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ABSTRACT  

Climate change is having a major impact on the world's forests, compromising their health and resilience. Agroforestry, which 

consists of integrating trees into agricultural systems, appears to be a solution for strengthening this resilience. This study assesses 

the suitability of agroforestry in Tazekka National Park, Morocco, using its ecological features to explore the contribution of 

agroforestry to reducing the effects of climate change.  Using Google Earth Engine (GEE), the Land Use and Land Cover (LULC) 

classification was generated by comparing two major machine learning algorithms: Support Vector Machine (SVM) and Random 

Forest (RF). The most accurate LULC classification, as determined by the algorithms, was integrated with various environmental 

variables such as rainfall, temperature, soil pH, soil texture, slope, vegetation indices (NDVI, NDWI), population density, erosion 

risk, and tree cover. These factors were incorporated into the analysis using Multi-Criteria Analysis (MCA) to calculate and generate 

a suitability index for agroforestry. The Analytical Hierarchy Process (AHP) was employed to assign weights to the variables based 

on their relative importance. The results of the LULC classification revealed that SVM outperformed RF, achieving an accuracy of 

95.05% compared to 85.15% for RF.  The final results produced a more accurate suitability map for agroforestry, effectively 

identifying areas with low, medium, and high suitability for agroforestry interventions. This research highlights the potential of 

agroforestry at the local level and proposes a strategic framework for sustainable land management in the face of climate change at 

regional and global levels. 

 

 

1. Introduction 

1.1 Introduction 

Agroforestry is a sustainable land management system which 

combines trees, crops and or livestock in the same area of land 

in a way that the species are naturally complementary to each 

other and support the natural ecosystem and make the resources 

to be used in a sustainable manner (Slavin, T., 2024). It 

provides solutions to environmental problems such as 

deforestation, soil degradation and climate change while 

improving food security and enhancing the resilience of rural 

populations (FAO, 2017). Agroforestry is the integration of 

farming and forestry and is a sustainable land use approach for 

ecosystem rehabilitation and biodiversity conservation. 

 

Beside the environmental advantages, agroforestry has a key 

role to play in socio-economic development. It helps in 

reducing poverty by enhancing the diversification of income 

sources for farmers by providing timber, fruit, and other non-

timber forest products (Lal, 2001). It also offers employment in 

the tree management, product processing, and rural 

infrastructure development sectors. The adoption of 

agroforestry is in conformity with the UN Sustainable 

Development Goals (SDGs) which include those related to 

poverty (SDG 1), food security (SDG 2), climate action (SDG 

13) and life on land (SDG 15) (FAO, 2021). 

 

Assessing agroforestry suitability requires advanced spatial 

analysis tools such as Geographic Information Systems (GIS) 

and remote sensing. These technologies allow for the evaluation 

of environmental parameters like land use, soil quality, 

topography, and water availability (Corbeels et al., 2019). 

Multi-criteria analysis (MCA) further refines site selection by 

integrating ecological, economic, and social factors, enabling 

informed decision-making for agroforestry implementation 

(Malczewski, 2006). 

 

Conducting comparative analyses in agroforestry suitability 

assessments is pivotal for refining methodologies across diverse 

environmental and socio-economic contexts. Such studies 

underscore the effectiveness of spatial analysis, remote sensing, 

and multi-criteria decision-making in optimizing agroforestry 

implementation. For instance, Mishra et al. (2023) conducted a 

GIS-based multi-criteria land suitability assessment in 

Uttarakhand, India, identifying 93.44 km² as highly suitable for 

agroforestry expansion. Similarly, in the Kashmir Valley of 

India, a study utilized the Analytic Hierarchy Process (AHP) 

and GIS to assess land suitability for mulberry-based 

agroforestry, aiming to achieve sustainable agriculture. In 

Rwanda's Musanze District, Ngwijabagabo et al. (2021) applied 

spatial analysis and mapping techniques, finding that 24.3% of 

the area was very suitable for agroforestry, with a strong 

correlation between suitability levels and tree survival rates. 

