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Abstract

Mapping of human induced or natural occurring saline soils using satellite remote sensing has been an active area of research in the
past few decades. In particular in agricultural lands as saline soils negatively impact crop yield and plant growth. Within arid and
semi-arid regions saline soils have adverse effects on urban structures, land surface subsidence, soil erosion and soil degradation.
While most previous studies of mapping saline soils have focused on broad-band passive remote sensing data, there has been
minimal exploration into the utilization of active radar remote sensing data, particularly Synthetic Aperture Radar (SAR). This
research aims to bridge this gap by employing C-band Sentinel-1 data enhanced by the polarimetric analysis, to identify and map
saline soils within arid and semi- arid environments. Preliminary results highlight the challenges of using active remote sensing in
mapping saline soils. Relying on the correlations between electric conductivity measurements and with scattering entropy resulted in
accuracies of only 17% and 15% using polarimetric anisotropy. Other soil parameters such as soil electric properties, and perhaps
soil moisture would improve the detection of saline soils using SAR data. However, the incorporation of polarimetric SAR (PoISAR)
techniques offers a new avenue for improving soil salinity mapping by leveraging the unique scattering mechanisms and dielectric

properties of saline soils.
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1. Introduction

Remote sensing of saline soils has been an active area of
research in the past few decades. This is particularly so as soil
salinity is a major geo-hazard in both agricultural lands and arid
and semi-arid regions. Saline soil adversely affect soil and play
a major role in soil erosion, dispersion and degradation
(Youssef et al., 2012). Furthermore, saline soils in arid and
semi-arid regions lead, in certain situations, to land subsidence,
and ground upheaval (Abuelgasim and Ammad, 2019). In
agricultural lands saline soils lead to reduced agricultural
productivity, interference with plant nutrition and soil erosion.

Mapping saline soils is carried out using various techniques and
procedures ranging from direct field observations and sampling
to space based remote sensing techniques. Remote sensing
provides a less costly procedure due to the large global spatial
coverage, continuous repetitive coverage and high quality earth
observations (Ivushkin et al., 2019; Abuelgasim and Ammad,
2019; Ma et al., 2021). Most of the remote sensing of saline
soils have focused on the passive remote sensing part with
primary focus on the spectral ranges in the near infra-red and
the short-wave infra-red. However, the application of Synthetic
Aperture Radar (SAR) in soil salinity mapping remains widely
underexplored. SAR satellites illuminate ground targets with
radar signals and analyze the returned backscatter, which
contains crucial information about the ground surface, including
soil moisture and salinity levels. Polarimetric SAR (PoISAR)
extends this by analyzing the returned signal in multiple
polarization states, offering insights into the surface's scattering
mechanisms and enhancing soil salinity detection whether for
agricultural lands or arid and semi-arid regions.

The complexity of saline soil signatures, particularly in arid and
semi-arid environments, presents challenges for remote sensing.

The interaction between saline soils and radar backscatter is
influenced by various factors, including the soil's dielectric
constant, which is directly related to its salinity and moisture
content. This research aims to address these challenges by
integrating PoISAR techniques with traditional SAR analysis,
providing a more nuanced understanding of saline soil
characteristics and improving mapping accuracy.

Most of the studies that used SAR data for mapping saline soils
attempted to develop empirical regression models between the
backscattered SAR signal and soil salinity. For example,
Barbouchi et al. (2015) constructed a regression model to
monitor  Electrical Conductivity (EC) variation from
interferometric coherence using Radarsat-2 (C-band) Quad Pol.
This model was tested over two sites located in a semi-arid
region, the first in Tunisia and the second in Morocco. The best
regression model found was HH polarization with a coefficient
of determination (R2) of 0.36. Gao et al. (2021) generated a
linear regression model by utilizing quad polarization SAR data
from Gaofen-3 (C-band) and ALOS-2 (L-band) over the arid
climate of Qinghai, China. The regression model included
backscattering coefficient of VVV polarization, co-polarization
ratio (6 _HH/oc_VV), and scattering entropy H with a
determination coefficient of 0.79.

