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Abstract

Wetlands are considered among the most productive ecosystems on Earth, as they shelter a diversity of species and maintain
ecological balance. However, their ongoing degradation threatens biodiversity and ecosystems, underscoring the need for regular and
long-term monitoring. The Sidi Moussa Oualidia wetland complex, a Ramsar site in Morocco, is a critical habitat for migratory birds
and an invaluable ecological resource known for its complex landscape patterns. In this study, we present a framework in Google
Earth Engine (GEE) that fuses optical, radar, texture, and terrain data with both pixel- and object-based classification to map and
classify wetlands at 10 m resolution. We first generate a cloud-free Sentinel-2 composite using Scene Classification masking and
pansharpen the 20 m SWIR band (B11) to 10 m, enabling precise computation of NDWI, MNDWI, and GLCM texture indices. A
Sentinel-1 VV/VH ratio and SRTM-derived slope are added to the stack. A pixel-level Random Forest (RF) classifier is trained on
stratified samples to produce an initial map. We then segment the RGB composite into superpixels via Simple Non-lterative
Clustering (SNIC) and assign each superpixel its majority RF class, smoothing speckle and salt-and-pepper noise while preserving
ecologically meaningful object boundaries. Validation against ground truth points yields an overall accuracy of 94 % and a Kappa of
0.91—an 8 % improvement over pixel-only results. Our first-of-its-kind approach in Morocco, designed to capture the complex
spatial patterns of heterogeneous wetland environments, provides a promising solution for operational wetland monitoring and

supports informed spatial decision-making in water resource management and ecological conservation.

1. Introduction

Wetlands are considered valuable resources and among the most
productive ecosystems, as they provide essential ecological
services such as water purification, flood mitigation, and carbon
sequestration (X. Xu et al. 2020). They also shelter several
species and play a crucial role in maintaining the ecological
balance (Aslam, Naz, et al. 2024). Beyond their environmental
roles, wetlands serve as critical habitats for a variety of species,
particularly migratory birds, amphibians, and endemic plants
(Kumari, Das, and Kumar 2023). Despite their ecological
significance, wetlands worldwide face severe degradation due to
anthropogenic  pressures, including urban  expansion,
agricultural encroachment, pollution, and climate change (T. Xu
et al. 2019). This degradation threatens not only biodiversity but
also regional ecological stability and socio-economic wellbeing.

The Sidi Moussa Oualidia wetland complex, located along the
Atlantic coast of Morocco and designated as a Ramsar site,
reflects this ecological importance. It forms a vital node along
the East Atlantic Flyway and serves as a seasonal refuge for
thousands of migratory birds (EI Hamoumi et al. 2022). Its
mosaic of coastal lagoons, salt marshes, mudflats, and
surrounding semi-arid zones makes it both ecologically unique
and complex to monitor (EI Hamoumi et al. 2022). However,
like many wetlands globally, this area is under increasing threat
from land-use change, overexploitation of natural resources, and
hydrological alterations (Mahrad et al. 2022). The lack of
consistent, up-to-date, and spatially explicit information
hampers effective conservation and adaptive management
efforts in the region.

In this context, remote sensing technologies have emerged as
vital tools for large-scale and long-term wetland monitoring.
Specifically, medium-resolution satellite imagery, such as that
from Sentinel-2, offers an open-access solution for capturing
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multi-temporal and multispectral observations of wetland
dynamics (Aslam, Shu, et al. 2024) (Ghorbanian et al. 2021).
Coupled with powerful cloud-based platforms such as Google
Earth Engine (GEE), researchers can now process, analyze, and
visualize massive datasets rapidly, overcoming the
computational limitations of local processing (Tamiminia et al.
2020).

Traditional wetland mapping has relied heavily on spectral
indices like the Normalized Difference Water Index (NDWI)
and Modified NDWI (MNDWI) derived from optical satellite
imagery (Ashok, Rani, and Jayakumar 2021) (Kaplan and
Avdan 2017). However, these approaches are often limited by
cloud cover, lack of temporal sensitivity, and reduced accuracy
in transitional or mixed land cover zones. In addition, few
methods integrate key features such as seasonal dynamics,
textural complexity, and terrain elevation which are crucial for
identifying heterogeneous wetland environments (Aslam, Shu,
et al. 2024).