Additionally, a study in Fiji employed GIS and multi-criteria 

decision analysis for land suitability evaluation, facilitating 

multiple crop agroforestry planning. Collectively, these studies 

highlight the critical role of geospatial technologies and 

decision-support frameworks in advancing agroforestry 

suitability assessments. 

 

Tazekka National Park in Morocco presents an ideal case study 

for agroforestry adoption. Spanning 13,737 hectares, it is home 

to diverse ecosystems, including cedar and holm oak forests, but 

faces significant challenges such as deforestation, soil erosion, 
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and resource pressure from local communities. Traditional 

farming practices contribute to land degradation, making 

agroforestry a promising solution for ecological restoration and 

economic sustainability (Chellik, S., 2024). 

 

This study aims to identify suitable agroforestry areas in 

Tazekka National Park to combat environmental degradation 

and socio-economic challenges. By integrating trees into 

agricultural landscapes, agroforestry restores soils, conserves 

water and stimulates biodiversity while supporting the 

livelihoods of rural populations. Despite the worldwide success 

of GIS and remote sensing in agroforestry planning, Morocco 

lacks comprehensive studies combining the two methods. This 

research fills this gap, using advanced spatial analysis for 

sustainable land-use planning and long-term ecological and 

economic resilience. 

 

2. Materials and Methods 

2.1 Study area 

Tazekka National Park is located in the northernmost part of the 

Middle Atlas, near the city of Taza. The city of Taza is situated 

northeast of the park, approximately 21 km as the crow flies 

from the core of the park (Tazekka Cedar) and 46 km by road. 

The park is part of a remarkable tourist circuit with a total 

length of 76 km (secondary road No. 311), which starts from the 

city of Taza, passing near a series of natural attractions 

(waterfalls, caves, large wooded areas...). It allows travelers to 

cross particularly picturesque regions: including the classified 

douar of Sidi Majber, before rejoining the main road No. 1 at 

Sidi Abdellah, near Oued Amlil (Figure 1). 

 

It was established on July 11, 1950, initially covered 680 

hectares, preserving the Atlas cedar forest (Cedrus atlantica) 

atop the 1,981-meter Tazekka massif. It reflects the historical 

range of Moroccan cedars, similar to those in the Middle Atlas 

and Rif. Given that forest ecosystems require larger areas for 

ecological stability, the park's expansion was proposed in 1993. 

The extension to 12,700 hectares was officially approved on 

October 8, 2004, bringing the park to its current 13,737 

hectares, encompassing both natural habitats and local villages 

while maintaining the cedar forest as its ecological core (Saadi, 

k,. 2023). 

 

· Latitude: Approximately 34° 25' N  

· Longitude: Approximately 4° 05' W  

· Altitude: Varies from 600 to 1,981 meters above MSL. 

 

 

Figure 1. Geographical location of Tazekka National Park: (1): 

In relation to the country - (2): In relation to the region - (3): In 

relation to the province - (4): Current boundary of Tazekka 

National Park 

 

2.2 Method 

This study identifies optimal agroforestry zones in Tazekka 

National Park using geospatial analysis in Google Earth Engine 

(GEE). An AHP-based multi-criteria evaluation was applied to 

11 environmental and socio-economic factors, including land 

use, climate, soil properties, vegetation indices, and 

infrastructure. 

Data preprocessing involved integrating raster and vector layers 

into GEE, followed by normalization on a 0–1 scale to ensure 

comparability across variables. Suitability was assessed based 

on weighted factors, with uniform weights at first and then 

different weights according to the importance of each variable. 

The final suitability index, calculated by combining the 

normalized and weighted values, was classified into five 

categories ranging from "very low" to "very high" suitability. 

