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ABSTRACT

Climate change is having a major impact on the world's forests, compromising their health and resilience. Agroforestry, which
consists of integrating trees into agricultural systems, appears to be a solution for strengthening this resilience. This study assesses
the suitability of agroforestry in Tazekka National Park, Morocco, using its ecological features to explore the contribution of
agroforestry to reducing the effects of climate change. Using Google Earth Engine (GEE), the Land Use and Land Cover (LULC)
classification was generated by comparing two major machine learning algorithms: Support Vector Machine (SVM) and Random
Forest (RF). The most accurate LULC classification, as determined by the algorithms, was integrated with various environmental
variables such as rainfall, temperature, soil pH, soil texture, slope, vegetation indices (NDVI, NDWI), population density, erosion
risk, and tree cover. These factors were incorporated into the analysis using Multi-Criteria Analysis (MCA) to calculate and generate
a suitability index for agroforestry. The Analytical Hierarchy Process (AHP) was employed to assign weights to the variables based
on their relative importance. The results of the LULC classification revealed that SVM outperformed RF, achieving an accuracy of
95.05% compared to 85.15% for RF. The final results produced a more accurate suitability map for agroforestry, effectively
identifying areas with low, medium, and high suitability for agroforestry interventions. This research highlights the potential of
agroforestry at the local level and proposes a strategic framework for sustainable land management in the face of climate change at
regional and global levels.

topography, and water availability (Corbeels et al., 2019).
1. Introduction Multi-criteria analysis (MCA) further refines site selection by
integrating ecological, economic, and social factors, enabling
1.1 Introduction informed decision-making for agroforestry implementation
. . . (Malczewski, 2006).

Agroforestry is a sustainable land management system which
g:ombmes trees, crops e_md or livestock in the same area of land Conducting comparative analyses in agroforestry suitability
in a way that the species are naturally complementary to each  agsessments is pivotal for refining methodologies across diverse
other and sup_port the na?ural ecosystem and rn_ake the resources environmental and socio-economic contexts. Such studies
to be used in a sustainable manner (Slavin, T., 2024). It ,nderscore the effectiveness of spatial analysis, remote sensing,
provides solutions to environmental problems such as  ahq multi-criteria decision-making in optimizing agroforestry
deforestation, soil degradation and climate change while jyslementation. For instance, Mishra et al. (2023) conducted a
improving food security and enhancing the resilience of rural GIS-based multi-criteria land  suitability assessment in
populations (FAO, 2017). Agroforestry is the integration of  (jitarakhand, India, identifying 93.44 km? as highly suitable for
farming and forestry and is a sustainable land use approach for agroforestry expansion. Similarly, in the Kashmir Valley of
ecosystem rehabilitation and biodiversity conservation. India, a study utilized the Analytic Hierarchy Process (AHP)
. . and GIS to assess land suitability for mulberry-based
Beside the environmental advantages, agroforestry has a key  agroforestry, aiming to achieve sustainable agriculture. In
role _to play in socio-economic deyelop_rr_1ent_. It hglps in Rwanda's Musanze District, Ngwijabagabo et al. (2021) applied
reducing poverty by enhancing the diversification of income spatial analysis and mapping techniques, finding that 24.3% of
sources for farmers by providing timber, fruit, and other non- the area was very suitable for agroforestry, with a strong
timber forest products (Lal, 2001). It also offers employment in - correlation between suitability levels and tree survival rates.
the tree management, product processing, and rural  Aqgitionally, a study in Fiji employed GIS and multi-criteria
mfrastructure_ de_zvelopment _ sectqrs. The adoptlor_w of decision analysis for land suitability evaluation, facilitating
agroforestry is in conformity _W|th the UN Sustainable multiple crop agroforestry planning. Collectively, these studies
Development Goals (SDGs) which include those related t0  phighiight the critical role of geospatial technologies and

poverty (SDG 1), food security (SDG 2), climate action (SDG  gecision-support frameworks in advancing agroforestry
13) and life on land (SDG 15) (FAO, 2021). suitability assessments.

