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Abstract 

 

Green energy usage in Morocco is gaining traction, particularly in the realm of solar panels, which hold great potential for use in 

agriculture and residential settings. Recently, there has been growing interest in exploring ways to automatically gather important 

information about solar installations in specific geographic areas of interest. To address this goal, we developed a geoAI approach that 

utilizes satellite high-resolution imagery and the YOLOv8 computer vision algorithm for accurate solar panel segmentation in the 

Marrakech-Safi region of Morocco. Training images were obtained from open-source, annotated datasets available on the web, and we 

pseudo-labeled images from our Area of Interest using a semi-supervised learning approach. We built, trained, and tested the solar 

panel dataset, which included 4660 images. Subsequently, we performed geoprocessing analysis to extract estimated geometric 

parameters such as the area, perimeter, and angles of the segmented solar panels. These shape parameters were then employed in 

unsupervised machine learning to detect anomalies in the segmented data by using the Isolation Forest algorithm. Precision, recall rate, 

and mAP50 were used for the evaluation of the Yolov8 segmentation model. The results showed a high precision rate of 96.9%, a 

recall rate of 97.6%, and an mAP score of 0.99, indicating the effectiveness of the Yolov8 segmentations in accurately segmenting 

solar panels. Our approach successfully segmented 18,050 PV modules, covering an estimated area of 1.47 km2 in the study area, with 

an average confidence of 89%. This demonstrates the model's capability to accurately identify and isolate solar panels within complex 

scenes. The high precision and recall rates suggest that our approach is robust for large-scale solar panel detection in diverse landscapes. 

Successfully segmenting over 18,000 PV modules indicates the scalability of our method. Additionally, integrating geoprocessing 

analysis and the Isolation Forest algorithm enhances our approach, allowing for the identification of anomalies in solar panel 

installations. This research provides valuable insights into the extent of solar panel adoption in the Marrakech-Safi region, offers a 

robust methodology for large-scale solar installation mapping, and establishes a foundation for future nationwide studies, potentially 

informing energy policies and supporting sustainable development initiatives across Morocco. 

 

 

 

1. Introduction 

In Morocco, there have been a lot more installations of residential 

and agricultural systems over the past ten years. The generated 

energy of solar PV systems, which was only 63 GWh in 2014, 

significantly increased and reached 1547 GWh in 2020 and 1848 

GWh in 2021. According to the International Energy Agency, 

Morocco's renewable energy capacity will increase to reach 

3,000 MW in 2025 (IEA, 2016). It is important to note that over 

the forecast period, solar PV systems will account for 14% of the 

nation's growth in renewable energy (Hochberg, M. 2018). 

Government organizations are keen on obtaining accurate 

information about the location, size, and energy generation of 

existing solar PV installations. This data is vital for tracking the 

overall growth of solar systems in a particular area and making 

important decisions, including energy demand forecasts, 

development planning, distribution upgrades, and ensuring a 

reliable and resilient power grid. Formal data collection 

techniques, like surveys, take a long time and don't offer enough 

accuracy. Additionally, the rapid growth of residential and 

agricultural PV systems makes these techniques obsolete and 

necessitates ongoing, costly data collection efforts. 

 

Computer vision algorithms and convolutional neural networks 

have shown great potential for detecting solar panels using 

remote sensing data. These algorithms can precisely identify and 

locate solar PV installations by examining high-resolution 

satellite imagery. Several studies have explored this approach, 

demonstrating promising results. For instance, Malof et al. 

(2015) and Hong et al. (2017) utilized computer vision 

techniques to detect solar PV systems from remote sensing data. 

Additionally, Qi Li et al. (2023) results indicate that their 

SolarDetector, employing the Mask R-CNN algorithm, achieved 

superior performance in accurately detecting rooftop solar arrays 

and providing detailed installation information, outperforming 

the notable approach of (Q. Li et al., 2020) by approximately 

50%.  

 

In the present paper, we suggest the employment of the Yolov8 

segmentation model (Ultralytics, 2023), the newest deep-

learning architecture from the YOLO series of frameworks 

(Terven, 2023). YOLO models have been widely used in remote 

sensing, such as in studies by Cheng et al. (2021), Alganci et al. 

