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Abstract 

Mapping of human induced or natural occurring saline soils using satellite remote sensing has been an active area of research in the 

past few decades. In particular in agricultural lands as saline soils negatively impact crop yield and plant growth. Within arid and 

semi-arid regions saline soils have adverse effects on urban structures, land surface subsidence, soil erosion and soil degradation. 

While most previous studies of mapping saline soils have focused on broad-band passive remote sensing data, there has been 

minimal exploration into  the utilization of active radar remote sensing data, particularly Synthetic Aperture Radar (SAR). This 

research aims to bridge this gap by employing C-band Sentinel-1 data enhanced by the polarimetric analysis, to identify and map 

saline soils within arid and semi- arid environments. Preliminary results highlight the challenges of using active remote sensing in 

mapping saline soils. Relying on the correlations between electric conductivity measurements and with scattering entropy resulted in 

accuracies of only 17% and 15% using polarimetric anisotropy. Other soil parameters such as soil electric properties, and perhaps 

soil moisture would improve the detection of saline soils using SAR data. However, the incorporation of polarimetric SAR (PolSAR) 

techniques offers a new avenue for improving soil salinity mapping by leveraging the unique scattering mechanisms and dielectric 

properties of saline soils. 
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1. Introduction

Remote sensing of saline soils has been an active area of 

research in the past few decades. This is particularly so as soil 

salinity is a major geo-hazard in both agricultural lands and arid 

and semi-arid regions. Saline soil adversely affect soil and play 

a major role in soil erosion, dispersion and degradation 

(Youssef et al., 2012). Furthermore, saline soils in arid and 

semi-arid regions lead, in certain situations, to land subsidence, 

and ground upheaval (Abuelgasim and Ammad, 2019). In 

agricultural lands saline soils lead to reduced agricultural 

productivity, interference with plant nutrition and soil erosion. 

Mapping saline soils is carried out using various techniques and 

procedures ranging from direct field observations and sampling 

to space based remote sensing techniques. Remote sensing 

provides a less costly procedure due to the large global spatial 

coverage, continuous repetitive coverage and high quality earth 

observations (Ivushkin et al., 2019; Abuelgasim and Ammad, 

2019; Ma et al., 2021). Most of the remote sensing of saline 

soils have focused on the passive remote sensing part with 

primary focus on the spectral ranges in the near infra-red and 

the short-wave infra-red. However, the application of Synthetic 

Aperture Radar (SAR) in soil salinity mapping remains widely 

underexplored. SAR satellites illuminate ground targets with 

radar signals and analyze the returned backscatter, which 

contains crucial information about the ground surface, including 

soil moisture and salinity levels. Polarimetric SAR (PolSAR) 

extends this by analyzing the returned signal in multiple 

polarization states, offering insights into the surface's scattering 

mechanisms and enhancing soil salinity detection whether for 

agricultural lands or arid and semi-arid regions.  

The complexity of saline soil signatures, particularly in arid and 

semi-arid environments, presents challenges for remote sensing. 

The interaction between saline soils and radar backscatter is 

influenced by various factors, including the soil's dielectric 
constant, which is directly related to its salinity and moisture 

content. This research aims to address these challenges by 

integrating PolSAR techniques with traditional SAR analysis, 

providing a more nuanced understanding of saline soil 

characteristics and improving mapping accuracy.

Most of the studies that used SAR data for mapping saline soils 

attempted to develop empirical regression models between the 

backscattered SAR signal and soil salinity. For example, 

Barbouchi et al. (2015) constructed a regression model to 

monitor Electrical Conductivity (EC) variation from 

interferometric coherence using Radarsat-2 (C-band) Quad Pol. 

This model was tested over two sites located in a semi-arid 

region, the first in Tunisia and the second in Morocco. The best 

regression model found was HH polarization with a coefficient 

of determination (R2) of 0.36.  Gao et al. (2021) generated a 

linear regression model by utilizing quad polarization SAR data 

from Gaofen-3 (C-band) and ALOS-2 (L-band) over the arid 

climate of Qinghai, China. The regression model included 

backscattering coefficient of VV polarization, co-polarization 

ratio (σ_HH/σ_VV), and scattering entropy H with a 

determination coefficient of 0.79. 

