common in the
region, such as cereals and market garden crops. This project aims to extract those vacant spaces and rooftops using various methods.
For vacant space extraction, three classifiers were used: Support Vector Machine (SVM), Minimum Distance, and Random Forest.
With a 75% precision, the SVM classifier had the highest accuracy. For rooftop extraction, three methods were tested, including
object-based classification using SVM, the pre-trained and optimized deep learning model Footprint Building Extraction-USA, and
Mapflow's building model. According to our analysis, the last two approaches achieved the highest accuracy with F-Factor values

above 77%.
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1. Introduction

Urbanization is increasing worldwide. Currently, over half of
the world's population resides in urban areas. This number is
projected to increase to 67% by 2050 (World Bank, 2020). This
increase in the urban population is mainly concentrated in
metropolitan areas and cities with economic and industrial
activities (UN Environment Global, 2019).

In Morocco, the situation is far from exceptional, urban
expansion is becoming increasingly alarming and consuming
agricultural land. This phenomenon is especially visible in
metropolitan cities such as Casablanca (HCP, 2014).

Due to internal migration and rural emigration, the Casablanca
region is experiencing extremely rapid population expansion,
which raises demand for infrastructure, employment, housing,
and services.

According to data from the High Commission for Planning
(HCP), the built-up area in the Casablanca-Settat region
increased by 77% between 2016 and 2020, rising from
1,259,407 m? in 2016 to 2,234,103 m? in 2020 (HCP, 2023).

This vulnerability can lead to food insecurity issues as the
population increases and food demand rises, while agricultural
production fluctuates or decreases due to climate change or the
conversion of agricultural land to barren or developed land
(Aubry et al., 2013).

To address these challenges, many initiatives are promoting
sustainable urbanization by encouraging the concept of green
and smart cities.

Morocco is implementing strategies and policies aimed at
developing sustainable agriculture and mitigating the impacts of
urbanization on agricultural production.

Investments in the agricultural sector and innovative solutions
for resilient agriculture are being encouraged (Toumi, 2008).

Urban and peri-urban agriculture (UPA) is increasingly
recognized as a sustainable solution to address those various
socio-economic and environmental challenges. Firstly, it
provides a tangible response to food insecurity by enabling local
production and direct distribution of fresh food to urban
populations, thereby reducing reliance on food imports and
enhancing access to a nutritious and balanced diet. Furthermore,
UPA can contribute to job creation and the reduction of
underemployment by offering employment opportunities in
food production, processing, and distribution sectors, as well as
in the management of green spaces and community gardens
(Pearson et al., 2010).

Geospatial technology plays a key role in this approach by
mapping and modeling the open spaces for agriculture.

It identifies optimal locations for installing vertical structures by
taking into account sunlight exposure, orientation, and
infrastructure (Grard et al., 2018): Plants are classified into
different categories according to their light requirements, the
cultivation area is located on the ground floor or on the roof of a
building, it must be easily accessible to inhabitants and
maintenance staff. When choosing the location for the
installation, the wind must be taken into account, which can
have an influence on plant growth because the plants will tilt
and the soil will dry out (gidsduurzamegebouwen,2017).
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Identifying suitable rooftops and unoccupied spaces for
agricultural installations is the main subject of this study. High-
resolution satellite images from Google Earth Pro served as the
study's data source.

2. Method
2.1 Study area

Our study area is the metropolitan city of Casablanca,
specifically the arrondissement Hay Hassani (Figl).

Casablanca serves as the economic capital and largest city of
the Kingdom of Morocco. It is situated in the central-western
part of the country, located along the Atlantic coast at
coordinates 33°36'N latitude and 07°36'W longitude. The city is
characterized by its population estimated at 3 218 036 residents,
encompassing an area of approximately 1,615 square kilometers
(RGPH1, 2024). Indeed, agricultural land in this metropolitan
city is under heavy pressure, hence the importance of urban and
peri-urban agriculture which can help offset the decline in
agricultural land by using urban spaces such as rooftops,
terraces, balconies and public spaces to grow food.

The region of Casablanca has a Mediterranean climate with an
oceanic coastline. The average annual temperature is 17.8°C
and the average annual rainfall is around 430 mm (HASSANI et
al ,2021).

Legend
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Figure 1 : Study area

El Hanaa district, part of the Hay Hassani arrondissement,
occupies a strategically significant geographical position. It lies
in the city of Casablanca undergoing rapid economic expansion,
with a growing attraction for investment. The presence of the
Casa Finance City zone further enhances its role as a central
economic hub within the Casablanca-Settat region. Secondly,
the population density of the area is high, reaching 11,472
inhabitants per square kilometer. Hay Hassani is also
characterized by its diversity of urban uses. There are a variety
of zones, including villas, residential, industrial and
commercial. This diversity offers opportunities for different
types of projects. In view of these factors, Hay Hassani is an

ideal and strategic area in which to develop such a projects and
initiatives.