(2020), Zheng et al. (2022), and C. Yu et al. (2023), and have 

made significant progress in object detection and segmentation. 

The YOLO family of object detection models has been renowned 

for its emphasis on striking the perfect balance between speed 

and accuracy, ensuring real-time performance without 

compromising on detection quality. Building upon the successes 

of its predecessors, the YOLOv8 model further elevates speed 

and accuracy, offering a unified framework for training models 

optimized to instance segmentation tasks (Ultralytics, 2023). 

Consequently, our decision to opt for YOLOv8 was clear and 

strategic, as we sought the ideal trade-off between high accuracy 

and speed. This choice is particularly crucial for us, given our 
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intention to utilize the model for prediction on a very large study 

area. 

Remote sensing is a research area that requires high computation 

capabilities and combining it with deep learning algorithms 

makes the task even more demanding. Thus, many researchers 

have tried applying Yolov8 models to make use of its advantages 

in solving this problem. Ma and Pang (2023) proposed an 

enhanced method based on YOLOv8s. This method focuses on 

accurately recognizing tiny objects in remote sensing images by 

replacing the strided convolution module in YOLOv8s with the 

SPD-Conv module. In another study by Adegun et al. (2023), 

Yolov8 and other R-CNN algorithms were compared to detect 

vegetation and swimming pools in high-resolution satellite 

images. The results showed that Yolov8 outperformed the other 

methods in terms of both accuracy and speed of detection. Hajjaji 

et al. (2023) successfully applied Yolov8 for early detection of 

The Red Palm Weevil using UAV images. Their model achieved 

remarkable results, boasting 100% precision and recall in 

detecting and pinpointing infested palm trees. In summary, 

Yolov8 has shown promising potential in various remote sensing 

applications, offering improved accuracy and efficiency 

compared to other algorithms. 

 

Many studies have focused on identifying solar PV locations 

worldwide, but there hasn't been any research done specifically 

for Morocco. Our study aims to address this gap by using the 

Yolov8 algorithm with high-resolution satellite images to 

precisely locate and segment solar PV installations in Morocco. 

This research will not only enhance our understanding of solar 

energy distribution in the country but also offer valuable insights 

for future renewable energy planning and development. To 

improve segmentation accuracy despite limited training samples 

and computational resources, we propose a geoAi approach that 

combines geospatial analysis and computer vision techniques. 

The primary objectives of this research are as follows: 

 

1. Segmentation of PV panels and identification of their 

locations in georeferenced satellite imagery 

2. Extract geometric parameters such as area, perimeter, 

and angles of the identified PV panels for further 

analysis and mapping purposes. 

3. Using the isolation forest algorithm, perform 

unsupervised machine learning to use extracted shape 

parameters to identify anomalies and outliers in the 

results. 

 

 

 

Figure 1: The methodological framework of the research. 
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2. Material and Methods

2.1. Study Area 

This study focuses on Morocco's Marrakech-Safi region, 

bordered by Casablanca-Settat, Beni Mellal-Khenifra, Drâa-

Tafilalet, and Souss-Massa regions, along with the Atlantic 

Ocean. Covering 39,167 km², it holds 115 people per sq km. With 

an arid climate, temperatures range from 4.9°C to 37.7°C. 

Notably, Marrakech-Safi boasts high direct normal irradiance 

(DNI) up to 3000 kWh m-2 year-1, ideal for solar PV 

installations. 

2.2 Land Exclusion 

Given the extensive expanse covered by the region (figure 2), a 

vital measure involved excluding land areas with a significant 

likelihood of lacking any photovoltaic (PV) installations. To 

achieve this, we leaned on the Dynamic World V1 dataset from 

2022 (Brown et al., 2022), which furnished comprehensive 

insights into global land use and cover. This dataset facilitated 

precise identification of regions with minimal potential for 

housing PV installations. These specific regions were 

demarcated by distinct bands: shrub and scrub, bare land, snow 

and ice, as well as water bodies. 

Figure 2: Study area and excluded areas highlighted. 