Other studies used supervised learning models such as 
Nurmemet et al. (2018) that utilized the Support Vector 
Machine (SVM) with the PALSAR-2 (L-band) Quad Pol over 
the arid climate of Keriya Oasis, China. Polarimetric 
decomposition features were the explanatory variables to the 
SVM with the Wrapper Feature Selector (WFS) to optimize the 
variables for the SVM and showed an overall accuracy of 
87.57%. Taghadosi et al. (2018) performed the same technique
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but by using the textural features of the Sentinel-1 (C-band) 

data over a hot dry climate of Kuh Sefid, Iran. Textural features 

of SAR data from the Grey Level Co-occurrence Matrix were 

optimized using the feature selection techniques and the SVR 

applied with different kernel functions. The best model was 

found with the Genetic Algorithm feature selection technique 

and the Radial Basis Function kernel by a coefficient of 

determination (R2) of 0.97. 

 

Some studies used machine learning techniques such as Jiang et 

al. (2018) investigated the soil salinity by performing the 

machine learning techniques of Support Vector Machine 

(SVM) and Artificial Neural Network (ANN) with multi-source 

remote sensing data over Yanqi Basin, China. Variables that 

were employed to model the soil salinity were the 

backscattering coefficient from Sentinel-1, groundwater depth 

and soil index from Landsat 8, and surface evapotranspiration 

from MODIS. The SVM showed better prediction for soil 

salinity than ANN with a determination coefficient of 0.82 and 

0.79, respectively. Hoa et al. (2019) performed the same 

technique with the same SAR data over the tropical climate of 

the agricultural regime in the Mekong River Delta, Vietnam. 

The extracted textural features were processed by multiple 

machine learning techniques and Gaussian Processes showed 

the best prediction of soil salinity with a correlation coefficient 

of 0.8 between the observed and the modeled salinity.  

 

Periasamy and Ravi (2020) built a semi-empirical dielectric 

model using Sentinel-1 SAR data soil field data to quantify the 

backscattering coefficient over bare soil and vegetated soil in 

Vellore, Tamil Nada, India. The model was constructed based 

on the three-dimensional density space between sigma naught of 

VV polarization, soil texture, and in-situ dielectric constant. 

This model relies on the saturation state of the soil, which is 

constructed upon the semi-saturated state and showed a good 

prediction of dielectric constant in saline soil and non-saline 

soil with a determination coefficient of 0.8. 

 

The primary objectives of this study are to assess the feasibility 

of using active remote sensing in mapping and accurately 

identifying saline soils in arid open desert surfaces. While this 

study adds to the limited literature in using SAR data for saline 

soils mapping, it attempts to improve the accuracy of detection 

with special focus on arid and semi-arid environments. This 

reduces the complexity of saline soils detection that might be 

encountered in vegetated plantations. The study aims to address 

these challenges by integrating PolSAR techniques with 

traditional SAR analysis, providing a more nuanced 

understanding of saline soil characteristics and improving 

mapping accuracy. 

 

 

2. Study Area 

 

The United Arab Emirates (UAE) is located in the south eastern 

part of the Arabian Peninsula at 22° 50′–26° 4′ N latitude and 

51° 5′–56° 25′ E longitude (Figure 1). It is a union of 7 emirates 

with the emirate of Abu Dhabi being the largest in terms of land 

size and population. It is relatively small country with an 

approximate total area of 83,600 km2 dominant by massive 

desert landscape. In spite of its relatively small size, it has 

diverse ecosystems such coastal areas with vast tracks of coastal 

mangrove forests, mountainous regions in the northern and 

eastern parts and dominant fields of sand dunes.  