Other studies used supervised learning models such as
Nurmemet et al. (2018) that utilized the Support Vector
Machine (SVM) with the PALSAR-2 (L-band) Quad Pol over
the arid climate of Keriya Oasis, China. Polarimetric
decomposition features were the explanatory variables to the
SVM with the Wrapper Feature Selector (WFS) to optimize the
variables for the SVM and showed an overall accuracy of
87.57%. Taghadosi et al. (2018) performed the same technique
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but by using the textural features of the Sentinel-1 (C-band)
data over a hot dry climate of Kuh Sefid, Iran. Textural features
of SAR data from the Grey Level Co-occurrence Matrix were
optimized using the feature selection techniques and the SVR
applied with different kernel functions. The best model was
found with the Genetic Algorithm feature selection technique
and the Radial Basis Function kernel by a coefficient of
determination (R2) of 0.97.

Some studies used machine learning techniques such as Jiang et
al. (2018) investigated the soil salinity by performing the
machine learning techniques of Support Vector Machine
(SVM) and Atrtificial Neural Network (ANN) with multi-source
remote sensing data over Yanqi Basin, China. Variables that
were employed to model the soil salinity were the
backscattering coefficient from Sentinel-1, groundwater depth
and soil index from Landsat 8, and surface evapotranspiration
from MODIS. The SVM showed better prediction for soil
salinity than ANN with a determination coefficient of 0.82 and
0.79, respectively. Hoa et al. (2019) performed the same
technique with the same SAR data over the tropical climate of
the agricultural regime in the Mekong River Delta, Vietnam.
The extracted textural features were processed by multiple
machine learning techniques and Gaussian Processes showed
the best prediction of soil salinity with a correlation coefficient
of 0.8 between the observed and the modeled salinity.

Periasamy and Ravi (2020) built a semi-empirical dielectric
model using Sentinel-1 SAR data soil field data to quantify the
backscattering coefficient over bare soil and vegetated soil in
Vellore, Tamil Nada, India. The model was constructed based
on the three-dimensional density space between sigma naught of
VV polarization, soil texture, and in-situ dielectric constant.
This model relies on the saturation state of the soil, which is
constructed upon the semi-saturated state and showed a good
prediction of dielectric constant in saline soil and non-saline
soil with a determination coefficient of 0.8.

The primary objectives of this study are to assess the feasibility
of using active remote sensing in mapping and accurately
identifying saline soils in arid open desert surfaces. While this
study adds to the limited literature in using SAR data for saline
soils mapping, it attempts to improve the accuracy of detection
with special focus on arid and semi-arid environments. This
reduces the complexity of saline soils detection that might be
encountered in vegetated plantations. The study aims to address
these challenges by integrating PoISAR techniques with
traditional SAR analysis, providing a more nuanced
understanding of saline soil characteristics and improving
mapping accuracy.

2. Study Area

The United Arab Emirates (UAE) is located in the south eastern
part of the Arabian Peninsula at 22° 50'-26° 4’ N latitude and
51° 5-56° 25’ E longitude (Figure 1). It is a union of 7 emirates
with the emirate of Abu Dhabi being the largest in terms of land
size and population. It is relatively small country with an
approximate total area of 83,600 km2 dominant by massive
desert landscape. In spite of its relatively small size, it has
diverse ecosystems such coastal areas with vast tracks of coastal
mangrove forests, mountainous regions in the northern and
eastern parts and dominant fields of sand dunes.
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Figure 1: Study Area