2.2 Rooftop Detection
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Figure 2: Methodology

The workflow of this step involves automatically extracting
rooftop footprints from a satellite image downloaded from the
ArcGIS Pro satellite basemap, by adjusting parameters such as
spatial resolution, spectral resolution, projection system, image
size, and bit depth according to the specific needs of our study.

To perform this automatic extraction, we address the
identification of building rooftops using three distinct methods.

The first method relies on deep learning, using the pre-trained
and optimized model “Building Footprint Extraction — USA,”
which is based on the Mask R-CNN architecture within ArcGIS
Pro. Next, we apply the Mapflow method in QGIS, also based
on deep learning, followed by the use of an object-based
classification method.

Finally, to ensure the reliability of these approaches, we carry
out a qualitative and quantitative validation of the results
obtained from the three methods, allowing for an in-depth
evaluation of their effectiveness and accuracy.

2.21 MASKRCNN Architecture

This method is based on the pre-trained and optimized deep
learning model “Building Footprint Extraction — USA”, which
automatically digitizes building footprints for each individual
rooftop using the Mask R-CNN architecture implemented
through the ArcGIS API for Python3
Mask R-CNN focuses on instance segmentation of objects
(rooftops), which is a computer vision technique that identifies
and separates individual objects in an image by detecting their
boundaries and assigning a unique label to each object, treating
each as a distinct entity. This is in contrast to semantic
segmentation, which aims to extract objects by assigning a
single pixel class to all instances of the same type. (ArcGIS API
for Python)

222  Mapflow model

Mapflow is a plugin that enables linking and connection to the
Mapflow processing API to perform Al feature extraction and
add layered output to the QGIS workspace. This plugin is based
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on Al mapping models using semantic segmentation and other
deep learning techniques.

To start processing with this plugin, we selected our (AOI)
study area by specifying the existing layer, our satellite image
compliant with Mapflow's requirements, and the Al model we
used for our case, namely "BUILDINGS".

2.2.3  Object-oriented approach for roof detection

The object-oriented approach consists in processing grouped
pixel units rather than individual pixels, using several criteria
such as spectral, geometric and contextual information. For our
purposes, we have exploited the Orfeo Toolbox plugin with two
main steps: segmentation using the Meanshift algorithm and
classification using support vector machines (SVM).

After creating a new geometric point vector layer and adding an
attribute column named "class", we proceeded to fill this layer
with points belonging to two distinct classes: "roof" and "non-
roof".

The main objective of SVM is to optimally separate groups of
supervised classes, which in our case are “ROOF” and “NON-
ROOF”. Using the data from these classes, also known as
“support vectors”, the SVM creates an optimized separation
hyperplane during the training phase (Maulik,2017).

224
imagery

Validation of roof extraction methods using satellite

The results obtained from the proposed workflow were
evaluated through a verification process based on a two-level
structure.

2.2.4.1 Qualitative validation

Firstly, at the level of the roof extraction results, we compared
the results of the three proposed methods with the cleaned
restitution, taking into account several evaluation criteria.
Secondly, we evaluated the segmentation step of the third
method by assigning several evaluation factors.

2.2.4.2 Quantitative validation

To assess the quality of predictions, we used several statistical
indicators such as:

= Recall Index: measures the proportion of total results that are
correctly classified;

= Precision Index: measures the proportion of correctly
identified positive entities;

= F-score: derived from the two previous indices, it provides an
overall measure of classification performance.

2.3 Vacant Areas Detection

Vacant areas detection involves the use of various data sources
and analytical methods such as remote sensing, geographic
information systems (GIS), image classification, and machine
learning to locate, classify, and analyze land that is not actively
built upon or used for infrastructure, agriculture, or other
intensive land uses. It is commonly applied in urban planning,
sustainable development, agriculture, and land-use monitoring.

2.3.1 Random Forest

The Random Forest algorithm is a supervised classification
method that classifies data by constructing multiple decision
trees, aiming to improve prediction accuracy. This technique is
applied to a test dataset, where several trees are built and their
individual outputs are aggregated to determine the final class
label. (Shaik et Srinivasan, 2019).