In this paper, we develop a framework to map the Sidi Moussa
Oualidia wetland complex using Sentinel-2 and Sentinel-1 data
within Google Earth Engine. We begin by detailing the
preprocessing steps and the construction of a multi-dimensional
feature stack incorporating spectral, temporal, SAR, texture, and
topographic variables. We then describe the classification
process, which combines pixel-based Random Forest modelling
with object-based smoothing through a super-pixel non-iterative
clustering (SNIC) segmentation. The results section evaluates
the accuracy of the classification using performance metrics.
Finally, we discuss the implications of the findings for wetland
monitoring and conservation, and we conclude with
recommendations for future applications.
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2. Study Area and Methodology
2.1 Study Area

The study was conducted over the Sidi Moussa Oualidia
wetland complex, located between the village of Sidi EI Abed in
the north (33°02°49°°N), 35 km south of El Jadida, and the town
of Qualidia in the south (32°44°03”°N), 66 km north of Safi (El
Hamoumi et al. 2022). This site, listed under the Ramsar
Convention, is composed of shallow lagoons, tidal mudflats,
and seasonal salt marshes. The region is subject to a
Mediterranean semi-arid climate with pronounced wet and dry
seasons, making it ideal for testing temporally sensitive
classification workflows (El Hamoumi et al. 2022) (figure 1).

Oualida lagoon

OQualidia

Figure 1: Location of The Sidi Moussa Oualidia Complex (El
Hamoumi et al. 2022)

2.2 Methodology

To monitor and map the spatial characteristics of the wetland,
we used satellite imagery acquired from the Sentinel-2 and
Sentinel-1 platforms within the Google Earth Engine (GEE)
environment. Sentinel-2 provides optical imagery through 13
spectral bands in the visible, near-infrared (NIR), and short-
wave infrared (SWIR) regions. The spatial resolution varies
from 10 m to 60 m, depending on the band. Sentinel-2 Level-2A
Surface Reflectance data from the year 2018 were used,
focusing on two distinct seasonal windows: wet season
(February—April) and dry season (July—October)(C. Zhao et al.
2023).

Additionally, radar data from Sentinel-1 (GRD, dual-
polarization VV and VH) were incorporated to overcome cloud
limitations and detect inundation through backscatter properties.
The Sentinel-1 mission, also part of the Copernicus Program,
provides consistent SAR data at 10-meter resolution with a
revisit frequency of 6 days. Terrain elevation data were derived
from the SRTM DEM (30 m resolution), enabling topographic
context to be added to the classification model (Minotti et al.
2021).

Figure 2 explicates the workflow that was adopted in our paper
below.
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Figure 2: Workflow for Multi-sensor Feature Stacking, SNIC
Segmentation, and Random-Forest Classification in GEE

2.2.1  Preprocessing

- Sentinel-2 Image Preparation:

Sentinel-2 Level-2A imagery for the year 2018 was filtered
using a cloud coverage threshold of <20%. To ensure the
quality of surface reflectance data, a custom cloud and shadow
mask was applied based on the Scene Classification Layer
(SCL). Pixels marked as cloud, cirrus, shadow, or saturated
were excluded.

Two seasonal composites were generated:
- Wet Season Composite: February to April 2018
- Dry Season Composite: July to October 2018

Each composite was created using the median pixel value across
the selected time range to reduce noise and capture consistent
seasonal signatures.

- Pansharpening SWIR (B11)
To improve the spatial resolution of the SWIR band used in
MNDWI calculation, we implemented a pansharpening
technique using a synthetic panchromatic image derived from
the mean of high-resolution visible bands (B2, B3, B4). The
SWIR band (originally at 20m) was resampled to 10m and
enhanced by adding the high-frequency details extracted from
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the panchromatic proxy using a Gaussian convolution kernel.
This step enabled more spatially precise detection of water
boundaries, particularly in fragmented salt marsh zones such as
the ones in the Sidi Moussa Oualidia Complex (Sahour,
Kemink, and O’connell 2022).

From the pre-processed imagery, we constructed a multi-
dimensional feature stack combining spectral, temporal,
topographic, and radar-based information:

- NDW!I (Normalized Difference Water Index)
Computed using green (B3) and near-infrared (B8) bands to
emphasize open water surfaces, as they reflect green light and
absorb NIR.

B3 — BB

NDWT = T B8

- MNDWI (Modified NDWI)
Incorporates SWIR instead of NIR, making it more effective in
urbanized or vegetated wetland zones.

wnpwr < B3 BLL®S)
- T B3+ Bll(ps)

Where B11(ps) = the pansharpened SWIR band.