2.3 Dataset preparation 

The use of PV modules is already an established sector in 

agricultural and residential areas in Morocco (source). However, 

there is no open-source dataset of the location of PV installations 

in the country available to use as training samples. Therefore, we 

relied on open-source datasets of annotated solar panels in 

Satellite images available on Roboflow and Kaggle. In addition, 

we located a small number of PV installations in our AOI and 

annotated it manually. This web dataset obviously does not 

represent our AOI. Our goal is to use semi-supervised learning 

by training a Yolov8 segmentation model with the previously 

stated training set of data. to build a trained and tested pseudo-

annotated dataset from the AOI. 

Following this method, we collected high-resolution satellite 

imagery (0.2 m per pixel) and geospatial data (figure 3). We 

randomly selected samples of images from all provinces of 

Marrkech-Safi. Our dataset contains 4660 high-resolution 

pseudo-annotated images with (512 x 512) pixels and one or 

more agricultural or residential PV panels in each tile. Images 

and their annotations were split into training, validation, and test 

sets, with 80%, 10%, and 10% samples in each set (see table 1). 

Overview Description 

Number of images 4660 

Image resolution 512 x 512 

Spatial resolution 0.2 - 0.5 m 

Type of use Solar panel segmentation 

Data split 8:1:1 

Table 1: Photovoltaic satellite image dataset. 
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Figure 3: Examples of collected data In Marrakech-safi region 

2.4 Segmentation model 

2.4.1 YOLO algorithm 

Joseph Redmon and Ali Farhadi created the You Only Look Once 

(Yolo) object detection and image segmentation model at the 

University of Washington. Since the initial release of Yolo 

[joseeph] in 2015, changes have been made to the architecture 

and cost functions to increase its precision and efficiency. Yolo 

involves partitioning an image into a grid of smaller regions and 

subsequently making predictions for bounding boxes and class 

probabilities for each object detected within those regions. 

2.4.2 YOLOv8 Segmentation model 

Ultralytics, the company behind YOLOv5, launched YOLOv8. 

This latest release introduced five different scaled versions: 

YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), 

YOLOv8l (large), and YOLOv8x (extra large). YOLOv8 boasts 

extensive capabilities, supporting various vision tasks like object 

detection, segmentation, pose estimation, tracking, and 

classification. 

YOLOv8 adopts an anchor-free model featuring a decoupled 

head, which efficiently handles objectness, classification, and 

regression tasks as separate branches. This strategic design 

enables each branch to concentrate solely on its designated task, 

leading to enhanced overall model accuracy. In the output layer 

of YOLOv8, the activation functions chosen are significant for 

their respective purposes. The sigmoid function is utilized for the 

objectness score, indicating the likelihood that a bounding box 

contains an object. On the other hand, the softmax function is 

applied to the class probabilities, representing the likelihood of 

objects belonging to each potential class. 

YOLOv8 offers a semantic segmentation model called the 

YOLOv8-seg model. The backbone is a CSPDarknet53 feature 

extractor, followed by a C2f module instead of the traditional 

YOLO neck architecture. The C2f module is followed by two 

semantic segmentation heads, which learn to predict the semantic 

segmentation masks for the input image. The model has similar 

detection heads to YOLOv8, consisting of five detection modules 

and a prediction layer. The YOLOv8-Seg model utilizes a 

Deconvolution module to upscale the feature maps, aligning 

them with the size of the input image. The resulting output from 

the Deconvolution module is then processed by a Softmax layer, 

generating a probability distribution that corresponds to the 

semantic labels of the input image. The model has achieved state-

of-the-art results on various object detection and semantic 

segmentation benchmarks while maintaining high speed and 

efficiency. 

In this study, as summarized in Table 2 , we employed the 

YOLOv8m-seg medium model to detect and segment the PV 

panels in high-resolution satellite images. a model with a size of 

27.3m parameters. A pretrained model Yolov8m-seg.pt, was 

used for fine tuning. running on a T4 GPU provided by the 

Kaggle platform, for the optimizer choice In the YOLOv8 

codebase, a deliberate optimization strategy is employed during 

training. The optimizer AdamW is initially utilized for the first 

10,000 iterations, which aids in achieving faster convergence, 

particularly during the early training stages. However, after this 

initial phase, the optimizer is switched to SGD for the remaining 

iterations. This change is based on the observation that 

employing SGD for fine-tuning after a certain point can lead to 

improved overall performance(Ultralytics, 2023). The training of 

the Model spanned 120 epochs, employing a learning rate 

schedule that started with lr0=0.01 and linearly decreased with 

each epoch until it reached lrf=0.01 at the end of training. This 

approach ensures appropriate scaling over large batches, 

promoting effective model convergence while using a batch size 

of 24. In YOLOv8, several augmentations are applied during the 

training process by default with a probability of 0.01. These 

augmentations include Blur, MedianBlur, ToGray, and CLAHE. 