 

 
 

Figure 1: Study Area 

 

 

The study area is located in the western side of the emirate of 

Abu Dhabi. It is located between 24° 07′ N 52° 42′ E and 23° 

30′ N 54° 06 E′. The study area is about 7960 km2 a 

predominant desert surface with massive sand dune fields, it 

also has endangered animal conservation areas, scattered 

vegetation and palm tree plantations. Small towns and villages 

are within the study area along with the oil and gas fields.  This 

particular area has vast large areas of saline soils including both 

coastal and inland sabkhas. The word “sabkha” is an Arabic 

description for a salt flat (Figure 2). Sabkhas are geologic 

features characterized by salt marshes and salt flats which are 

typically found in arid and semi-arid climatic conditions, in 

shallow continental shelf/marine environment (Evans et al., 

1969). Sabkhas pose a serious geotechnical threat as they are 

likely to, initiate cracks in surfaces because of uneven 

dehydration of gypsum, compromise soil strength, corrode steel 

due to presence of highly concentrated sulphate and carbonate 

salts and lastly, crumble concrete owing to the crystallization 

pressure which built up as a response to evaporation of water 

(Youssef et al., 2012). 

 

 
Figure 2: Sabkha within the study area 

 

The UAE falls among the most driest and hottest places on earth 

(Abuelgasim and Ammad, 2019). The climate of the UAE is 

extremely arid with very dry hot and humid summers and 

sporadic rain falls in the winter. The average annual 

precipitation is just below 120 mm. These climatic conditions 
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make the perfect environment for salt flats development. The 

extremely high temperature with significant high evaporation 

rates results in the precipitation of insoluble salts in large 

quantities over vast open areas. Sabkhas and other saline 

surfaces can easily be identified visually on both satellite SAR 

and multi-spectral data. 

 

 

3. Satellite and Field Data 

 

3.1 SAR DATA 

 

In this investigation, Sentinel-1 C-band Synthetic Aperture 

Radar (SAR) data is utilized to explore saline soil mapping in 

arid and semi-arid terrains. The C-band, with a frequency range 

of 4-8 GHz, offers specific advantages and limitations when 

compared to the deeper penetrating L-band SAR, which 

operates at 1-2 GHz. While L-band SAR is renowned for its 

ability to penetrate deeper into the Earth's surface, offering a 

more profound understanding of sub-surface features due to its 

longer wavelength, the Sentinel-1 C-band provides finer spatial 

resolution and is more sensitive to surface roughness and 

moisture content, factors crucial for identifying saline soils. In 

arid and semi-arid regions, the surface soil layer is often 

desiccated, making surface characteristics critical for salinity 

detection. The penetration depth of the radar signal is a 

significant factor in these environments as it can influence the 

detection of subsurface moisture and soil structure, which are 

closely linked to salinity levels. Although the L-band might 

offer better insights into deeper soil layers, the operational 

advantages of the Sentinel-1 C-band, including its frequent 

revisit times and broad area coverage, make it a practical choice 

for monitoring changes in surface salinity over time. This study 

aims to assess the suitability of Sentinel-1 C-band specifications 

for soil salinity mapping in such environments, acknowledging 

the trade-offs between penetration depth and the ability to 

capture surface salinity indicators critical for effective 

monitoring and management of saline soils. the dual 

polarization, Vertical transmit Vertical receive (VV) and 

Vertical transmit Horizontal receive (VH). The imaging mode 

of the Sentinel-1 SAR satellite is the Interferometric Wide 

Swath (IW) divided int three sub-swaths and nine bursts each 

with total swath width of 250 km and 5 m by 20 m spatial 

resolution in range and azimuth direction, respectively in the 

Single Look Complex (SLC) product level. The Sentinel-1 data 

was obtained over the study area along descending orbit from 

the European Space Agency (ESA) Copernicus open hub on 

November, 4th 2020 in coincidence with the field observations 

date. 

 

3.2 Field Soil Samples Collection             

 

The field sampling process was conducted within the first ten 

days of November 2020. It has been carried out during 

extremely dry weather conditions as no rainfall was reported 

within the study area. Areas where soil samples were to be 

collected were selected a priori through the visual analysis of 

satellite image data and topographic maps of the area. The key 

important criteria in selecting sampling locations were, ease of 

access, and avoidance of gas and oil fields as well as military 

installations. Sabkhas were easy identified in the multispectral 

and SAR image data as well as the topographic maps. Both 

inland sabkhas and coastal ones were included in the sampling 

process. Other locations were chosen due to the tonal variations 

of the soil color in the image data assumed to be indicative of 

different soil types with different levels of salinity. 