Assessing agroforestry suitability requires advanced spatial  T7ekka National Park in Morocco presents an ideal case study
analysis tools such as Geographic Information Systems (GIS)  for agroforestry adoption. Spanning 13,737 hectares, it is home
and remote sensing. These technologies allow for the evaluation to diverse ecosystems, including cedar and holm oak forests, but

of environmental parameters like land use, soil quality,  faces significant challenges such as deforestation, soil erosion,
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and resource pressure from local communities. Traditional
farming practices contribute to land degradation, making
agroforestry a promising solution for ecological restoration and
economic sustainability (Chellik, S., 2024).

This study aims to identify suitable agroforestry areas in
Tazekka National Park to combat environmental degradation
and socio-economic challenges. By integrating trees into
agricultural landscapes, agroforestry restores soils, conserves
water and stimulates biodiversity while supporting the
livelihoods of rural populations. Despite the worldwide success
of GIS and remote sensing in agroforestry planning, Morocco
lacks comprehensive studies combining the two methods. This
research fills this gap, using advanced spatial analysis for
sustainable land-use planning and long-term ecological and
economic resilience.

2. Materials and Methods
2.1 Study area

Tazekka National Park is located in the northernmost part of the
Middle Atlas, near the city of Taza. The city of Taza is situated
northeast of the park, approximately 21 km as the crow flies
from the core of the park (Tazekka Cedar) and 46 km by road.
The park is part of a remarkable tourist circuit with a total
length of 76 km (secondary road No. 311), which starts from the
city of Taza, passing near a series of natural attractions
(waterfalls, caves, large wooded areas...). It allows travelers to
cross particularly picturesque regions: including the classified
douar of Sidi Majber, before rejoining the main road No. 1 at
Sidi Abdellah, near Oued Amlil (Figure 1).

It was established on July 11, 1950, initially covered 680
hectares, preserving the Atlas cedar forest (Cedrus atlantica)
atop the 1,981-meter Tazekka massif. It reflects the historical
range of Moroccan cedars, similar to those in the Middle Atlas
and Rif. Given that forest ecosystems require larger areas for
ecological stability, the park's expansion was proposed in 1993.
The extension to 12,700 hectares was officially approved on
October 8, 2004, bringing the park to its current 13,737
hectares, encompassing both natural habitats and local villages
while maintaining the cedar forest as its ecological core (Saadi,
k,. 2023).

- Latitude: Approximately 34° 25' N
- Longitude: Approximately 4° 05' W
- Altitude: Varies from 600 to 1,981 meters above MSL.

Figure 1. Geographical location of Tazekka National Park: (1):
In relation to the country - (2): In relation to the region - (3): In

relation to the province - (4): Current boundary of Tazekka
National Park

2.2 Method

This study identifies optimal agroforestry zones in Tazekka
National Park using geospatial analysis in Google Earth Engine
(GEE). An AHP-based multi-criteria evaluation was applied to
11 environmental and socio-economic factors, including land
use, climate, soil properties, vegetation indices, and
infrastructure.

Data preprocessing involved integrating raster and vector layers
into GEE, followed by normalization on a 0-1 scale to ensure
comparability across variables. Suitability was assessed based
on weighted factors, with uniform weights at first and then
different weights according to the importance of each variable.
The final suitability index, calculated by combining the
normalized and weighted values, was classified into five
categories ranging from "very low" to "very high" suitability.

Validation using Random Forest and Support Vector Machine,
along with zonal statistics and variance mapping, confirmed
model reliability. The resulting suitability map provides a robust
tool for sustainable agroforestry planning, balancing ecological
conservation with rural development. GEE ensures scalability
and reproducibility for dynamic land-use assessments.(Figure 2)

l | \

| |
i8DA -GloSIS GPWwv4 - OSM

1
CHRIFS -ERAjJ SRIM-LULC
| | i |
Texwre(020cm)  -Rainfall(2018-2023) Stops/Aspect Population density
4 S N1 AP
Soil pH ~Temp_max(2019-2023 Erosion risk Foadnetwork | LS TE e
Spectral indes  -Temp_min(2019-2023) i y
———————————— !
NDVI NDWI 3
L -l |
Sol Feriliy | sltivated land and meadows
! Open woodland
FClasses | Bridings andlor bare land
} Treefforest cover
‘
Accurate map
|
I ! ]
I o T :
-Maps/Graphs generating | Continious variables [ . L
Interpretations Sc“al app _| Uniform Vanable ;
' | A : ‘ b
|0 Nemsuigble  lSuimble | [ —

v 7 7
Results validation

W scxrn cueoroans: W i —y
; index distribution i .