Additionally, YOLOv8 makes use of the mosaic augmentation 

technique, which combines four images into a single composite. 

This mosaic augmentation not only enhances the variation in the 
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training data but also effectively addresses the issue of 

overfitting, contributing to a more robust and accurate model. 

Configurations and hyperparameters Description 

Segmentation model YOLOv8m-seg 

Backbone CSPDarknet53 

pre-trained weights COCO2017 

Number of classes 2 (solar panel, background) 

Input image size 512 x 512 

Augmentation methods Horizontal flip, shift scale rotate. 

Optimizer Adamw, SGD 

Batch size 24 

Number of epochs 120 

GPU T4 

Table 2. Configuration and hyperparameters specifications of yolov8. 
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Figure 4: Brief summary of YOLOv8 model structure(Ultralytics, 2023) 

2.5. Performance evaluation 

In YOLOv8-seg, a combined loss function is employed, 

incorporating three key components: bounding box loss, 

objectness loss, and segmentation loss. This integrated 

approach allows the model to efficiently perform both object 

detection and semantic segmentation tasks simultaneously. 

The loss calculation involves classification and regression 

branches, with the classification branch utilizing BCE Loss 

and the regression branch using a combination of DFL and 

CIoU Loss. The specific choice of loss functions is influenced 

by factors such as the task's nature and the model's 

configuration. While BCE, DFL, and CIoU loss functions are 

commonly used, they can be automatically adapted or 

substituted based on the problem. The following performance 

metrics are also used to evaluate accuracy. 

- Precision: Precision measures the proportion of

positively predicted samples that truly belong to the

positive class (Olson David and Delen, 2008).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
- Recall: Recall quantifies the proportion of positive

examples in the dataset that are correctly predicted

as positive class (Olson David and Delen, 2008).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Where: 

TP: True positive 

FN: false negativce 

FP: false positive 

- mAP50: mAP50 denotes the mean Average

Precision at an IoU threshold of 0.50, which assesses

the model's segmentation performance (intersection

over union) for moderate alignment with ground

truth bounding boxes and mask.

- Intersection-over-Union (IoU), alternatively known

as the Jaccard Index, is computed by dividing the

shared area between the predicted segmentation and

the ground truth by the combined area of the two

(Taha and Hanbury, 2015).

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
2.6 Geospatial processing and analysis 
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Solar PV segmentation was accomplished through 

computer vision techniques. To leverage the outcomes, 

Geographic Information Systems (GIS) played a crucial 

role. We executed a sequence of geospatial processes to 

properly georeference and reclassify the generated 

masks. Subsequently, we converted them into polygons. 

These procedures enable us to conduct a variety of 

additional geospatial analyses with the segmented solar 

PV data. Georeferencing masks utilized the Rasterio 

(2013) library. Spatial metadata was transferred from the 

original 512x512 tile to its corresponding mask. 

Reclassification in Rasterio assigned no data to zero-

value pixels. This enabled accurate polygonization of PV 

masks using the Shapely library, extracting valid shapes 

from the raster as vector polygons. Additionally, QGIS 

was employed to simplify polygon geometry by reducing 

vertex count through the Douglas-Peucker algorithm (Wu 

& Márquez, 2004). This process led to an improved PV 

data representation; we reprojected vector polygons to the 

local Coordinate Reference System (ESPG:26191). to 

ensure precise calculations of area and perimeter using 

QGIS. We made use of GeoPandas for spatial joins, 

assigning attribute data for provinces and communes to 

each polygon. 

2.7 Anomaly detection 

We employed the Isolation Forest (iForest) algorithm (F. 