2.3.2  Support vector machine

Support Vector Machine (SVM) is a supervised learning
algorithm primarily used for classification tasks. It aims to
identify the optimal hyperplane that maximizes the margin
between different classes in a linearly separable space. To
effectively handle non-linear separability, SVM employs
various kernel functions such as the Radial Basis Function
(RBF) and polynomial kernels that project data into higher-
dimensional spaces. This approach enables robust classification
performance, even with limited training samples (Mustafa
Abdullah et Mohsin Abdulazeez, 2021).

2.3.3  Minimum distance

This classifier is based on the use of training data to categorize
unknown images by measuring proximity within a
multidimensional feature space. Each image is assigned to the
class to which it is closest — that is, the class that minimizes
the distance between the image and the class center in this
space. The similarity index is thus represented by this distance:
the smaller the distance, the greater the similarity between the
image and the class (Jog et Dixit, 2016).

3. Result
3.1 Rooftop Extraction results

311 MASKRCNN Result

We conducted several tests by adjusting the confidence
threshold to achieve roof detection that covers all rooftops with

minimal outliers. The table below presents the most
representative test among those performed.

Parameters Results
Padding 128
Batch size | 4

Threshold | 0.9

Test 1
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Table 1: Result of test MASKRCNN Architecture

Finally, to improve the result of the building footprints
extracted in test 4, we proceeded to regularize their shapes using
the parameters recommended such as right angles. The table
below shows the results before and after regularizing the
building footprints with the selected parameters.

3.1.2 Mapflow result

A visual inspection of the obtained results revealed several
anomalies in the extracted rooftops. In Zone 1, issues related to
the orientation of the detected segments were observed. Zones 2
and 3 also exhibited confusion between rooftops and other
characteristic urban features. Additionally, the extracted
segments consistently displayed a similar rectangular shape.
These irregularities may be explained by the nature and
composition of the model's training dataset, as well as by the
inherent complexity of rooftop geometries in the Moroccan
urban context.

Figure 3: Result obtained by applying the "Mapflow" building
model with an enlargement of visually detected anomalies.

3.1.3  Object-oriented classification result

After analyzing the results obtained by the Deep Learning and
Artificial Intelligence model, we decided to explore object-
oriented classification in order to evaluate the performance of
these models. To this end, we carried out tests by varying the
parameter combinations to perform meanshift segmentation,
followed by small-segment fusion and vectorization. We
observed that the results obtained were similar, with the
detection of roofs in certain parts of the study area using several
fragments.

Figure 4: Object-oriented classification result

These results highlight anomalies in roof extraction. We
observed that zone 2 and zone 1 had precisely segmented roofs.
Zone 3 and Zone 4, on the other hand, showed roofs divided
into several fragments. This fragmentation can be attributed to
the nature of the roofs present in the actual zone, which is
characterized by villas. Villa roofs tend to be fragmented due to
the presence of elements such as solar panels, air conditioners,
chimneys and other equipment.

3.14  Evaluation result

To assess the reliability of the proposed extraction workflow,
both quantitative and qualitative evaluations were conducted.
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Extracted Layer

Restitution Layer

Figure 5: Overlay of the layers of results obtained with the
restitution layer. (A) With method 1, (B) With method 2, (C)
With method 3.

After a visual evaluation of this overlay, we found that the
results of method 1 and method 2 show similar flaws, such as
the detection of roofs that do not exist in the restitution, the non-
detection of some roofs actually present in the restitution and
the grouping of several roofs under the same segment. On the
other hand, the results of the third method also show significant
aberrations, as mentioned above, despite their ability to
correctly detect the location of roofs that actually exist.
Consequently, based on this visual comparison, we can
conclude that method 3 does not meet the objectives of our
study in terms of performance.

3.1.4.2 Quantitative validation

For methods 1 and 2, we carried out quantitative validation by
comparing the results with the restitution layer. An area of the
El Hana district, comprising 504 roofs from the restitution layer,
was selected and superimposed with the results of each method.
Next, the parameters (TP, FN and FP) were calculated for each
method. The table below presents the results of the calculation
of these indices, which allow us to evaluate the performance of
each method in terms of roof detection compared to the
restitution layer:

Building footprint Mapflow

MASKRCNN

Recall |Precision |F-score |Recal |Precision |F-score

|

/Nbre | 0.76 | 0.77 0.77 0.78 | 0.92 0.85
of
roofs
/Area | 0.83 | 0.91 0.87 0.77 | 0.98 0.86
of
roofs

Table 2: Metrics evaluation of method 1 and 2

The results show that method 1 and method 2 perform relatively
similarly in terms of roof detection, both as a function of
number and roof area, with an F-factor greater 77%.