- NDWI Amplitude
Calculated as the difference between NDWI values in wet and
dry seasons to represent seasonal water variability. It is a strong
indicator of ephemeral wetlands and flooded salt marshes.

NDWI_amp = NDWI (wet) — NDWI(dry)

- Gray-Level Co-occurrence Matrix  Texture
(GLCM)

A texture metric derived from the NDW!I image using a 3x3

Gray-Level Co-Occurrence Matrix (GLCM). The contrast band

quantifies local spatial heterogeneity, especially useful in

saltmarsh zones, where mixed vegetation and soil produce

unique textural patterns (Adeli et al. 2022).

- Slope
Derived from the SRTM DEM to introduce topographic
context. Wetlands typically occupy low-lying flat areas, and
slope helps distinguish between water accumulation zones and
adjacent elevated terrain (Peng et al. 2023).

- VV/VH Ratio (SAR Feature)
From Sentinel-1, the VV/VH polarization ratio was used to
highlight flooded vegetation, soil moisture variations, and areas
with different surface roughness. SAR is especially useful in
wetlands where water is partially obscured by vegetation or
cloud cover is frequent (Koutsos et al. 2025).
2.2.3 Classification Approach
Training Data and Random Forest Classifier:
Training samples were manually annotated over high-resolution
maps in Google Earth, representing three land cover classes:

- Non-water (label 0)

- Water (label 1)

- Saltmarsh (label 2)

A Random Forest (RF) classifier was trained using 100 decision
trees and the full feature stack. The data were split into 70%
training and 30% validation, with random stratified sampling to
ensure balanced class representation. The RF model was chosen

for its robustness to overfitting and ability to handle multi-
dimensional features.

Object-Based Segmentation with SNIC:

Simple Non-Iterative Clustering (SNIC) was used in GEE to
apply a Superpixel-based segmentation following the pixel-
based classification (Shafizadeh-Moghadam et al. 2021). SNIC
creates spatially coherent segments (superpixels) based on
spectral similarity and proximity. It was applied to the RGB
composite (bands B4, B3, B2), resampled at 30 meters and
using the parameters set shown in Table 1. This produced a
“clusters” raster in which each superpixel shares a unique label
ID. Lastly, we used a mode reducer to combine the SNIC labels
and the per-pixel Random Forest predictions in a
"reduceConnectedComponents” method, which allowed us to
reassign each segment its majority class. The result is an object-
based classification raster in which every superpixel has been
uniformly labelled according to its dominant RF class, yielding
smoother boundaries and more ecologically coherent objects.

Parameter Value

Size 15
compactness 1

connectivity 8
neighborhoodSize 64

Seeds auto-generated

Table 1: Configuration of SNIC segmentation parameters for
superpixel-based smoothing in post-classification analysis

Accuracy assessment:

The accuracy assessment has been made for both our pixel- and
object-based maps, using the same held-out validation points to
ensure a fair comparison. First, we randomly split our
ground-truth sample points 70/30 into training and validation
sets. After running each classifier, we wused Earth
Engine’s sampleRegions (with a small tileScale and an
unmask(—1) step) to extract predicted labels at each validation
location. We then extracted our confusion matrix and derived
the necessary metrics from it.

3. Results
3.1 Pixel-based Random Forest Classifier

The pixel-based RF results indicate generally strong
performance, but with some systematic biases worth noting. The
confusion matrix shows that out of 18 true non-water pixels, 17
were correctly labeled, while one was misclassified as
saltmarsh. 24 of 28 pixels for water were correctly identified,
with three confused as non-water and one as saltmarsh.
Saltmarsh proved slightly confusing: 25 of 29 pixels were
labeled correctly, but three were mapped as non-water and one
as water (figure 3).

The model achieves an 88 % accuracy and a Cohen’s Kappa of
0.82. When we look at the recall, the RF correctly retrieves
94 % of true non-water areas, but only about 86 % of both water
and saltmarsh pixels. This implies that approximately 14% of
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actual water pixels are not detected, even though non-water
pixels are rarely overlooked.

On the other hand, precision reveals that when the model does
predict water or saltmarsh, it is almost always correct—96 %
precision for water and 92.6 % for saltmarsh. Non-water
predictions, however, contain more false alarms: only about
74 % of pixels labeled non-water are truly terrestrial, the
remainder being misclassified wetlands. The harmonic mean of
precision and recall (the Fi-score) follows this pattern: 0.91 for
water, 0.89 for saltmarsh, but 0.83 for non-water.