Liu et al., 2008), a robust unsupervised learning technique 

explicitly designed to isolate anomalies within our 

results. This algorithm excels at identifying and 

highlighting unusual data points by isolating them from 

the rest of the dataset. In our analysis, we focused on solar 

panel polygons, utilizing their area and perimeter as 

essential parameters. To enhance the precision of our 

anomaly detection, we set an anomaly contamination rate 

of 0.05, enabling us to pinpoint potential irregularities 

with greater precision. 

The anomaly score s of an instance x is defined as: 

𝑆(𝑥, 𝑛) = 2
−
𝐸(ℎ(𝑥)))
𝑐(𝑛)

where h(x) is the path length and E(h(x)) is the average of 

h(x) from a collection of isolation trees,  c(n) is the 

average of h(x) given n 

Figure 5: Visualization of evaluation metrics of the 

segmentation model 

 3. Results

3.1 Segmentation model results 

The research employed the YOLOv8m-seg model for 

performing image segmentation. This model not only 

generated mask predictions but also provided bounding 

box predictions. The dataset employed in this study 

encompassed two distinct classes, namely PV (Positive 

Viable) and background. The training outcomes 

demonstrated the model's strong performance, as evidenced 

by a notable mask precision value of 0.97 and an impressive 

mean Average Precision at IoU 50 (mAP50) score of 99.1, 

(see figure 5). 

Figure 6: evolution of evaluation metrics across all epochs. 

In the evaluation of loss metrics within YOLOv8, various loss 

functions were employed, including segmentation loss (seg-

loss), bounding box loss (box-loss), class loss (cls-loss), and 

dfl-loss. Among these, the lowest loss value was observed for 

the class loss (cls-loss), recording at 0.18. This result signifies 

the model's accurate localization of PV installations. The 

bounding box loss (box-loss) and segmentation loss (seg-loss) 

exhibited slightly higher values of 0.36 and 0.46, respectively. 

Nonetheless, these values remained within an acceptable range 

and did not significantly impact the overall model performance 

(see Figure 6). 

(figure 11) compares manually annotated polygons. three 

examples from the test set with corresponding original images, 

prediction, simplified, and ground truth polygons are shown. 

Figure 7: evaluation metrics across range of tresholds. 

Throughout the training process, the model employs a range of 

confidence thresholds spanning from 0 to 1. For each 

individual threshold, the model computes both precision and 

recall metrics. Figure 7 illustrates that the model is capable of 

attaining high levels of precision and recall across a diverse 

range of confidence thresholds. 
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Figure 8: number of segmented PV modules across all provinces of the region. 

Figure 9: Sum of photovoltaic area by province. 

3.2 Geospatial analysis: 

Through the implementation of spatial intersection methods, 

we have effectively linked photovoltaic (PV) installations to 

their respective provinces, as demonstrated in Figure 8. 

Notably, EL KELAA DES SRAGHNA exhibits the most 

substantial count of PV installations, totaling 4763, followed 

by another notable count of 3996 in the Marrakech province. 

Conversely, Youssofia records the lowest count of 

installations at 374. The usage of PV installations differs 

across regions. In EL KELAA DES SRAGHNA, a majority of 

the PV installations are employed within the agricultural 

sector. On the other hand, in the Marrakech region, PV 

installations find application in both agricultural and 

residential settings. 

The polygons representing the PV installations were 

transformed to a specific local coordinate system 

(EPSG:26191). This was done to ensure precise calculations 

of both the area and perimeter for each installation. As 

depicted in Figure 9, the combined calculated areas for all 

installations across different provinces were visualized. As 

anticipated, EL KELAA DES SRAGHNA showcased the 

largest total area, measuring 0.34 square kilometers. Following 

closely, Marrakech exhibited an area sum of 0.29 square 

kilometers. The provinces of AlHouaz, Rehamna, and 
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Chichaoua demonstrated slightly similar values, with areas of 

0.19, 0.17, and 0.16 square kilometers respectively. 

Figure 10: Kernel distribution estimates of PV attributes. 

