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Abstract 

 

Wetlands are considered among the most productive ecosystems on Earth, as they shelter a diversity of species and maintain 

ecological balance. However, their ongoing degradation threatens biodiversity and ecosystems, underscoring the need for regular and 

long-term monitoring. The Sidi Moussa Oualidia wetland complex, a Ramsar site in Morocco, is a critical habitat for migratory birds 

and an invaluable ecological resource known for its complex landscape patterns. In this study, we present a framework in Google 

Earth Engine (GEE) that fuses optical, radar, texture, and terrain data with both pixel- and object-based classification to map and 

classify wetlands at 10 m resolution. We first generate a cloud-free Sentinel-2 composite using Scene Classification masking and 

pansharpen the 20 m SWIR band (B11) to 10 m, enabling precise computation of NDWI, MNDWI, and GLCM texture indices. A 

Sentinel-1 VV/VH ratio and SRTM-derived slope are added to the stack. A pixel-level Random Forest (RF) classifier is trained on 

stratified samples to produce an initial map. We then segment the RGB composite into superpixels via Simple Non-Iterative 

Clustering (SNIC) and assign each superpixel its majority RF class, smoothing speckle and salt-and-pepper noise while preserving 

ecologically meaningful object boundaries. Validation against ground truth points yields an overall accuracy of 94 % and a Kappa of 

0.91—an 8 % improvement over pixel-only results. Our first-of-its-kind approach in Morocco, designed to capture the complex 

spatial patterns of heterogeneous wetland environments, provides a promising solution for operational wetland monitoring and 

supports informed spatial decision-making in water resource management and ecological conservation. 

 

 
1 Institut Agronomique et Vétérinaire Hassan II, Rabat, Maroc  

1. Introduction 

Wetlands are considered valuable resources and among the most 

productive ecosystems, as they provide essential ecological 

services such as water purification, flood mitigation, and carbon 

sequestration  (X. Xu et al. 2020). They also shelter several 

species and play a crucial role in maintaining the ecological 

balance (Aslam, Naz, et al. 2024). Beyond their environmental 

roles, wetlands serve as critical habitats for a variety of species, 

particularly migratory birds, amphibians, and endemic plants 

(Kumari, Das, and Kumar 2023).  Despite their ecological 

significance, wetlands worldwide face severe degradation due to 

anthropogenic pressures, including urban expansion, 

agricultural encroachment, pollution, and climate change (T. Xu 

et al. 2019). This degradation threatens not only biodiversity but 

also regional ecological stability and socio-economic wellbeing. 

 

The Sidi Moussa Oualidia wetland complex, located along the 

Atlantic coast of Morocco and designated as a Ramsar site, 

reflects this ecological importance. It forms a vital node along 

the East Atlantic Flyway and serves as a seasonal refuge for 

thousands of migratory birds (El Hamoumi et al. 2022). Its 

mosaic of coastal lagoons, salt marshes, mudflats, and 

surrounding semi-arid zones makes it both ecologically unique 

and complex to monitor (El Hamoumi et al. 2022). However, 

like many wetlands globally, this area is under increasing threat 

from land-use change, overexploitation of natural resources, and 

hydrological alterations (Mahrad et al. 2022). The lack of 

consistent, up-to-date, and spatially explicit information 

hampers effective conservation and adaptive management 

efforts in the region. 

 

In this context, remote sensing technologies have emerged as 

vital tools for large-scale and long-term wetland monitoring. 

Specifically, medium-resolution satellite imagery, such as that 

from Sentinel-2, offers an open-access solution for capturing 

multi-temporal and multispectral observations of wetland 

dynamics (Aslam, Shu, et al. 2024) (Ghorbanian et al. 2021). 

Coupled with powerful cloud-based platforms such as Google 

Earth Engine (GEE), researchers can now process, analyze, and 

visualize massive datasets rapidly, overcoming the 

computational limitations of local processing (Tamiminia et al. 

2020). 