 

 

 
Figure 3: Soil Samples Locations 

 

In total 400 points were selected, of which 338 were used for 

developing statistical regression models and 62 for testing the 

models. Small spades were used to scarp the top surface of the 

soil (Sparks et al., 1996). A hand-held global position system 

(GPS) receiver was used to mark the location of the sample for 

later identification in the image data. Collected soil samples 

were labelled and stored in airlock plastic bags and taken for the 

geology lab for salinity analysis. Figure 3 shows the locations of 

the points sampled within the study area.  

 

 

4. Methodology 

 

4.1 Image Processing 

 

Sentinel-1A SLC image was processed by the open-source 

SeNtinel Application Platform (SNAP) to retrieve 

backscattering coefficients for both VV and VH. The pre-

processing steps involved radiometric calibration, multi-

looking, and geometric and terrain corrections. Radiometric 

calibration was performed to calculate the radar cross section 

known as sigma naught which is sensitive to the incidence angle 

variation across the swath. However, for this study we used 

gamma coefficient instead, which is the sigma naught corrected 

for the local incidence angle. Multi-looking process in order to 

achieve better radiometric resolution and reduce the speckle 

appearance in the image. It was performed with 4 looks in range 

and one look in azimuth. Geometric and terrain correction was 

performed by applying the range-doppler terrain correction tool 

with a Digital Elevation Model (DEM) in order to correct the 

geometrical mis shift and align pixels with their correct 

geographical orientation. 

 

Polarimetric decomposition (Cloude and Pottier, 1996) was 

utilized to extract meaningful information from the VV and VH 

images. The polarimetric decomposition technique used was H-

α decomposition, which produces Entropy (H), Anisotropy (A), 

and Alpha (α) parameters. The Entropy parameter is the 

randomness of the scattering mechanisms occurred at the 

scatterer, while Anisotropy is an index represents the relative 

probability between secondary scattering mechanisms, and 

Alpha parameter represents the scattering angle which can be 

used to classify the scattering process (surface, double-bounce, 

or volume) across the image. 

 

These parameters help in classification of SAR images based on 

the scattering mechanism which as above-mentioned where the 
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challenge of mapping soil salinity from SAR images. 

Understanding the relationship between these parameters and 

soil salinity will reduce the uncertainty level and help in 

developing better models for mapping soil salinity using SAR 

images. 

 

 

4.2 Lab Analysis 

 

 

The lab analysis consisted of several steps for estimating the 

salinity levels of the collected samples. Each sample was first 

air dried at lab room temperature. A geologic hammer was used 

to ground the samples, and the resulting mixture was sieved to 

insure homogeneity (Sparks et al., 1996, Kissell and Sonon, 

2008). A solution in the ratio of 1:2 soil sample by mass and 

deionized water by volume (Sparks et al., 1996) respectively, 

was prepared for each sample. Through mixing was performed 

on the water and soil samples to insure all soluble salts are 

properly dissolved.  The solution was later filtered in 

preparation for salinity measurement using and electric 

conductivity meter. 

 

A widely used technique for measuring soil salinity is the 

employment of electrical conductivity (EC) meters (McNeill, 

1992; Rhoades, 1993; Abuelgasim and Ammad, 2017; 

Abuelgasim and Ammad, 2019). A HACH HQ40D Portable 

Multi Meter was used to measure the salinity. The meter 

provides measures of EC in the range 0.01 µS/cm - 200.0 

mS/cm and measure of parts per thousands. Only the EC 

measurements were used in this study.  

 

Four hundred samples were analyzed in the lab. The resulting 

soil salinity measures were compared with the Soil Test 

Handbook for Georgia (Kissell and Sonon, 2008). This table 

provides a description of different soil salinity categories.  

Table 1. 