 

Validation using Random Forest and Support Vector Machine, 

along with zonal statistics and variance mapping, confirmed 

model reliability. The resulting suitability map provides a robust 

tool for sustainable agroforestry planning, balancing ecological 

conservation with rural development. GEE ensures scalability 

and reproducibility for dynamic land-use assessments.(Figure 2) 

 
Figure 2. Methodology Flowchart 

 

2.3 Data used 

Our comprehensive agroforestry suitability assessment of 

Tazekka National Park integrated 11 distinct spatial datasets: 

land use/land cover maps, annual precipitation records (2019-

2023), temperature extremes, soil texture and pH measurements, 

vegetation indices (NDVI and NDWI), tree cover percentages, 

population density figures, road network data, soil erosion 
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estimates, and topographical parameters (slope and aspect). 

These datasets, categorized into four key domains (soil, climate, 

topography, and socioeconomics) (Table 1). 

 

 

 

 

 

Table 1. Data list 

 

2.3.1 Annual precipitations records 

 

Precipitation is a key factor in agroforestry management, 

influencing water availability, crop productivity, and ecosystem 

health. This study uses CHIRPS data for 5 years from 2019 to 

2023 to provide insights for optimizing irrigation, ensuring 

water availability, and mitigating drought risks (Morales, I,. 

2023). Integrating precipitation data into agroforestry planning 

enhances resource efficiency, soil moisture retention, and 

ecosystem resilience. 

 

2.3.2 Temperature extremes 

 

Minimum and maximum temperatures are key determinants of 

plant growth, climate adaptation, and risk management in 

agroforestry. This study leverages five years (2019–2023) of 

high-resolution ERA5-Land reanalysis data to analyze 

temperature variability (Muños Sabater, J,. 2021). These 

insights aid in optimizing plant selection, mitigating thermal 

stress, and enhancing climate resilience in agroforestry systems. 

 

2.3.3 Soil texture 

 

Soil texture influences water retention, nutrient availability, and 

plant growth in agroforestry systems. This study utilizes USDA 

soil texture classifications for depths of 0–20 cm and 20–50 cm, 

derived from iSDA’s machine learning models trained on over 

100,000 soil samples with 30 m resolution. These insights 

support soil fertility management, water optimization, and 

sustainable land use in agroforestry (USDA, 2011). 

 

2.3.4 pH measurements 

 

Soil pH regulates nutrient availability and plant health, shaping 

agroforestry productivity (Khaled, F,. 2023). This study uses 

OpenLandMap soil pH data (measured in water) at six depths 

(0–200 cm) with a 250 m resolution. As a key soil chemistry 

indicator, pH influences nutrient uptake and ecosystem balance, 

guiding soil amendments and sustainable land management. 

 

2.3.5 Vegetation indices (NDVI and NDWI) 

 

The Normalized Difference Vegetation Index (NDVI) assesses 

vegetation health and density, aiding agroforestry suitability 

analysis. Derived from Sentinel-2 imagery, it identifies 

vegetation cover and ecosystem vitality (Lasaponara, R., 2022). 

Similarly, the Normalized Difference Water Index (NDWI) 

detects water bodies, supporting water resource management by 

tracking water availability and mitigating flood risks for 

sustainable land use (Du, Y., 2016). 

 

2.3.6 Tree cover percentages 

 

Tree cover percentage data helps assess vegetation density and 

forest extent, vital for agroforestry suitability. It guides land-use 

planning, ensuring optimal conditions for both ecological health 

and agricultural productivity while supporting sustainable 

agroforestry and forest conservation (FAO, 2020). 

 

2.3.7 Soil erosion estimates 

 

The erosion risk map highlights areas vulnerable to soil erosion, 

crucial for sustainable land management. For Tazekka National 

Park, an integrated approach combined multiple datasets: 

precipitation data (R factor), SRTM elevation data (LS factor), 

Sentinel-2 NDVI (C factor), and reclassified LULC data (K 

factor). These factors, along with a constant P factor, were 

multiplied to generate the final erosion risk map (Elnashar, M., 

2021). This analysis aids in soil conservation, guiding 

agroforestry planning and interventions to reduce land 

degradation and ecosystem deterioration. 

 

2.3.8 Topographical parameters (slope and aspect) 

 

Slope and aspect data, derived from SRTM, describe terrain 

inclination and orientation, critical for erosion and water 

management in agroforestry. Slope affects runoff, soil retention, 

and land stability, guiding agroforestry practices. Additionally, 

terrain steepness impacts accessibility, influencing the 

feasibility of agroforestry interventions and project 

implementation (Geopard, 2019). 