The study area is located in the western side of the emirate of
Abu Dhabi. It is located between 24° 07’ N 52° 42" E and 23°
30 N 54° 06 E'. The study area is about 7960km2 a
predominant desert surface with massive sand dune fields, it
also has endangered animal conservation areas, scattered
vegetation and palm tree plantations. Small towns and villages
are within the study area along with the oil and gas fields. This
particular area has vast large areas of saline soils including both
coastal and inland sabkhas. The word “sabkha” is an Arabic
description for a salt flat (Figure 2). Sabkhas are geologic
features characterized by salt marshes and salt flats which are
typically found in arid and semi-arid climatic conditions, in
shallow continental shelf/marine environment (Evans et al.,
1969). Sabkhas pose a serious geotechnical threat as they are
likely to, initiate cracks in surfaces because of uneven
dehydration of gypsum, compromise soil strength, corrode steel
due to presence of highly concentrated sulphate and carbonate
salts and lastly, crumble concrete owing to the crystallization
pressure which built up as a response to evaporation of water
(Youssef et al., 2012).

.lfigﬂ‘re 2: Sabkha within the study area

The UAE falls among the most driest and hottest places on earth
(Abuelgasim and Ammad, 2019). The climate of the UAE is
extremely arid with very dry hot and humid summers and
sporadic rain falls in the winter. The average annual
precipitation is just below 120 mm. These climatic conditions
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make the perfect environment for salt flats development. The
extremely high temperature with significant high evaporation
rates results in the precipitation of insoluble salts in large
quantities over vast open areas. Sabkhas and other saline
surfaces can easily be identified visually on both satellite SAR
and multi-spectral data.

3. Satellite and Field Data
3.1 SAR DATA

In this investigation, Sentinel-1 C-band Synthetic Aperture
Radar (SAR) data is utilized to explore saline soil mapping in
arid and semi-arid terrains. The C-band, with a frequency range
of 4-8 GHz, offers specific advantages and limitations when
compared to the deeper penetrating L-band SAR, which
operates at 1-2 GHz. While L-band SAR is renowned for its
ability to penetrate deeper into the Earth's surface, offering a
more profound understanding of sub-surface features due to its
longer wavelength, the Sentinel-1 C-band provides finer spatial
resolution and is more sensitive to surface roughness and
moisture content, factors crucial for identifying saline soils. In
arid and semi-arid regions, the surface soil layer is often
desiccated, making surface characteristics critical for salinity
detection. The penetration depth of the radar signal is a
significant factor in these environments as it can influence the
detection of subsurface moisture and soil structure, which are
closely linked to salinity levels. Although the L-band might
offer better insights into deeper soil layers, the operational
advantages of the Sentinel-1 C-band, including its frequent
revisit times and broad area coverage, make it a practical choice
for monitoring changes in surface salinity over time. This study
aims to assess the suitability of Sentinel-1 C-band specifications
for soil salinity mapping in such environments, acknowledging
the trade-offs between penetration depth and the ability to
capture surface salinity indicators critical for effective
monitoring and management of saline soils. the dual
polarization, Vertical transmit Vertical receive (VV) and
Vertical transmit Horizontal receive (VH). The imaging mode
of the Sentinel-1 SAR satellite is the Interferometric Wide
Swath (IW) divided int three sub-swaths and nine bursts each
with total swath width of 250 km and 5 m by 20 m spatial
resolution in range and azimuth direction, respectively in the
Single Look Complex (SLC) product level. The Sentinel-1 data
was obtained over the study area along descending orbit from
the European Space Agency (ESA) Copernicus open hub on
November, 4th 2020 in coincidence with the field observations
date.

3.2 Field Soil Samples Collection

The field sampling process was conducted within the first ten
days of November 2020. It has been carried out during
extremely dry weather conditions as no rainfall was reported
within the study area. Areas where soil samples were to be
collected were selected a priori through the visual analysis of
satellite image data and topographic maps of the area. The key
important criteria in selecting sampling locations were, ease of
access, and avoidance of gas and oil fields as well as military
installations. Sabkhas were easy identified in the multispectral
and SAR image data as well as the topographic maps. Both
inland sabkhas and coastal ones were included in the sampling
process. Other locations were chosen due to the tonal variations
of the soil color in the image data assumed to be indicative of
different soil types with different levels of salinity.