 
Table 1: Soil Salinity Categories 

 

 

This soil salinity classification system yields six categories 

ranging from non-saline soils to excessively high saline ones. It 

was developed with agricultural soils in mind, however. Within 

arid and semi-arid regions sabkha areas can have salinities 

exceeding 500 dS/m.  

 

As shown in table 2 It was found that the 400 samples fell in 

different soil salinity classes. Table 2 also suggests that 

generally this particular region has high levels of soil salinity 

throughout the study area. The minimum measured salinity was 

0.066 dS/m and the maximum was 228 dS/m. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Samples Soil Salinity Classes 

 

4.3 Empirical Model Development and Statistical Regression 

 

In remote sensing modeling the interaction between reflected 

electromagnetic radiation and land surface physical and 

biophysical parameters has been active area of research. The 

major objectives of such modeling processes are the 

development of empirical models that can be later be used to 

estimate or derive surface parameters from reflected data. Such 

approach has been widely used in estimating soil salinity from 

both passive and active remote sensing data (Abuelgasim and 

Ammad, 2019; El-Battay et al., 2017; Bannari et al., 2008; Zribi 

et al., 2014; Allbed et al., 2014; Kaplan, et al. 2023). 

 

To develop empirical models for saline soils a regression 

analysis was conducted between the parameters derived from 

the Sentinel-1 data and the measured soil salinity. The derived 

parameters were entrophy, anisotropy, alpha, gamma0VH, 

gamma0VV. Various statistical regression models were 

explored, however. It was found that the polynomial regression 

technique yielded better correlation. The field samples were 

divided into two groups one from developing the empirical 

model (338 samples) and one for testing the developed model 

(54 samples). Some of the soil samples locations fell outside the 

coverage of the Sentilnel-1 coverage and were excluded from 

the analysis.   

 

5. Results and Discussions 

 

5.1 Statistical Regression 

 

Figures 4-8 show the results of the regression analysis between 

the parameters derived from the Sentinel-1 data and the soil 

salinity measurements. 

 

 
 

Soil Salinity 

Category 

EC 

Measurement 

(dS/m) 

Soil 

Characteristic  

Non-Saline 0–0.15 Very low 

Slightly Saline/Low 

Salinity 

0.15–0.50 Low 

Moderately 

Saline/Medium 

Salinity 

0.51–1.25 Medium 

Strongly 

Saline/High Salinity 

1.26–1.75 High 

Very High Salinity 1.76–2.00 Very high 

Excessively High 

Salinity 

>2.00 Excessively 

high 

Soil Salinity Class 

Number of 

Samples 

Non-Saline 22 

Slightly Saline/Low Salinity 151 

Moderately Saline/Medium 

Salinity 65 

Strongly Saline/High Salinity 18 

Very High Salinity 8 

Excessively High Salinity 136 
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Figure 4: Entropy Soil Salinity Model 

 

 
 

Figure 5: Anisotropy Soil Salinity Model 

 

 
 

Figure 6: Alpha Soil Salinity Model 

 

 

 
 

Figure 7: Gamma0VH Soil Salinity Model 

 

 

 
 

Figure 8: Gamma0VV Soil Salinity Model 

 

As per the displayed R-square measure the results of the 

regression between the SAR parameters and soil salinity show 

variables levels of accuracy (0.01-0.59) as shown in table 3. 

 

 

 

Table 3: R-Square and Correlation Results 

 

5.2 Soil Salinity Classes 

 

Using the developed statistical models, it will be possible to 

generate soil salinity model estimates for each pixel in the 

image's study area, however. This research uses the concept of 

salinity level categories map for displaying the overall salinity 

within the study area, instead of actual model estimations of 

salinity per image pixel (Abuelgasim and Ammad, 2019). This 

would portray better the geographic spatial distribution of soil 

salinity within the study area. The soil salinity class maps 

developed here categorize model pixel estimated salinities as 

per the (Kissell and Sonon, 2008) soil salinity classification. 

For each salinity level class, a range of salinity values as 

predicted by the models are associated with a particular class 

type ranging from non-saline soils class to excessively high 

salinity class as shown in table 1. Only the entropy and 

anisotropy maps are shown here. 