 

Traditional wetland mapping has relied heavily on spectral 

indices like the Normalized Difference Water Index (NDWI) 

and Modified NDWI (MNDWI) derived from optical satellite 

imagery (Ashok, Rani, and Jayakumar 2021) (Kaplan and 

Avdan 2017). However, these approaches are often limited by 

cloud cover, lack of temporal sensitivity, and reduced accuracy 

in transitional or mixed land cover zones. In addition, few 

methods integrate key features such as seasonal dynamics, 

textural complexity, and terrain elevation which are crucial for 

identifying heterogeneous wetland environments (Aslam, Shu, 

et al. 2024). 

 

In this paper, we develop a framework to map the Sidi Moussa 

Oualidia wetland complex using Sentinel-2 and Sentinel-1 data 

within Google Earth Engine. We begin by detailing the 

preprocessing steps and the construction of a multi-dimensional 

feature stack incorporating spectral, temporal, SAR, texture, and 

topographic variables. We then describe the classification 

process, which combines pixel-based Random Forest modelling 

with object-based smoothing through a super-pixel non-iterative 

clustering (SNIC) segmentation. The results section evaluates 

the accuracy of the classification using performance metrics. 

Finally, we discuss the implications of the findings for wetland 

monitoring and conservation, and we conclude with 

recommendations for future applications. 
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2. Study Area and Methodology 

2.1 Study Area  

The study was conducted over the Sidi Moussa Oualidia 

wetland complex, located between the village of Sidi El Abed in 

the north (33°02’49’’N), 35 km south of El Jadida, and the town 

of Oualidia in the south (32°44’03’’N), 66 km north of Safi (El 

Hamoumi et al. 2022). This site, listed under the Ramsar 

Convention, is composed of shallow lagoons, tidal mudflats, 

and seasonal salt marshes. The region is subject to a 

Mediterranean semi-arid climate with pronounced wet and dry 

seasons, making it ideal for testing temporally sensitive 

classification workflows (El Hamoumi et al. 2022) (figure 1). 

 

 

Figure 1: Location of The Sidi Moussa Oualidia Complex (El 

Hamoumi et al. 2022) 

 

2.2 Methodology  

To monitor and map the spatial characteristics of the wetland, 

we used satellite imagery acquired from the Sentinel-2 and 

Sentinel-1 platforms within the Google Earth Engine (GEE) 

environment. Sentinel-2 provides optical imagery through 13 

spectral bands in the visible, near-infrared (NIR), and short-

wave infrared (SWIR) regions. The spatial resolution varies 

from 10 m to 60 m, depending on the band. Sentinel-2 Level-2A 

Surface Reflectance data from the year 2018 were used, 

focusing on two distinct seasonal windows: wet season 

(February–April) and dry season (July–October)(C. Zhao et al. 

2023).  

 

Additionally, radar data from Sentinel-1 (GRD, dual-

polarization VV and VH) were incorporated to overcome cloud 

limitations and detect inundation through backscatter properties. 

The Sentinel-1 mission, also part of the Copernicus Program, 

provides consistent SAR data at 10-meter resolution with a 

revisit frequency of 6 days. Terrain elevation data were derived 

from the SRTM DEM (30 m resolution), enabling topographic 

context to be added to the classification model (Minotti et al. 

2021). 

 

Figure 2 explicates the workflow that was adopted in our paper 

below. 

 
 

Figure 2: Workflow for Multi‑sensor Feature Stacking, SNIC 

Segmentation, and Random‑Forest Classification in GEE  

 

2.2.1 Preprocessing  

 

- Sentinel-2 Image Preparation: 

Sentinel-2 Level-2A imagery for the year 2018 was filtered 

using a cloud coverage threshold of <20%. To ensure the 

quality of surface reflectance data, a custom cloud and shadow 

mask was applied based on the Scene Classification Layer 

(SCL). Pixels marked as cloud, cirrus, shadow, or saturated 

were excluded. 