Finally, class imbalance likely affects these rates: there are over
300 000 non-water pixels and 250 000 water pixels in the test
set, but only about 52 000 saltmarsh pixels. The relative scarcity
of saltmarsh means fewer training examples and a greater
chance of omission. Overall, the pixel-RF baseline is robust—
especially for open water—but tends to over-predict non-water
at the expense of water classes, indicating room for
improvement via object-based smoothing.

Table 2 summarizes per-class performance metrics of the RF-
classifier.

Class Recall | Precision | Fi-Score
Non-wetland (0) 94.4% 73.9% 0.83
Water (1) 85.7 % 96.0 % 0.91
Saltmarsh (2) 86.2 % 92.6 % 0.89

Table 2: Performance metrics of the Pixel-based RF classifier
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Figure 3: Pixel-based Random Forest classification of a
subsection of the Sidi Moussa Oualidia lagoon (blue = open
water, green = saltmarsh, gray = non-water)

3.2 Object-based RF Classifier

The object-based classification delivers very strong and
coherent results across all three classes, outperforming the
pixel-based approach (Figure 4). In terms of overall agreement,
it correctly labels 93.94 % of the validation samples, with a
Cohen’s Kappa of 0.91. This high Kappa reflects that most of
the improvement comes from reducing misclassifications rather
than simply capitalizing on class imbalances.

A closer look at the confusion matrix reveals where these gains
occur. For the non-water class, 32 out of 34 samples (94 %) are
correctly identified, with only two misclassified as saltmarsh.
Water achieves 89 % recall (16 of 18 samples), with one sample
each mislabeled as non-water and saltmarsh. Crucially,
saltmarsh reaches perfect recall—14 of 14 samples—meaning
no true saltmarsh pixels are omitted. These numbers show that
object-based smoothing virtually eliminates the random
“salt-and-pepper” errors that often plague pixel-by-pixel maps,
especially in heterogeneous wetlands (Table 3).

Precision and Fi-scores further confirm this robustness. When
the model predicts water, it is correct 100 % of the time (no
commission errors), and non-water predictions are 97 %
accurate. Saltmarsh predictions, while perfectly sensitive,
include some false positives (precision = 82 %), suggesting that
a few non-marsh pixels fall within marsh-dominated
superpixels. Nevertheless, all classes achieve Fi-scores above
0.90—0.955 for non-water, 0.941 for water, and 0.903 for
saltmarsh—indicating an excellent balance between recall and
precision (Table 4).

Compared to the pixel-based Random Forest (which achieved
88 % overall accuracy and Kappa=0.82), the SNIC-RF
workflow raises overall accuracy by nearly 6 points and Kappa
by 0.08. It eliminates all omissions of saltmarsh pixels and
boosts water precision from 96% to 100%. These
improvements demonstrate that object-based segmentation
followed by a simple mode aggregation effectively enforces
spatial consistency, reduces speckle, and produces a more
thematically coherent wetland map—essential attributes for
reliable, operational monitoring of complex coastal ecosystems.

True | \Pred — | Non-wa | Water (1) | Saltmarsh (2)
ter (0)

Non-water 32 0 2

Water 1 16 1

Saltmarsh 0 0 14

Table 3: Confusion Matrix of the object-based classification
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Figure 4: Object-based Random Forest classification of a
subsection of the Sidi Moussa Oualidia lagoon (Blue = open
water, green = saltmarsh, Grey = non-water)

Class Recall Precision Fi-Score
Non-water (0) 94.1% 97.0% 0.955
Water (1) 88.9 % 100 % 0.941
Saltmarsh (2) 100 % 82.4% 0.903

Table 4: Performance metrics of the Object-based RF classifier
4. Discussion

Our object-based SNIC-RF  workflow (OA =93.9%,
Kappa = 0.90) substantially outperforms the pixel-level RF
baseline (OA =88%, Kappa = 0.82), confirming the value of
superpixel smoothing and multi-source feature stacking in
wetland classification. Similar SNIC-RF couplings in other
contexts have consistently yielded 1-6 % gains in overall
accuracy and notable Kappa improvements. For instance, (Ke et
al. 2024) applied SNIC-RF with feature selection and sample
migration over China’s Liaohe Estuary and observed OA
increases of 0.69-5.82% and Kappa gains up to 0.0751
compared to pure RF approaches .