. ! Unift Viriable
Uniform Variable e = T
Median

SiDev

Comparison of validation methods
Adoption of the final agroforestry

suitability map

Figure 2. Methodology Flowchart

2.3 Data used

Our comprehensive agroforestry suitability assessment of
Tazekka National Park integrated 11 distinct spatial datasets:
land use/land cover maps, annual precipitation records (2019-
2023), temperature extremes, soil texture and pH measurements,
vegetation indices (NDVI and NDWI), tree cover percentages,
population density figures, road network data, soil erosion
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estimates, and topographical parameters (slope and aspect).
These datasets, categorized into four key domains (soil, climate,
topography, and socioeconomics) (Table 1).

Criteria Variable Unit Data Source
Texture iSDA
Ph -log(s+) GloSIS
Soil
NDVI COPERNICUS/S2_SR
NDWI COPERNICUS/S2_SR
Rainfall mm CHIRPS
Climat Min Temp
- °C ERA5-Land
Max Temp
Erosion LULC
Topography Aspect and ° (dégrée) SRTM
slope
Population Hab/km? GPWv4
Socioeconomic Density
Road Network OSM

Table 1. Data list

2.3.1  Annual precipitations records

Precipitation is a key factor in agroforestry management,
influencing water availability, crop productivity, and ecosystem
health. This study uses CHIRPS data for 5 years from 2019 to
2023 to provide insights for optimizing irrigation, ensuring
water availability, and mitigating drought risks (Morales, I,.
2023). Integrating precipitation data into agroforestry planning
enhances resource efficiency, soil moisture retention, and
ecosystem resilience.

2.3.2  Temperature extremes

Minimum and maximum temperatures are key determinants of
plant growth, climate adaptation, and risk management in
agroforestry. This study leverages five years (2019-2023) of
high-resolution ERAS5-Land reanalysis data to analyze
temperature variability (Mufios Sabater, J,. 2021). These
insights aid in optimizing plant selection, mitigating thermal
stress, and enhancing climate resilience in agroforestry systems.
2.3.3  Soil texture

Soil texture influences water retention, nutrient availability, and
plant growth in agroforestry systems. This study utilizes USDA
soil texture classifications for depths of 0-20 cm and 20-50 cm,
derived from iSDA’s machine learning models trained on over
100,000 soil samples with 30 m resolution. These insights
support soil fertility management, water optimization, and
sustainable land use in agroforestry (USDA, 2011).

2.3.4  pH measurements

Soil pH regulates nutrient availability and plant health, shaping
agroforestry productivity (Khaled, F,. 2023). This study uses
OpenLandMap soil pH data (measured in water) at six depths
(0-200 cm) with a 250 m resolution. As a key soil chemistry
indicator, pH influences nutrient uptake and ecosystem balance,
guiding soil amendments and sustainable land management.

2.3.5 Vegetation indices (NDVI and NDWI)

The Normalized Difference Vegetation Index (NDVI) assesses
vegetation health and density, aiding agroforestry suitability
analysis. Derived from Sentinel-2 imagery, it identifies
vegetation cover and ecosystem vitality (Lasaponara, R., 2022).
Similarly, the Normalized Difference Water Index (NDWI)
detects water bodies, supporting water resource management by
tracking water availability and mitigating flood risks for
sustainable land use (Du, Y., 2016).

2.3.6  Tree cover percentages

Tree cover percentage data helps assess vegetation density and
forest extent, vital for agroforestry suitability. It guides land-use
planning, ensuring optimal conditions for both ecological health
and agricultural productivity while supporting sustainable
agroforestry and forest conservation (FAO, 2020).

2.3.7  Soil erosion estimates

The erosion risk map highlights areas vulnerable to soil erosion,
crucial for sustainable land management. For Tazekka National
Park, an integrated approach combined multiple datasets:
precipitation data (R factor), SRTM elevation data (LS factor),
Sentinel-2 NDVI (C factor), and reclassified LULC data (K
factor). These factors, along with a constant P factor, were
multiplied to generate the final erosion risk map (Elnashar, M.,
2021). This analysis aids in soil conservation, guiding
agroforestry planning and interventions to reduce land
degradation and ecosystem deterioration.