 

Two seasonal composites were generated: 

 

- Wet Season Composite: February to April 2018 

 

- Dry Season Composite: July to October 2018 

 

Each composite was created using the median pixel value across 

the selected time range to reduce noise and capture consistent 

seasonal signatures. 

 

- Pansharpening SWIR (B11) 

To improve the spatial resolution of the SWIR band used in 

MNDWI calculation, we implemented a pansharpening 

technique using a synthetic panchromatic image derived from 

the mean of high-resolution visible bands (B2, B3, B4). The 

SWIR band (originally at 20m) was resampled to 10m and 

enhanced by adding the high-frequency details extracted from 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025 
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-353-2026 | © Author(s) 2026. CC BY 4.0 License.

 
354



 

the panchromatic proxy using a Gaussian convolution kernel. 

This step enabled more spatially precise detection of water 

boundaries, particularly in fragmented salt marsh zones such as 

the ones in the Sidi Moussa Oualidia Complex (Sahour, 

Kemink, and O’connell 2022). 

 

From the pre-processed imagery, we constructed a multi-

dimensional feature stack combining spectral, temporal, 

topographic, and radar-based information: 

- NDWI (Normalized Difference Water Index) 

Computed using green (B3) and near-infrared (B8) bands to 

emphasize open water surfaces, as they reflect green light and 

absorb NIR. 

 
 

 

- MNDWI (Modified NDWI) 

Incorporates SWIR instead of NIR, making it more effective in 

urbanized or vegetated wetland zones. 

 

 
 

Where  B11(ps) = the pansharpened SWIR band.  

 

- NDWI Amplitude 

Calculated as the difference between NDWI values in wet and 

dry seasons to represent seasonal water variability. It is a strong 

indicator of ephemeral wetlands and flooded salt marshes.  

 

 
 

- Gray-Level Co-occurrence Matrix Texture 

(GLCM) 

A texture metric derived from the NDWI image using a 3×3 

Gray-Level Co-Occurrence Matrix (GLCM). The contrast band 

quantifies local spatial heterogeneity, especially useful in 

saltmarsh zones, where mixed vegetation and soil produce 

unique textural patterns (Adeli et al. 2022). 

 

- Slope 

Derived from the SRTM DEM to introduce topographic 

context. Wetlands typically occupy low-lying flat areas, and 

slope helps distinguish between water accumulation zones and 

adjacent elevated terrain (Peng et al. 2023). 

 

- VV/VH Ratio (SAR Feature) 

From Sentinel-1, the VV/VH polarization ratio was used to 

highlight flooded vegetation, soil moisture variations, and areas 

with different surface roughness. SAR is especially useful in 

wetlands where water is partially obscured by vegetation or 

cloud cover is frequent (Koutsos et al. 2025). 

 

2.2.3 Classification Approach 

 

Training Data and Random Forest Classifier:  

Training samples were manually annotated over high-resolution 

maps in Google Earth, representing three land cover classes:  

- Non-water (label 0) 

- Water (label 1) 

- Saltmarsh (label 2) 

 

A Random Forest (RF) classifier was trained using 100 decision 

trees and the full feature stack. The data were split into 70% 

training and 30% validation, with random stratified sampling to 

ensure balanced class representation. The RF model was chosen 

for its robustness to overfitting and ability to handle multi-

dimensional features.  

 

Object-Based Segmentation with SNIC: 

Simple Non-Iterative Clustering (SNIC) was used in GEE to 

apply a Superpixel-based segmentation following the pixel-

based classification (Shafizadeh-Moghadam et al. 2021). SNIC 

creates spatially coherent segments (superpixels) based on 

spectral similarity and proximity. It was applied to the RGB 

composite (bands B4, B3, B2), resampled at 30 meters and 

using the parameters set shown in Table 1. This produced a 

“clusters” raster in which each superpixel shares a unique label 

ID. Lastly, we used a mode reducer to combine the SNIC labels 

and the per-pixel Random Forest predictions in a 

"reduceConnectedComponents" method, which allowed us to 

reassign each segment its majority class. The result is an object-

based classification raster in which every superpixel has been 

uniformly labelled according to its dominant RF class, yielding 

smoother boundaries and more ecologically coherent objects. 