 

2.3.9 Population density 

 

Population density data, sourced from GPWv4 (2000-2020), 

offers insights into human distribution and its impact on natural 

resources. With a 30-arc-second resolution (~1 km), this data is 

crucial for assessing resource pressure and guiding sustainable 

development strategies, ensuring a balance between human 

needs and environmental conservation (Liu, L., 2024). 

 

2.3.10 Road network 

 

Road network data, sourced from OpenStreetMap (OSM), 

provide valuable insights into transportation infrastructure. 

These data influence not only access to study sites but also the 

management of natural resources in the region, facilitating 

efficient planning and resource distribution (Hosseini, R., 

2025). 

Criteria Variable Unit Data Source 

Soil 

Texture  iSDA 

Ph -log( ) GloSIS 

NDVI  COPERNICUS/S2_SR 

NDWI  COPERNICUS/S2_SR 

Climat 

Rainfall mm CHIRPS 

Min Temp  
°C ERA5-Land 

Max Temp 

Topography 

Erosion  LULC 

Aspect and 

slope 

° (dégrée) SRTM 

Socioeconomic 

Population 

Density 

Hab/  GPWv4 

Road Network  OSM 
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2.3.11 Land use/Land Cover maps 

 

LULC (Land Use/Land Cover) data describe land use types and 

coverage, crucial for understanding the current and future 

impacts of agroforestry practices (Santoso, T., 2024). This data 

helps identify coverage types, plan land use, and assess 

environmental impacts, supporting sustainable land 

management and agroforestry planning. 

2.4 Data preprocessing 

Data preprocessing is a critical step in the preparation of 

geospatial data for analysis, particularly when working with 

environmental variables in Google Earth Engine (GEE). In this 

phase, 28 raster maps are created for each relevant variable, 

utilizing specific codes in GEE. These maps represent various 

environmental parameters that are crucial for understanding the 

suitability of land for agroforestry. The creation of these raster 

maps involves extracting, processing, and transforming raw 

satellite data into a consistent format that can be used in 

subsequent analysis. These maps will serve as the foundational 

input for the final suitability mapping analysis, where they will 

be combined to identify optimal locations for agroforestry based 

on various ecological and environmental factors. This 

preprocessing ensures that all variables are standardized and 

ready for in-depth spatial analysis, enabling informed decision-

making in land-use planning. (Figure3).
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Figure 3. Generated maps using GEE: from top left: Annual Rainfall accumulations of 2019 - Annual Rainfall accumulations of 2020 

- Annual Rainfall accumulations of 2021 - Annual Rainfall accumulations of 2022 - Annual Rainfall accumulations of 2023 - Annual 

Rainfall accumulations of 2019 – Annual minimum Temperature of 2019 - Annual Minimum Temperature of 2020 - Annual 

Minimum Temperature of 2021 - Annual Minimum Temperature of 2022 - Annual Minimum Temperature of 2023 – Annual 

Maximum Temperature of 2019 - Annual Maximum Temperature of 2020 - Annual Maximum Temperature of 2021 - Annual 

Maximum Temperature of 2022 - Annual Maximum Temperature of 2023 – Soil Texture (0-20cm) – Soil pH level – Fertility level -  

NDVI – NDWI – Tree cover – Erosion Risk – Slope – Aspect – Population density – Road network – LULC( SVM) – LULC (RF) 

 

 

2.5 Methods and algorithms used in GEE 

2.5.1 Supervised classification  

 

Supervised classification is a machine learning technique that 

uses labeled data to create predictive models for classifying 

unlabeled datasets, particularly in GIS and remote sensing. It 

analyzes variables like vegetation, land use, slope, temperature, 

and soil texture to assess agroforestry suitability, segmenting 

areas based on their capacity for integrating trees, crops, and 

livestock. Popular algorithms include Random Forest (RF) and 

Support Vector Machine (SVM), both of which excel at 

handling large, diverse datasets and producing accurate maps 

for agroforestry planning (Kasahun, M., 2024). 