Figure 3: Soil Samples Locations

In total 400 points were selected, of which 338 were used for
developing statistical regression models and 62 for testing the
models. Small spades were used to scarp the top surface of the
soil (Sparks et al., 1996). A hand-held global position system
(GPS) receiver was used to mark the location of the sample for
later identification in the image data. Collected soil samples
were labelled and stored in airlock plastic bags and taken for the
geology lab for salinity analysis. Figure 3 shows the locations of
the points sampled within the study area.

4. Methodology
4.1 Image Processing

Sentinel-1A SLC image was processed by the open-source
SeNtinel ~ Application  Platform  (SNAP) to retrieve
backscattering coefficients for both VV and VH. The pre-
processing steps involved radiometric calibration, multi-
looking, and geometric and terrain corrections. Radiometric
calibration was performed to calculate the radar cross section
known as sigma naught which is sensitive to the incidence angle
variation across the swath. However, for this study we used
gamma coefficient instead, which is the sigma naught corrected
for the local incidence angle. Multi-looking process in order to
achieve better radiometric resolution and reduce the speckle
appearance in the image. It was performed with 4 looks in range
and one look in azimuth. Geometric and terrain correction was
performed by applying the range-doppler terrain correction tool
with a Digital Elevation Model (DEM) in order to correct the
geometrical mis shift and align pixels with their correct
geographical orientation.

Polarimetric decomposition (Cloude and Pottier, 1996) was
utilized to extract meaningful information from the VV and VH
images. The polarimetric decomposition technique used was H-
a decomposition, which produces Entropy (H), Anisotropy (A),
and Alpha (a) parameters. The Entropy parameter is the
randomness of the scattering mechanisms occurred at the
scatterer, while Anisotropy is an index represents the relative
probability between secondary scattering mechanisms, and
Alpha parameter represents the scattering angle which can be
used to classify the scattering process (surface, double-bounce,
or volume) across the image.

These parameters help in classification of SAR images based on
the scattering mechanism which as above-mentioned where the
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challenge of mapping soil salinity from SAR images.
Understanding the relationship between these parameters and
soil salinity will reduce the uncertainty level and help in
developing better models for mapping soil salinity using SAR
images.

4.2 Lab Analysis

The lab analysis consisted of several steps for estimating the
salinity levels of the collected samples. Each sample was first
air dried at lab room temperature. A geologic hammer was used
to ground the samples, and the resulting mixture was sieved to
insure homogeneity (Sparks et al., 1996, Kissell and Sonon,
2008). A solution in the ratio of 1:2 soil sample by mass and
deionized water by volume (Sparks et al., 1996) respectively,
was prepared for each sample. Through mixing was performed
on the water and soil samples to insure all soluble salts are
properly dissolved.  The solution was later filtered in
preparation for salinity measurement using and electric
conductivity meter.

A widely used technique for measuring soil salinity is the
employment of electrical conductivity (EC) meters (McNeill,
1992; Rhoades, 1993; Abuelgasim and Ammad, 2017;
Abuelgasim and Ammad, 2019). A HACH HQ40D Portable
Multi Meter was used to measure the salinity. The meter
provides measures of EC in the range 0.01 pS/cm - 200.0
mS/cm and measure of parts per thousands. Only the EC
measurements were used in this study.

Four hundred samples were analyzed in the lab. The resulting
soil salinity measures were compared with the Soil Test
Handbook for Georgia (Kissell and Sonon, 2008). This table
provides a description of different soil salinity categories.
Table 1.