 

Parameter Value 

Size  15 

compactness 1 

connectivity 8 

neighborhoodSize 64 

Seeds auto-generated 

Table 1: Configuration of SNIC segmentation parameters for 

superpixel-based smoothing in post-classification analysis 

 

Accuracy assessment:  

 

The accuracy assessment has been made for both our pixel- and 

object-based maps, using the same held‐out validation points to 

ensure a fair comparison. First, we randomly split our 

ground-truth sample points 70/30 into training and validation 

sets. After running each classifier, we used Earth 

Engine’s sampleRegions (with a small tileScale and an 

unmask(–1) step) to extract predicted labels at each validation 

location. We then extracted our confusion matrix and derived 

the necessary metrics from it.  

 

3. Results 

3.1 Pixel-based Random Forest Classifier 

The pixel‐based RF results indicate generally strong 

performance, but with some systematic biases worth noting. The 

confusion matrix shows that out of 18 true non‑water pixels, 17 

were correctly labeled, while one was misclassified as 

saltmarsh. 24 of 28 pixels for water were correctly identified, 

with three confused as non‑water and one as saltmarsh. 

Saltmarsh proved slightly confusing: 25 of 29 pixels were 

labeled correctly, but three were mapped as non‑water and one 

as water (figure 3). 

 

The model achieves an 88 % accuracy and a Cohen’s Kappa of 

0.82. When we look at the recall, the RF correctly retrieves 

94 % of true non‑water areas, but only about 86 % of both water 

and saltmarsh pixels. This implies that approximately 14% of 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025 
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-353-2026 | © Author(s) 2026. CC BY 4.0 License.

 
355



 

actual water pixels are not detected, even though non-water 

pixels are rarely overlooked. 

On the other hand, precision reveals that when the model does 

predict water or saltmarsh, it is almost always correct—96 % 

precision for water and 92.6 % for saltmarsh. Non‑water 

predictions, however, contain more false alarms: only about 

74 % of pixels labeled non‑water are truly terrestrial, the 

remainder being misclassified wetlands. The harmonic mean of 

precision and recall (the F₁‑score) follows this pattern: 0.91 for 

water, 0.89 for saltmarsh, but 0.83 for non‑water. 

 

Finally, class imbalance likely affects these rates: there are over 

300 000 non‑water pixels and 250 000 water pixels in the test 

set, but only about 52 000 saltmarsh pixels. The relative scarcity 

of saltmarsh means fewer training examples and a greater 

chance of omission. Overall, the pixel‑RF baseline is robust—

especially for open water—but tends to over‑predict non‑water 

at the expense of water classes, indicating room for 

improvement via object‑based smoothing.  

Table 2 summarizes per-class performance metrics of the RF-

classifier.  

 

Class Recall Precision F₁-Score 

Non-wetland (0) 94.4 % 73.9 % 0.83 

Water (1) 85.7 % 96.0 % 0.91 

Saltmarsh (2) 86.2 % 92.6 % 0.89 

 

Table 2: Performance metrics of the Pixel-based RF classifier 

 

 
 

Figure 3: Pixel‑based Random Forest classification of a 

subsection of the Sidi Moussa Oualidia lagoon (blue = open 

water, green = saltmarsh, gray = non‑water) 

3.2 Object-based RF Classifier  

The object‑based classification delivers very strong and 

coherent results across all three classes, outperforming the 

pixel‑based approach (Figure 4). In terms of overall agreement, 

it correctly labels 93.94 % of the validation samples, with a 

Cohen’s Kappa of 0.91. This high Kappa reflects that most of 

the improvement comes from reducing misclassifications rather 

than simply capitalizing on class imbalances. 

 

A closer look at the confusion matrix reveals where these gains 

occur. For the non‑water class, 32 out of 34 samples (94 %) are 

correctly identified, with only two misclassified as saltmarsh. 