 

 Random Forest (RF) 

 

Random Forest is a classifier consisting of multiple tree 

classifiers, each casting a vote for the most frequent class based 

on input data. It operates on independent, identically distributed 

random vectors (Van der Aalst, 2016). 

 

 Support Vector Machine (SVM) 

 

SVM is a classification algorithm that finds the optimal 

hyperplane to separate data classes by maximizing the margin 

between them. It uses support vectors to define this hyperplane 

(Liu et al., 2021). For nonlinear data, SVM employs kernel 

functions, like the Radial Basis Function (RBF), to project data 

into higher dimensions for linear separation and complex 

relationship modeling. 

 

When analyzing the performance of both classifiers, SVM 

demonstrated a higher level of precision than RF. According to 

the confusion matrix analysis, the overall accuracy for SVM 

was 92.21%, slightly surpassing RF's 91.61%. The Kappa index 

for SVM was 0.896, reflecting better agreement between 

predicted and actual classifications compared to RF's 0.888. 

Although RF performed well with land categories like 

cultivated land (90.7% accuracy), SVM excelled, especially in 

classifying forests (100% accuracy). Additionally, SVM showed 

slightly better classification precision for built-up areas (97.4% 

accuracy) compared to RF. While RF was strong in classifying 

agricultural areas, SVM's superior performance in forest and 

built-up area classifications makes it the more precise choice 

overall. 

 

2.5.2 Multicriteria analysis 

 

Multi-criteria analysis is a method used to combine various 

evaluation criteria to obtain an integrated measure of an area's 

suitability (Mushtaq et al., 2024). This approach is essential for 

agroforestry suitability assessment as it considers a range of 

environmental and socio-economic factors. 

 

 Weighting of criteria 

 

Weighting of criteria is a crucial component of multi-criteria 

analysis, reflecting the relative importance of each factor in 

evaluating agroforestry suitability. Weights can be determined 

by experts or using quantitative methods like the Analytical 

Hierarchy Process (AHP), and these weights directly impact the 

final suitability score (Topuz et al., 2023). The suitability score 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025 
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-369-2026 | © Author(s) 2026. CC BY 4.0 License.

 
373



 

is calculated by multiplying normalized values of criteria by 

their respective weights, creating a composite score that 

integrates multiple factors into a single suitability index, thereby 

facilitating informed decision-making. 

 

Suitability Formula (Suitablity index) 

 

Composite Score:       

 

where  S = overall suitability score 

 ωi = weight assigned to criterion i 

 Ci = normalized value of criterion i 

 n = total number of criteria considered 

 

This formula calculates a composite score by weighting and 

normalizing criteria, commonly used in multi-criteria decision 

systems for agroforestry suitability assessments. It integrates 

individual criterion contributions for an overall evaluation 

(Schepaschenko et al., 2011). 

 

 Data Normalization 

 

Data normalization ensures comparability of criteria with 

different scales and units by transforming values onto a uniform 

scale (0 to 1), using methods like min-max or z-score 

normalization. This ensures a fair and balanced evaluation 

(GeeksforGeeks, n.d.). 

 

Min-Max Normalization Formula: 

 

Transformation :       

 

where  Cnorm = normalized value 

 C = original value 

 Cmin = minimum value of the criterion  

 Cmax = maximum value of the criterion 

 

The Min-Max normalization method scales data to a common 

range (usually 0 to 1), allowing for fair comparison of diverse 

criteria. It is commonly applied in multi-criteria assessments, 

like agroforestry suitability analysis, to ensure all variables 

contribute equally to the decision process (GeeksforGeeks, n.d). 

 

 Analytic Hierarchy Process (AHP) 

 

The Analytic Hierarchy Process (AHP) is a decision-making 

method that structures complex problems by organizing criteria 

in a hierarchy. It is used in agroforestry suitability assessments 

to weight factors like soil quality, climate, and accessibility. 