 

Parameter R-Square Correlation 

Entropy 0.59 -0.711 

Anisotropy 0.57 0.612 

Alpha 0.56 -0.621 

Gamma0VH 0.010 0.081 

Gamma0VV 0.313 0.476 
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Figure 9: Entropy Soil Salinity Map 

 

 
 

Figure 9: Anisotropy Soil Salinity Map 

 

The maps above (Figure 9-10) show the predicted salinity 

classes within the study area. As can be noticed in the entropy 

classified image there is significant over estimation for the 

excessively saline and strongly saline areas. Almost little to no 

other areas with other salinity classes can be observed in the 

image. This is naturally not the case as previous studies using 

multi-spectral data within the same study area have portrayed 

diverse and different distribution of saline soils (Abuelgasim 

and Ammad, 2019).  

 

The anisotropy classified image shows even a more erroneous 

pattern. More than half of the image remains unclassified. The 

reason is that the resulting salinity values for these areas are 

below zero. This is also not the case for this particular area, in 

addition, negative salinity levels physically do not make much 

reason.  

 

 

5.3 Confusion Matrices 

 

 

Table 4: Entropy Confusion Matrix 

Tables 4 and 5 above show significant low accuracy, where 

entropy data shows only 17% and the anisotropy data shows 

15% accuracy. This indicates that active remote sensing have 

significant limitations in mapping saline soils, as previous 

studies using broad band passive remote sensing data have 

yielded much higher accuracies. This is an interesting finding 

that can better be explained through analyzing the interaction 

between soil surfaces and radar signals. 

 

Radar signal scattering from soil depends mainly on soil grain 

size, moisture content, and salinity content (Periasamy and 

Ravi, 2020). Since the sampling has been conducted during the 

dry period before the rainy season in the study area the effect of 

the moisture content will be too small. Generally, higher salinity 

in the soil increases the backscattering coefficient due to 

increasing dielectric constant in the soil. Also, higher salinity 

         
Salinity Class       

Ma

p       

Accurac

y 

  Unclassified 1 2 3 4 5 6   

Unclassified 0 0 0 0 0 0 0   

Non-Saline 

Soils 0 0 0 0 1 0 5 0.00% 

Low Salinity 0 0 0 0 5 3 

2

4 0.00% 

Medium 

Salinity 0 0 0 0 1 0 4 0.00% 

High Salinity 0 0 0 0 0 0 1 0.00% 

Very High 

Salinity 0 0 0 0 0 0 0 0.00% 

Excessively 

High 

Salinity/Sabkh

a 0 0 0 0 0 0 9 100.00% 

Overall 

accuracy               17.00% 
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levels in soil surfaces, generally increases the soil roughness 

which in turn increases the backscattering coefficient.. In the 

case of extremely high salinity soils, such as Sabkhas, soil 

surface cracks due to high dryness and forms repeated small 

convex layers in the wavelength scale. This special case of high 

salinity soil surface can be categorized as a Bragg scattering 

surface which shows a higher backscattering coefficient than the 

surrounding areas (Woodhouse, 2006) and this type of 

scattering is the key to understanding the performance of the 

developed salinity models. 

 

The polarimetric decomposition techniques using scattering 

matrix are applied to understand the scattering mechanisms 

occurring at the resolution cell (Akhavan et al., 2021; Muhetaer 

et al., 2022). These techniques describe the scattering 

mechanisms very well in the case of a single dominant scatterer 

within the resolution cell where this scatterer changes the 

polarization of the incidence wave but faces serious challenges 

to describe the scattering mechanisms in the case of distributed 

scatterers within the resolution cells where these scatterers 

depolarized the incidence wave (Moreira et al., 2013). For this 

reason, the polarimetric decomposition parameters (Entropy, 

Anisotropy, Alpha) were calculated due to their ability to better 

describe the scattering mechanisms of distributed scatterers 

(Wang et al., 2016). 