Soil Salinity EC Soil

Category Measurement | Characteristic
(dS/m)

Non-Saline 0-0.15 Very low

Slightly Saline/Low 0.15-0.50 Low

Salinity

Moderately 0.51-1.25 Medium

Saline/Medium

Salinity

Strongly 1.26-1.75 High

Saline/High Salinity

Very High Salinity 1.76-2.00 Very high
Excessively High >2.00 Excessively
Salinity high

Table 1: Soil Salinity Categories

This soil salinity classification system vyields six categories
ranging from non-saline soils to excessively high saline ones. It
was developed with agricultural soils in mind, however. Within
arid and semi-arid regions sabkha areas can have salinities
exceeding 500 dS/m.

As shown in table 2 It was found that the 400 samples fell in
different soil salinity classes. Table 2 also suggests that
generally this particular region has high levels of soil salinity

throughout the study area. The minimum measured salinity was
0.066 dS/m and the maximum was 228 dS/m.

Number of
Soil Salinity Class Samples
Non-Saline 22
Slightly Saline/Low Salinity 151
Moderately Saline/Medium
Salinity 65
Strongly Saline/High Salinity 18
Very High Salinity 8
Excessively High Salinity 136

Table 2: Samples Soil Salinity Classes
4.3 Empirical Model Development and Statistical Regression

In remote sensing modeling the interaction between reflected
electromagnetic radiation and land surface physical and
biophysical parameters has been active area of research. The
major objectives of such modeling processes are the
development of empirical models that can be later be used to
estimate or derive surface parameters from reflected data. Such
approach has been widely used in estimating soil salinity from
both passive and active remote sensing data (Abuelgasim and
Ammad, 2019; El-Battay et al., 2017; Bannari et al., 2008; Zribi
et al., 2014; Allbed et al., 2014; Kaplan, et al. 2023).

To develop empirical models for saline soils a regression
analysis was conducted between the parameters derived from
the Sentinel-1 data and the measured soil salinity. The derived
parameters were entrophy, anisotropy, alpha, gammaOVH,
gammaOVV. Various statistical regression models were
explored, however. It was found that the polynomial regression
technique yielded better correlation. The field samples were
divided into two groups one from developing the empirical
model (338 samples) and one for testing the developed model
(54 samples). Some of the soil samples locations fell outside the
coverage of the Sentilnel-1 coverage and were excluded from
the analysis.

5. Results and Discussions
5.1 Statistical Regression
Figures 4-8 show the results of the regression analysis between

the parameters derived from the Sentinel-1 data and the soil
salinity measurements.

Entropy Polynomial Relationship
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Figure 4: Entropy Soil Salinity Model

Anisotropy Polynomial Relationship
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Figure 6: Alpha Soil Salinity Model
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Figure 7: GammaOVH Soil Salinity Model

GammaO0VV Polynomial Relationship
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Figure 8: GammaOVV Soil Salinity Model

As per the displayed R-square measure the results of the
regression between the SAR parameters and soil salinity show
variables levels of accuracy (0.01-0.59) as shown in table 3.

Parameter R-Square Correlation
Entropy 0.59 -0.711
Anisotropy 0.57 0.612
Alpha 0.56 -0.621
GammaOVH 0.010 0.081
GammaOVvV 0.313 0.476

Table 3: R-Square and Correlation Results
5.2 Soil Salinity Classes

Using the developed statistical models, it will be possible to
generate soil salinity model estimates for each pixel in the
image's study area, however. This research uses the concept of
salinity level categories map for displaying the overall salinity
within the study area, instead of actual model estimations of
salinity per image pixel (Abuelgasim and Ammad, 2019). This
would portray better the geographic spatial distribution of soil
salinity within the study area. The soil salinity class maps
developed here categorize model pixel estimated salinities as
per the (Kissell and Sonon, 2008) soil salinity classification.
For each salinity level class, a range of salinity values as
predicted by the models are associated with a particular class
type ranging from non-saline soils class to excessively high
salinity class as shown in table 1. Only the entropy and
anisotropy maps are shown here.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-361-2026 | © Author(s) 2026. CC BY 4.0 License. 365