2.3.8  Topographical parameters (slope and aspect)

Slope and aspect data, derived from SRTM, describe terrain
inclination and orientation, critical for erosion and water
management in agroforestry. Slope affects runoff, soil retention,
and land stability, guiding agroforestry practices. Additionally,
terrain  steepness impacts accessibility, influencing the
feasibility —of agroforestry interventions and project
implementation (Geopard, 2019).

2.3.9 Population density

Population density data, sourced from GPWv4 (2000-2020),
offers insights into human distribution and its impact on natural
resources. With a 30-arc-second resolution (~1 km), this data is
crucial for assessing resource pressure and guiding sustainable
development strategies, ensuring a balance between human
needs and environmental conservation (Liu, L., 2024).

2.3.10 Road network

Road network data, sourced from OpenStreetMap (OSM),
provide valuable insights into transportation infrastructure.
These data influence not only access to study sites but also the
management of natural resources in the region, facilitating
efficient planning and resource distribution (Hosseini, R.,
2025).
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2.3.11 Land use/Land Cover maps

LULC (Land Use/Land Cover) data describe land use types and
coverage, crucial for understanding the current and future
impacts of agroforestry practices (Santoso, T., 2024). This data
helps identify coverage types, plan land use, and assess
environmental ~ impacts,  supporting  sustainable  land
management and agroforestry planning.

2.4 Data preprocessing

Data preprocessing is a critical step in the preparation of
geospatial data for analysis, particularly when working with
environmental variables in Google Earth Engine (GEE). In this

[——

phase, 28 raster maps are created for each relevant variable,
utilizing specific codes in GEE. These maps represent various
environmental parameters that are crucial for understanding the
suitability of land for agroforestry. The creation of these raster
maps involves extracting, processing, and transforming raw
satellite data into a consistent format that can be used in
subsequent analysis. These maps will serve as the foundational
input for the final suitability mapping analysis, where they will
be combined to identify optimal locations for agroforestry based
on various ecological and environmental factors. This
preprocessing ensures that all variables are standardized and
ready for in-depth spatial analysis, enabling informed decision-
making in land-use planning. (Figure3).
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Figure 3. Generated maps using GEE: from top left: Annual Rainfall accumulations of 2019 - Annual Rainfall accumulations of 2020
- Annual Rainfall accumulations of 2021 - Annual Rainfall accumulations of 2022 - Annual Rainfall accumulations of 2023 - Annual
Rainfall accumulations of 2019 — Annual minimum Temperature of 2019 - Annual Minimum Temperature of 2020 - Annual
Minimum Temperature of 2021 - Annual Minimum Temperature of 2022 - Annual Minimum Temperature of 2023 — Annual
Maximum Temperature of 2019 - Annual Maximum Temperature of 2020 - Annual Maximum Temperature of 2021 - Annual
Maximum Temperature of 2022 - Annual Maximum Temperature of 2023 — Soil Texture (0-20cm) — Soil pH level — Fertility level -
NDVI — NDWI — Tree cover — Erosion Risk — Slope — Aspect — Population density — Road network — LULC( SVM) — LULC (RF)

2.5 Methods and algorithms used in GEE

25.1 Supervised classification

Supervised classification is a machine learning technique that
uses labeled data to create predictive models for classifying
unlabeled datasets, particularly in GIS and remote sensing. It
analyzes variables like vegetation, land use, slope, temperature,
and soil texture to assess agroforestry suitability, segmenting
areas based on their capacity for integrating trees, crops, and
livestock. Popular algorithms include Random Forest (RF) and
Support Vector Machine (SVM), both of which excel at
handling large, diverse datasets and producing accurate maps
for agroforestry planning (Kasahun, M., 2024).

. Random Forest (RF)

Random Forest is a classifier consisting of multiple tree
classifiers, each casting a vote for the most frequent class based
on input data. It operates on independent, identically distributed
random vectors (Van der Aalst, 2016).

. Support Vector Machine (SVM)

SVM is a classification algorithm that finds the optimal
hyperplane to separate data classes by maximizing the margin
between them. It uses support vectors to define this hyperplane
(Liu et al., 2021). For nonlinear data, SVM employs kernel
functions, like the Radial Basis Function (RBF), to project data
into higher dimensions for linear separation and complex
relationship modeling.