Water achieves 89 % recall (16 of 18 samples), with one sample 

each mislabeled as non‑water and saltmarsh. Crucially, 

saltmarsh reaches perfect recall—14 of 14 samples—meaning 

no true saltmarsh pixels are omitted. These numbers show that 

object‑based smoothing virtually eliminates the random 

“salt‑and‑pepper” errors that often plague pixel‑by‑pixel maps, 

especially in heterogeneous wetlands (Table 3). 

 

Precision and F₁‑scores further confirm this robustness. When 

the model predicts water, it is correct 100 % of the time (no 

commission errors), and non‑water predictions are 97 % 

accurate. Saltmarsh predictions, while perfectly sensitive, 

include some false positives (precision = 82 %), suggesting that 

a few non‑marsh pixels fall within marsh‑dominated 

superpixels. Nevertheless, all classes achieve F₁‑scores above 

0.90—0.955 for non‑water, 0.941 for water, and 0.903 for 

saltmarsh—indicating an excellent balance between recall and 

precision (Table 4). 

 

Compared to the pixel‑based Random Forest (which achieved 

88 % overall accuracy and Kappa = 0.82), the SNIC-RF 

workflow raises overall accuracy by nearly 6 points and Kappa 

by 0.08. It eliminates all omissions of saltmarsh pixels and 

boosts water precision from 96 % to 100 %. These 

improvements demonstrate that object‑based segmentation 

followed by a simple mode aggregation effectively enforces 

spatial consistency, reduces speckle, and produces a more 

thematically coherent wetland map—essential attributes for 

reliable, operational monitoring of complex coastal ecosystems. 

 

True ↓ \ Pred → Non-wa

ter (0) 

Water (1) Saltmarsh (2) 

Non-water 32 0 2 

Water 1 16 1 

Saltmarsh 0 0 14 

 

Table 3: Confusion Matrix of the object-based classification 
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Figure 4: Object‑based Random Forest classification of a 

subsection of the Sidi Moussa Oualidia lagoon (Blue = open 

water, green = saltmarsh, Grey = non‑water) 

Class Recall Precision F₁-Score 

Non-water (0) 94.1 % 97.0 % 0.955 

Water (1) 88.9 % 100 % 0.941 

Saltmarsh (2) 100 % 82.4 % 0.903 

Table 4: Performance metrics of the Object-based RF classifier 

4. Discussion  

Our object‐based SNIC–RF workflow (OA = 93.9%, 

Kappa = 0.90) substantially outperforms the pixel‐level RF 

baseline (OA = 88%, Kappa = 0.82), confirming the value of 

superpixel smoothing and multi‐source feature stacking in 

wetland classification. Similar SNIC–RF couplings in other 

contexts have consistently yielded 1–6 % gains in overall 

accuracy and notable Kappa improvements. For instance, (Ke et 

al. 2024) applied SNIC–RF with feature selection and sample 

migration over China’s Liaohe Estuary and observed OA 

increases of 0.69–5.82 % and Kappa gains up to 0.0751 

compared to pure RF approaches .  

 

In agricultural mapping, (Khamnoi, Homhuan, and Suwanprasit 

2024) fused Sentinel-1 VV/VH and Sentinel-2 bands into an 

SNIC–RF scheme, achieving OA = 97% and Kappa = 0.94—

closely mirroring our object‐level performance despite different 

landscapes and classes. Likewise, in Turkey’s Sakarbasi 

wetlands, (Kaplan and Avdan 2017) showed that combining 

object segmentation with NDVI/NDWI index‐based 

refinements on Sentinel-2 imagery, delivered a Kappa of 0.95, 

illustrating how superpixel boundaries guided by spectral 

indices sharpen wetland delineation.  