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 — 10th International Conference on Geolnformation Advances, 29-30 May 2025, Marrakech, Morocco

Ma Accurac
Salinity Class p y
Unclassified | 1 | 2 3 4 15| 6
Unclassified 0 0|0 0 0|0 O
Non-Saline
Soails 0 0|0 0 1(0] 5 0.00%
2
Low Salinity 0 0|0 0 53] 4 0.00%
Medium
Salinity 0 0|0 0 1(0] 4 0.00%
High Salinity 0 0|0 0 0|01 0.00%
Very High
Salinity 0 0|0 0 00| O 0.00%
Excessively
High
Salinity/Sabkh
a 0 0|0 0 00| 9 | 100.00%
Overall
accuracy 17.00%

Entropy Salinity Map

Legend
Salinity Class

[ ] unclassified

I on saine

B signty saline

[ ] Moderately saline

[ | strongly saline

Very High Salinity

I cxcessively High Salinity

Figure 9: Entropy Soil Salinity Map
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Figure 9: Anisotropy Soil Salinity Map

The maps above (Figure 9-10) show the predicted salinity
classes within the study area. As can be noticed in the entropy
classified image there is significant over estimation for the
excessively saline and strongly saline areas. Almost little to no
other areas with other salinity classes can be observed in the
image. This is naturally not the case as previous studies using
multi-spectral data within the same study area have portrayed
diverse and different distribution of saline soils (Abuelgasim
and mad, 2019).

The anisotropy classified image shows even a more erroneous
pattern. More than half of the image remains unclassified. The
reason is that the resulting salinity values for these areas are
below zero. This is also not the case for this particular area, in
addition, negative salinity levels physically do not make much
reason.

5.3 Confusion Matrices

Table 4: Entropy Confusion Matrix

Tables 4 and 5 above show significant low accuracy, where
entropy data shows only 17% and the anisotropy data shows
15% accuracy. This indicates that active remote sensing have
significant limitations in mapping saline soils, as previous
studies using broad band passive remote sensing data have
yielded much higher accuracies. This is an interesting finding
that can better be explained through analyzing the interaction
between soil surfaces and radar signals.

Radar signal scattering from soil depends mainly on soil grain
size, moisture content, and salinity content (Periasamy and
Ravi, 2020). Since the sampling has been conducted during the
dry period before the rainy season in the study area the effect of
the moisture content will be too small. Generally, higher salinity
in the soil increases the backscattering coefficient due to
increasing dielectric constant in the soil. Also, higher salinity
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levels in soil surfaces, generally increases the soil roughness
which in turn increases the backscattering coefficient.. In the
case of extremely high salinity soils, such as Sabkhas, soil
surface cracks due to high dryness and forms repeated small
convex layers in the wavelength scale. This special case of high
salinity soil surface can be categorized as a Bragg scattering
surface which shows a higher backscattering coefficient than the
surrounding areas (Woodhouse, 2006) and this type of
scattering is the key to understanding the performance of the
developed salinity models.

The polarimetric decomposition techniques using scattering
matrix are applied to understand the scattering mechanisms
occurring at the resolution cell (Akhavan et al., 2021; Muhetaer
et al, 2022). These techniques describe the scattering
mechanisms very well in the case of a single dominant scatterer
within the resolution cell where this scatterer changes the
polarization of the incidence wave but faces serious challenges
to describe the scattering mechanisms in the case of distributed
scatterers within the resolution cells where these scatterers
depolarized the incidence wave (Moreira et al., 2013). For this
reason, the polarimetric decomposition parameters (Entropy,
Anisotropy, Alpha) were calculated due to their ability to better
describe the scattering mechanisms of distributed scatterers
(Wang et al., 2016).