The distribution of estimated parameters is depicted in Figure 

10. Notably, perimeter values exhibited their highest density

at approximately 50 meters. Similarly, the densities of area

values fell within the range of 20 to 150 square meters, with

the peak occurring in this interval. The distribution of the

number of angles in photovoltaic (PV) installations displayed

an equitable spread between four and five angles. Furthermore,

confidence levels were recorded, with the maximum density

observed at approximately 0.9.

Figure 11: representation of outliers based on area and 

perimeter. 

3.3 Anomaly estimation 

Implementing the isolation forest algorithm, we identified 

outliers within our dataset by considering the attributes of area 

and perimeter. As shown in Figure 11, a scatter plot was 

generated to emphasize the data points constituting 5% as 

outliers. Evidently, the plot reveals the presence of two distinct 

clusters of outliers, both of which deviate from the overarching 

data pattern. The first cluster is characterized by notably 

smaller area and perimeter values, hovering around 10-20 

units. Meanwhile, the second cluster predominantly exhibits 

perimeter values exceeding 100 meters and area values 

predominantly exceeding 300 square meters. 

3.4 Photovoltaic density across LULC classes 

To identify the specific application domain of the identified 

photovoltaic (PV) installations (see figure 12). We performed 

sample raster values analysis, which allowed us to assign land 

use and land cover (LULC) classes from the dynamic World 

V1 dataset of 2022 to the segmented PV modules. In Figure 

14, we can observe the distribution of PV installations across 

various LULC classes. Notably, crop areas constitute the most 

dominant class, followed by built, trees, and barren land. In 

contrast, the least prominent classes comprise snow-covered 

areas, grassland, and water bodies. 

 4. Discussion 

Recent studies have shown a notable improvement in using 

computer vision to detect solar panels, J. Yu et al. (2018) 

demonstrated one of the most accurate frameworks to map 

solar panels in a country scale (USA), P. Li et al. (2021) 

worked on a city scale and investigated the characteristics of 

PV panel semantic-segmentation from the perspective of 

computer vision. his results reveal that the PV panel image 

data has several specific characteristics: high class-imbalance 

and non-concentrated distribution; homogeneous texture and 

heterogenous color features, based on his recommendations 

about Visual features of PV segmentation we successfully 

mapped PV modules with different visual features from (color, 

texture, and shape) as shown in figure 15. 

Various possibilities for enhancing this domain persist. 

Among the most trending fields is the prediction of potential 

energy production in a specific area, incorporating system-

specific variables and real-time energy generation forecasts. 

Future research will focus on evaluating the technical 

capacity for energy generation from the segmented surface 

area of solar PV. 
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Figure 12: Heatmap illustration for PV panels distribution. 

Figure 13: Segmentation results of yolov8(green) compared with ground truth(purple) and simplified polygon(red). 
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Figure 14: PV panels density for each LULC class. 

 5. Conclusion

The solar photovoltaic (PV) manufacturing sector has

exhibited remarkable growth and has emerged as a

significant contributor to energy generation in numerous

countries, regardless of the rising costs of raw materials.

Nevertheless, the growth of large-scale residential and

agricultural solar PV installations has introduced fresh

challenges for various stakeholders, including market

regulators and power grid operators. A prevalent issue in

this context is the lack of comprehensive records detailing

the precise locations and capacities of rooftop solar PV

systems. To address this challenge, there is a mounting

interest in leveraging satellite high-resolution imagery to

automate the identification of solar PV system locations

and their associated capacities across expansive

geographical regions. This paper presents an innovative

approach for the precise georeferenced localization and

segmentation of solar panels. The outcomes of our study

demonstrate the efficacy of the Yolov8 segmentation 

technique in accurately delineating PV panels from 

satellite imagery.  

These results signify a promising avenue for the 

development of an automatic, precise, and scalable 

solution for obtaining critical information regarding PV 

installations, even in the presence of confusing 

background surroundings. In future research projects, we 

intend to refine our methodology by incorporating 

system-specific factors such as tilt angle, orientation, 

irradiance levels, and losses due to wiring. This refined 

approach aims to facilitate the estimation of potential 

energy output in a given area, further enhancing the utility 

and relevance of solar PV technology in energy planning 

and management. 

Figure 15: Different visual features of segmented PVs. 
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