 

(KARAKUŞ 2024)’s object‐based analysis of Lake Köyceğiz, 

integrating SNIC with RF and SVM, reported water‐area 

F₁-scores > 0.98 and OA > 92% across four years—again 

highlighting SNIC’s role in reducing “salt & pepper” noise and 

elevating class purity. (Tassi and Vizzari 2020) similarly 

demonstrated that augmenting SNIC with GLCM‐derived 

texture and RF on Sentinel-2 boosted OA from 82% (pixel RF) 

to 89.3% (object RF) . Our 93.9 % OA thus represents a further 

step forward, owing in part to our richer feature stack (NDWI, 

MNDWI, seasonal amplitude, GLCM contrast, slope, VV/VH 

ratio). 

 

In the Great Lakes region itself, (Mohseni et al. 2023) used an 

object‐based RF within GEE to distinguish Bog, Fen, Marsh, 

and Swamp, attaining OA = 87% and Kappa = 0.91.  

By comparison, our workflow’s multi‐sensor fusion and 

mode‐based superpixel classification push accuracy to 93.9% 

and Kappa = 0.91, underscoring the importance of stacking 

complementary optical, SAR, and textural predictors. 

 

Crucially, our approach remains memory‐safe and 

computationally lightweight, even over large Ramsar‐scale 

areas, because superpixel generation reduces the data volume 

for classification and avoids unbounded image operations. 

While methods like sample migration and wrapper‐based 

feature selection can further refine object‐level training, our 

results demonstrate that a well‐tuned SNIC segmentation plus a 

robust RF on a multi‐dimensional stack already yields 

state‐of‐the‐art wetland mapping—efficiently and at high 

resolution.  

 

5. Perspectives and Recommendations 

 

Although our SNIC–RF workflow delivers strong single‑year 

wetland maps, wetlands change continuously through seasons 

and across years (Mao et al. 2025). Extending the pipeline to 

produce annual or even seasonal maps would reveal how water 

levels, vegetation cover, and salt marsh extents fluctuate over 

time. Incorporating a leave‑one‑year‑out validation scheme 

would test whether our model trained on one season or year still 

accurately predicts in another, highlighting its robustness to 

changing conditions (Allgaier and Pryss 2024). 

 

Our current feature stack combines optical, radar, texture, and 

terrain layers, but feeding all of these into the classifier can 

introduce redundancy and increase processing time. Future 

work should explore automated feature‑selection techniques to 

pare down to the most informative bands and indices. Likewise, 

once stable training samples have been identified, “sample 

migration” methods could carry those reference points forward 

in time, reducing the need to redraw field samples each season 

and keeping ground‑truth efforts to a minimum (Ke et al. 2024). 

 

While SNIC superpixels give us uniform, memory‑safe 

segments that smooth out speckle noise, modern deep‑learning 

approaches—like U‑Net convolutional networks—learn fine 

object boundaries directly from imagery without preset 

segmentation rules and are capable of identifying complex 

patterns of wetlands (Jamali et al. 2022).  

 

SNIC is just one choice among many superpixel or graph‑based 

clustering methods. It would be valuable to benchmark 

clustering methods (J. Zhao, Xiong, and Zhu 2024).  

 

To understand how widely our framework applies, we should 

deploy it on other wetland sites—whether other Ramsar sites 

along the coast, inland lakes, or river floodplains. Running the 

same workflow elsewhere will help reveal how differences in 

terrain slope, vegetation type, or water regimes influence 

classification quality and may point to automated rules for 

choosing optimal parameters. 

 

Finally, the real power of a cloud‑based, memory‑safe system 

lies in real‑time or near‑real‑time monitoring. By scheduling 
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periodic runs in GEE, we could generate automatic alerts when 

the wetland extent shrinks suddenly or when flooding persists 

longer than usual. Linking those outputs to hydrodynamic or 

weather models would put early‑warning tools into the hands of 

managers. Above all, future work must bridge our classification 

maps with on‑the‑ground ecological surveys, water‑quality 

sampling, and ecosystem‑service assessments, so that the maps 

directly inform conservation strategies and water‑resource 

decisions.  
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