In agricultural mapping, (Khamnoi, Homhuan, and Suwanprasit
2024) fused Sentinel-1 VV/VH and Sentinel-2 bands into an
SNIC-RF scheme, achieving OA =97% and Kappa =0.94—
closely mirroring our object-level performance despite different
landscapes and classes. Likewise, in Turkey’s Sakarbasi
wetlands, (Kaplan and Avdan 2017) showed that combining
object segmentation with NDVI/NDWI index-based
refinements on Sentinel-2 imagery, delivered a Kappa of 0.95,
illustrating how superpixel boundaries guided by spectral
indices sharpen wetland delineation.

(KARAKUS 2024)’s object-based analysis of Lake Kdycegiz,
integrating SNIC with RF and SVM, reported water-area
Fi-scores >0.98 and OA>92% across four years—again
highlighting SNIC’s role in reducing “salt & pepper” noise and
elevating class purity. (Tassi and Vizzari 2020) similarly
demonstrated that augmenting SNIC with GLCM-derived
texture and RF on Sentinel-2 boosted OA from 82% (pixel RF)
to 89.3% (object RF) . Our 93.9 % OA thus represents a further

step forward, owing in part to our richer feature stack (NDWI,
MNDWI, seasonal amplitude, GLCM contrast, slope, VV/VH
ratio).

In the Great Lakes region itself, (Mohseni et al. 2023) used an
object-based RF within GEE to distinguish Bog, Fen, Marsh,
and Swamp, attaining OA = 87% and Kappa = 0.91.

By comparison, our workflow’s multi-sensor fusion and
mode-based superpixel classification push accuracy to 93.9%
and Kappa =0.91, underscoring the importance of stacking
complementary optical, SAR, and textural predictors.

Crucially, our approach remains memory-safe and
computationally lightweight, even over large Ramsar-scale
areas, because superpixel generation reduces the data volume
for classification and avoids unbounded image operations.
While methods like sample migration and wrapper-based
feature selection can further refine object-level training, our
results demonstrate that a well-tuned SNIC segmentation plus a
robust RF on a multi-dimensional stack already yields
state-of-the-art wetland mapping—efficiently and at high
resolution.

5. Perspectives and Recommendations

Although our SNIC-RF workflow delivers strong single-year
wetland maps, wetlands change continuously through seasons
and across years (Mao et al. 2025). Extending the pipeline to
produce annual or even seasonal maps would reveal how water
levels, vegetation cover, and salt marsh extents fluctuate over
time. Incorporating a leave-one-year-out validation scheme
would test whether our model trained on one season or year still
accurately predicts in another, highlighting its robustness to
changing conditions (Allgaier and Pryss 2024).

Our current feature stack combines optical, radar, texture, and
terrain layers, but feeding all of these into the classifier can
introduce redundancy and increase processing time. Future
work should explore automated feature-selection techniques to
pare down to the most informative bands and indices. Likewise,
once stable training samples have been identified, “sample
migration” methods could carry those reference points forward
in time, reducing the need to redraw field samples each season
and keeping ground-truth efforts to a minimum (Ke et al. 2024).

While SNIC superpixels give us uniform, memory-safe
segments that smooth out speckle noise, modern deep-learning
approaches—like U-Net convolutional networks—learn fine
object boundaries directly from imagery without preset
segmentation rules and are capable of identifying complex
patterns of wetlands (Jamali et al. 2022).

SNIC is just one choice among many superpixel or graph-based
clustering methods. It would be valuable to benchmark
clustering methods (J. Zhao, Xiong, and Zhu 2024).

To understand how widely our framework applies, we should
deploy it on other wetland sites—whether other Ramsar sites
along the coast, inland lakes, or river floodplains. Running the
same workflow elsewhere will help reveal how differences in
terrain slope, vegetation type, or water regimes influence
classification quality and may point to automated rules for
choosing optimal parameters.

Finally, the real power of a cloud-based, memory-safe system
lies in real-time or near-real-time monitoring. By scheduling
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periodic runs in GEE, we could generate automatic alerts when
the wetland extent shrinks suddenly or when flooding persists
longer than usual. Linking those outputs to hydrodynamic or
weather models would put early-warning tools into the hands of
managers. Above all, future work must bridge our classification
maps with on-the-ground ecological surveys, water-quality
sampling, and ecosystem-service assessments, SO that the maps
directly inform conservation strategies and water-resource
decisions.
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