With regard to accuracy, method 2 shows better accuracy than
method 1, whether for the detection of the number or surface
area of roofs, with a percentage greater than 92%. This means
that 92% of the area and number of roofs detected are actually
real.

The selection between the two methods will be determined by
the specific objectives of the study and the priorities concerning
recall and precision. In our case, where it is essential to
accurately detect the area of each existing roof in order to assign
an appropriate type of vertical farming project, precision
representing the proportion of correctly detected area is of
particular importance. Based on this analysis, both methods are
valid and suitable for our study.

3.2 Vacant areas Detection

In this study, three distinct machine learning algorithms were
employed to classify vacant areas and constructed zones, which
are essential for urban land cover mapping. The algorithms
selected Minimum Distance, Support Vector Machine (SVM),
and Random Forest were chosen based on their ability to handle
both spatial features and image-based data, making them
suitable for the complexity of urban environments. By using
these diverse algorithms, the study aimed to identify which
method is most effective at distinguishing between vacant and
constructed zones.

The results of the precision analysis highlighted the varying
effectiveness of each algorithm in urban classification tasks.
The Minimum Distance algorithm achieved a relatively low
precision of 67%. This method may be insufficient for complex
urban landscapes where the boundaries between land cover
types are less distinct. Random Forest algorithm obtained a
relatively modest precision of 67%. On the other hand, the SVM
algorithm demonstrated the highest precision (75%), which can
be attributed to its ability to handle non-linear decision
boundaries effectively, making it well-suited for classifying
intricate urban environments. These results emphasize the
importance of selecting the right algorithm based on the
complexity of the classification task and the nature of the urban
environment.

- Roads

Figure 3: Classification results of vacant areas in Elhana district

4. Discussion and Conclusion

Urban agriculture, including vertical farming on rooftops and
the use of vacant areas, represents an innovative solution to the
challenges of increasing urbanization and the rapid growth of
urban environments.

Berger (2013) investigates the potential for rooftop urban
agriculture in New York City through a GIS-based spatial
analysis. He developed a model publicly accessible datasets to

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-4-W17-2025-29-2026 | © Author(s) 2026. CC BY 4.0 License. 33

Vacant areas

I Construction



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 — 10th International Conference on Geolnformation Advances, 29-30 May 2025, Marrakech, Morocco

identify buildings with the highest suitability for rooftop
farming, including greenhouses and intensive green roofs. The
model also evaluates rooftops for their structural capacity to
support extensive green roofs with non-agricultural functions. A
refined application of the model focuses on the industrial zone
of North Brooklyn, situated south of Newtown Creek, revealing
over 50 acres of rooftop area suitable for agricultural initiatives.
The study aims to promote investment and enhance awareness
among the public, policymakers, and stakeholders regarding the
opportunities presented by urban agriculture and green roof
infrastructure.

A similar initiative aimed at assessing the potential of rooftops
for green infrastructure was undertaken by Dominique et al.
(2013) in Paris, offering valuable insights into the
methodological approaches and urban planning implications.
Led by the Parisian Workshop of Urban Planning in
collaboration with the Urban Planning Department and the
Department of Green Spaces and Environment, the research
aimed to support urban planning decisions by establishing a
comprehensive inventory and diagnostic of existing green roofs
across the city. The study sought to enhance understanding of
the current rooftop vegetation stock, address the evolving
challenges of rooftop transformations, and identify the potential
for expanding green roof coverage. Through the integration of
multiple spatial data layers, a qualitative assessment of the
rooftops adaptability to green roof systems was carried out.
Notably, this work contributed to the city's 2020 Biodiversity
Plan, which targeted the creation of 7 hectares of new green
roofs. The methodology and findings of this study underscore
the importance of geospatial analysis in identifying and
promoting rooftop greening opportunities within dense urban
environments.

Urban vacant areas such as unused parcels, abandoned spaces,
or open lands between buildings represent a valuable
opportunity  for sustainable urban agriculture. These
underutilized spaces can be repurposed to:

e Enhance local food production, especially in densely
populated cities with limited arable land.

e  Strengthen food security by bringing food sources
closer to consumers.

e Promote environmental sustainability through green
space creation, stormwater absorption, and improved
air quality.

Using rooftops and vacant areas for growing food helps reduce
the pressure on limited ground space and supports local food
security. However, it can be difficult to choose the right type of
crop, as this depends on the season. Evaluating the potential of
each rooftop for this kind of agriculture is another important
challenge.

Following the extraction of rooftops and vacant spaces, the
upcoming phase of the study will involve the integration of
several key criteria such as accessibility, solar exposure, and
wind conditions in order to determine the most suitable crop
types for each rooftop and open space in the urban area.
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