AHP involves defining the problem, creating a hierarchy, 

making pairwise comparisons of criteria on a 1-9 scale, and 

calculating weights using eigenvalue methods, with the largest 

eigenvalue ( max) determining the relative importance of each 

criterion (Kahsay, A., 2024). 

 
 

where  λmax = the maximum eigenvalue of the matrix, 

 ωi = the weight of each criterion. 

 

And then in order to check the consistency of judgments, the 

Consistency Ratio (CR) is used. A CR less than 0.1 is generally 

considered acceptable. The CR is calculated as follows: 

 

 
 

where  CI = the Consistency Index, calculated as: 

 

 
  

       RI = the Random Index, which depends on the matrix size. 

Final results are synthesized, and the weights are calculated to 

obtain a global score that evaluates agroforestry suitability, 

helping make informed decisions about the most suitable areas 

for agroforestry. (Table 2) 

 

Var 

N° 

Factor Weight 

1 Rainfall 0.08 

2 Temperature 0.08 

3 Slope 0.08 

4 Soil texture 0.08 

5 Tree cover 0.08 

6 Erosion risk 0.08 

7 NDWI 0.08 

8 NDVI 0.08 

9 Population density 0.05 

10 pH 0.05 

11 LULC 

Cultivated land and meadows 0.40 

Open woodlands 0.10 

Buildings and/or bare lands -0.40 
 

Table 2. Estimated weight for each variable 

 

3. Results and Discussion 

3.1 Agroforestry suitability napping 

Agroforestry, combining agriculture and tree management, 

requires a thorough analysis of environmental factors to identify 

suitable areas. We mapped agroforestry suitability by 

considering soil texture and fertility, pH, slope, population 

density, erosion, vegetation cover, and other climatic and 

geophysical elements. Each factor plays a vital role in assessing 

land suitability for sustainable agroforestry systems. For 

instance, well-drained, fertile soils promote tree and crop 

growth, while steep slopes and erosion-prone areas present 

challenges. Our mapping approach, using remote sensing and 

geospatial tools like GEE, integrated data from multiple sources 

to generate accurate agroforestry suitability maps, highlighting 

optimal zones and how environmental factors influence land 

suitability. These results serve as a valuable resource for 

decision-makers and land managers to support sustainable 

natural resource management. For the analysis, we normalized 

variables like slope, NDVI, soil texture, forest cover, 

precipitation, temperature, erosion risk, population density, pH, 

and NDWI to a scale from 0 to 1 to ensure consistency across 

factors. In weighting the factors, we first applied equal weights 

to all variables for an initial suitability map. However, 

recognizing local variations, we later adjusted the weights based 

on each factor’s relative importance—soil quality and 

population density received higher weights, while erosion and 

slope were less influential in certain areas. This approach 

resulted in a more accurate suitability map, identifying low, 

medium, and high suitability zones for agroforestry 
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interventions. The weights assigned were designed to reflect the 

relative importance of each factor, with cultivated and pasture 

lands receiving the highest weight (0.40), while buildings were 

assigned a negative weight (-0.40), as they reduce available land 

for agroforestry. (Figure 4) 

 

 
Figure 4. Suitability maps for agroforestry in Tazekka National Park - (1): with uniform weights - (2): with variable weights 

 

 

3.2 Results validation 

By comparing two methods of spatial analysis of suitability for 

agroforestry, we found significant differences in accuracy and 

local relevance. The first approach, which applied equal weights 

to all variables, produced a uniform suitability map, 

oversimplifying the region and neglecting critical factors such 

as slope, soil texture, and population density. This approach 

failed to capture the complexity of the landscape and its 

suitability for agroforestry. 

 

On the other hand, the second approach, which applied 

differentiated weightings to the variables, produced a much 

more nuanced and realistic assessment. It effectively 

highlighted areas of varying suitability—high, medium, and 

low—by incorporating local conditions into the analysis. This 

approach better reflects the various environmental and socio-

economic factors that influence the success of agroforestry. 