Table 3 shows that there is no correlation between soil salinity
and GammOVH which results in low model performance for
GammaOVH (0.01). This can be related due to the low
sensitivity of the VH channel to Bragg and surface scattering
surfaces. While the VV channel showed a better measure for
salinity content but the correlation is medium and the model
based on GammaOVV showed weak performance (0.313).
Entropy and Alpha angle showed a stronger correlation with the
soil salinity but in an inverse relationship. This is clear in the
case of high salinity content where Bragg scattering is dominant
which results in low Entropy due to the homogeneity of the
scattering and low Alpha angle. In this condition, the salinity
models based on Entropy and Alpha angle performed better
than the condition of medium to low salinity, 0.59 and 0.56
respectively. Anisotropy showed a strong correlation with the
soil salinity in a direct relationship which showed the existence
of a dominant secondary scattering which can be considered as
surface scattering because of the low Alpha angle in the high
salinity region. The model based on Anisotropy performed close
to the previous models with an R-square of 0.57.

The correlation between the polarimetric decomposition
parameters and the measured soil salinity showed complex
cases. Entropy and soil salinity showed a strong negative
relationship with a value of -0.71 which indicates that the
higher the salinity the higher the probability for a dominant
scattering mechanism to occur because a zero value of Entropy
means that there is only one scattering mechanism. Higher
values of Entropy mean more chances for complicated
scattering mechanisms to occur which can explain why the
model is degrading when estimating medium to low salinity
based on Entropy. In the case of Anisotropy, the correlation
with soil salinity showed a positive relationship with a value of
0.61 which indicates that the higher the salinity the higher the
chance for a dominant one secondary scattering mechanism.
The correlation between the anisotropy and the salinity can
partially explain the miss described portion of the relationship
between the entropy and the salinity by the correlation between
the entropy and anisotropy which showed a very strong negative
relationship with a value of -0.96. Since high values of entropy

indicate depolarizing scatterers, this can be supported by the
low values of the anisotropy which indicate the absence of a
dominant secondary scattering mechanism. This showed that in
the case of high entropy and low anisotropy, it is still
challenging to fully describe the scattering mechanism.

The H-a decomposition classification showed a further
explanation for the complexity of describing the scattering
mechanism for the study area. This classification showed that
only 15% of the samples were classified as Bragg surface
scattering, while 55% of the samples were classified as Random
Surface Scattering, and 30% of the samples were unable to be
described by the polarimetric decomposition technique. The
scattering mechanism for only 15% of the samples to be fully
described is the main reason for the models’ performance.

6. Conclusions

This research study attempts to use active radar remote sensing
for mapping saline soils within arid and semi-arid
environments. Previous studies utilizing earth observation data
for mapping saline soils have heavily focused on the use of
broad band passive remote sensing. The results showed
significant lower accuracies for active remote sensing in
mapping saline soils. Accuracies obtained from the polarimetric
decomposition parameters of entropy and anisotropy showed
mere 17% and 15%, respectively, when compared to field
measurements. This investigation of soil salinity mapping using
Sentinel-1 data showed some limitations and challenges.
Utilizing the dual polarization to fully describe the scattering
mechanism can be considered a major limitation of this
investigation. The polarimetric decomposition of dual
polarization can describe a primary scattering mechanism and
only one secondary scattering mechanism, which means that the
anisotropy is not highly valuable. Furthermore, another
challenge of this investigation arises from the nature of the
complicated scattering mechanism, as 85% of the field soils
samples were either identified as random scattering or unable to
be described from the polarimetric decomposition parameters.
The solution to fully describe the scattering mechanism can be
by utilizing full polarization and/or circular polarization to gain
a deep understanding of the scattering occurring at the
resolution cell. In addition, it can hypothesised, at this stage that
depending primarily on EC measurements with no consideration
to other soil dielectric properties, surface roughness and
moisture content brings high levels of uncertainties to the
relationship. This issue will be addressed in future studies.
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