 

Table 3 shows that there is no correlation between soil salinity 

and Gamm0VH which results in low model performance for 

Gamma0VH (0.01). This can be related due to the low 

sensitivity of the VH channel to Bragg and surface scattering 

surfaces. While the VV channel showed a better measure for 

salinity content but the correlation is medium and the model 

based on Gamma0VV showed weak performance (0.313). 

Entropy and Alpha angle showed a stronger correlation with the 

soil salinity but in an inverse relationship. This is clear in the 

case of high salinity content where Bragg scattering is dominant 

which results in low Entropy due to the homogeneity of the 

scattering and low Alpha angle. In this condition, the salinity 

models based on Entropy and Alpha angle performed better 

than the condition of medium to low salinity, 0.59 and 0.56 

respectively. Anisotropy showed a strong correlation with the 

soil salinity in a direct relationship which showed the existence 

of a dominant secondary scattering which can be considered as 

surface scattering because of the low Alpha angle in the high 

salinity region. The model based on Anisotropy performed close 

to the previous models with an R-square of 0.57. 

 

The correlation between the polarimetric decomposition 

parameters and the measured soil salinity showed complex 

cases. Entropy and soil salinity showed a strong negative 

relationship with a value of -0.71 which indicates that the 

higher the salinity the higher the probability for a dominant 

scattering mechanism to occur because a zero value of Entropy 

means that there is only one scattering mechanism. Higher 

values of Entropy mean more chances for complicated 

scattering mechanisms to occur which can explain why the 

model is degrading when estimating medium to low salinity 

based on Entropy. In the case of Anisotropy, the correlation 

with soil salinity showed a positive relationship with a value of 

0.61 which indicates that the higher the salinity the higher the 

chance for a dominant one secondary scattering mechanism. 

The correlation between the anisotropy and the salinity can 

partially explain the miss described portion of the relationship 

between the entropy and the salinity by the correlation between 

the entropy and anisotropy which showed a very strong negative 

relationship with a value of -0.96. Since high values of entropy 

indicate depolarizing scatterers, this can be supported by the 

low values of the anisotropy which indicate the absence of a 

dominant secondary scattering mechanism. This showed that in 

the case of high entropy and low anisotropy, it is still 

challenging to fully describe the scattering mechanism. 

 

The H-a decomposition classification showed a further 

explanation for the complexity of describing the scattering 

mechanism for the study area. This classification showed that 

only 15% of the samples were classified as Bragg surface 

scattering, while 55% of the samples were classified as Random 

Surface Scattering, and 30% of the samples were unable to be 

described by the polarimetric decomposition technique. The 

scattering mechanism for only 15% of the samples to be fully 

described is the main reason for the models’ performance. 

 

 

6. Conclusions 

 

This research study attempts to use active radar remote sensing 

for mapping saline soils within arid and semi-arid 

environments. Previous studies utilizing earth observation data 

for mapping saline soils have heavily focused on the use of 

broad band passive remote sensing. The results showed 

significant lower accuracies for active remote sensing in 

mapping saline soils. Accuracies obtained from the polarimetric 

decomposition parameters of entropy and anisotropy showed 

mere 17% and 15%, respectively, when compared to field 

measurements. This investigation of soil salinity mapping using 

Sentinel-1 data showed some limitations and challenges. 

Utilizing the dual polarization to fully describe the scattering 

mechanism can be considered a major limitation of this 

investigation. The polarimetric decomposition of dual 

polarization can describe a primary scattering mechanism and 

only one secondary scattering mechanism, which means that the 

anisotropy is not highly valuable. Furthermore, another 

challenge of this investigation arises from the nature of the 

complicated scattering mechanism, as 85% of the field soils 

samples were either identified as random scattering or unable to 

be described from the polarimetric decomposition parameters. 

The solution to fully describe the scattering mechanism can be 

by utilizing full polarization and/or circular polarization to gain 

a deep understanding of the scattering occurring at the 

resolution cell. In addition, it can hypothesised, at this stage that 

depending primarily on EC measurements with no consideration 

to other soil dielectric properties, surface roughness and 

moisture content brings high levels of uncertainties to the 

relationship. This issue will be addressed in future studies.  
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