 

Given the lack of local data on agroforestry, direct validation 

was not possible. Instead, alternative methods such as suitability 

index distribution, zonal statistics, and variance mapping were 

employed to assess model reliability. The first approach showed 

little variability, while the second displayed a much wider range 

of suitability, aligning more closely with actual land conditions. 

 

The second method (Figure 4 (2)), which utilizes variable 

weighting, offers a more precise, nuanced, and contextually 

relevant depiction of agroforestry suitability. This approach 

facilitates better decision-making and enhances planning by 

identifying areas that are most suitable for successful 

agroforestry interventions, ensuring effective allocation of 

resources. 

 

3.3 Discussion 

The study at Tazekka National Park uses Multi-Criteria 

Analysis (MCA) and Google Earth Engine (GEE) to find the 

most suitable agroforestry zones. It combined classification 

methods like Random Forest (RF) and Support Vector Machine 

(SVM) with a variety of environmental factors, such as 

temperature, precipitation, slope, soil properties, and vegetation 

indices. Outstanding accuracy ratings of 92.21% for SVM and 

91.61% for RF were achieved with this combined approach. To 

increase the validity and applicability of the findings, the study 

did, however, also point out a number of limitations that need to 

be investigated. 

 

Since the results mostly depended on indirect remote sensing 

data, the lack of field validation is a major drawback that could 

lead to errors when compared to actual ground conditions. 

Furthermore, the satellite imagery's resolution was inadequate 

to adequately depict fine-scale topography differences, 

including small-scale ridges or depressions, or to capture vital 

water resources concealed beneath thick tree canopies. 

Additionally, crucial soil characteristics like permeability and 

drainage depth were not included, which affected the precision 

of water retention evaluations and might have resulted in 

overestimations or underestimations of the land's suitability for 

agroforestry. 

 

The failure to include land policy issues, which are essential to 

the viability and deployment of agroforestry systems, is another 

significant drawback. The study's recommendations might not 

be entirely feasible or sustainable in practice if local land 

management laws and policies are not taken into account. 

 

Although MCA was successful in combining different 

agroforestry suitability criteria, it might be greatly improved by 

adding more advanced artificial intelligence (AI) methods like 

neural networks and data envelope analysis (DEA). These 

techniques could improve the impartiality and accuracy of the 

suitability evaluation by offering greater insights into intricate, 

nonlinear interactions between environmental variables. 

 

Long-term monitoring of important environmental and land-use 

variables will be crucial to adjust to the difficulties presented by 

climatic variability and guarantee their resilience by so 

improving agroforestry plans. Future studies in this field should 

combine more thorough soil data covering important factors 

like permeability and drainage depth with on-site validation, 

higher-resolution images from sources including the 

Mohammed VI satellite, LiDAR, and drones. Including land 

policy analysis will also offer a more all-encompassing method 
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of agroforestry design, therefore guaranteeing that plans are 

both socially feasible and ecologically sustainable. 

 

4. Conclusion 

The agroforestry suitability analysis in Tazekka National Park 

highlighted the critical role of variable weighting in result 

accuracy. Initially, assigning equal weights to all variables led 

to imprecise assessments, underestimating or overestimating 

key areas. Adjusting the weights significantly improved 

accuracy, revealing the dominant influence of factors like 

rainfall, temperature, and slope in identifying optimal 

agroforestry zones. These findings emphasize the need for 

tailored approaches that consider local environmental 

complexities. The results provide valuable insights for 

sustainable park management, helping balance conservation 

with local livelihoods by promoting agroforestry systems that 

enhance biodiversity, prevent soil erosion, and support rural 

communities. Integrating this research into long-term strategies 

can strengthen ecosystem resilience against climate change and 

land degradation. Beyond Tazekka, this study serves as a model 

for regional agroforestry planning, encouraging data-driven 

decision-making to address soil degradation, biodiversity loss, 

and food security challenges. By promoting agroforestry, 

communities can diversify incomes, improve food security, and 

enhance environmental sustainability. Ultimately, this research 

lays the groundwork for practical, scalable agroforestry 

solutions, fostering ecological and economic sustainability 

while informing broader natural resource management 

initiatives. 
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