When analyzing the performance of both classifiers, SVM
demonstrated a higher level of precision than RF. According to
the confusion matrix analysis, the overall accuracy for SVM
was 92.21%, slightly surpassing RF's 91.61%. The Kappa index
for SVM was 0.896, reflecting better agreement between
predicted and actual classifications compared to RF's 0.888.
Although RF performed well with land categories like
cultivated land (90.7% accuracy), SVM excelled, especially in
classifying forests (100% accuracy). Additionally, SVM showed
slightly better classification precision for built-up areas (97.4%
accuracy) compared to RF. While RF was strong in classifying
agricultural areas, SVM's superior performance in forest and
built-up area classifications makes it the more precise choice
overall.
2.5.2  Multicriteria analysis

Multi-criteria analysis is a method used to combine various
evaluation criteria to obtain an integrated measure of an area's
suitability (Mushtaq et al., 2024). This approach is essential for
agroforestry suitability assessment as it considers a range of
environmental and socio-economic factors.

. Weighting of criteria

Weighting of criteria is a crucial component of multi-criteria
analysis, reflecting the relative importance of each factor in
evaluating agroforestry suitability. Weights can be determined
by experts or using quantitative methods like the Analytical
Hierarchy Process (AHP), and these weights directly impact the
final suitability score (Topuz et al., 2023). The suitability score
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is calculated by multiplying normalized values of criteria by
their respective weights, creating a composite score that
integrates multiple factors into a single suitability index, thereby
facilitating informed decision-making.

Suitability Formula (Suitablity index)

Composite Score: S = }im; w; - C;

where S = overall suitability score

i = weight assigned to criterion i

Ci = normalized value of criterion i

n = total number of criteria considered

This formula calculates a composite score by weighting and
normalizing criteria, commonly used in multi-criteria decision
systems for agroforestry suitability assessments. It integrates
individual criterion contributions for an overall evaluation
(Schepaschenko et al., 2011).

. Data Normalization

Data normalization ensures comparability of criteria with
different scales and units by transforming values onto a uniform
scale (0 to 1), using methods like min-max or z-score
normalization. This ensures a fair and balanced evaluation
(GeeksforGeeks, n.d.).

Min-Max Normalization Formula:

C—Cmin

Transformation:  Chopm =

Cmax~Cmin

Cnorm = normalized value

C = original value

Cmin = minimum value of the criterion
Cmax = maximum value of the criterion

where

The Min-Max normalization method scales data to a common
range (usually 0 to 1), allowing for fair comparison of diverse
criteria. It is commonly applied in multi-criteria assessments,
like agroforestry suitability analysis, to ensure all variables
contribute equally to the decision process (GeeksforGeeks, n.d).

. Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP) is a decision-making
method that structures complex problems by organizing criteria
in a hierarchy. It is used in agroforestry suitability assessments
to weight factors like soil quality, climate, and accessibility.
AHP involves defining the problem, creating a hierarchy,
making pairwise comparisons of criteria on a 1-9 scale, and
calculating weights using eigenvalue methods, with the largest
eigenvalue (Amax) determining the relative importance of each
criterion (Kahsay, A., 2024).

Amax = Z Wy

Amax = the maximum eigenvalue of the matrix,
wi = the weight of each criterion.

where

And then in order to check the consistency of judgments, the
Consistency Ratio (CR) is used. A CR less than 0.1 is generally
considered acceptable. The CR is calculated as follows:

_a

CR=—
RI

where  ClI = the Consistency Index, calculated as:

Cl =Apgr —n(n—1)

RI = the Random Index, which depends on the matrix size.
Final results are synthesized, and the weights are calculated to
obtain a global score that evaluates agroforestry suitability,
helping make informed decisions about the most suitable areas
for agroforestry. (Table 2)

Var Factor Weight
N°
1 Rainfall 0.08
2 Temperature 0.08
3 Slope 0.08
4 Soil texture 0.08
5 Tree cover 0.08
6 Erosion risk 0.08
7 NDWI 0.08
8 NDVI 0.08
9 Population density 0.05
10 pH 0.05
Cultivated land and meadows 0.40
11 LULC Open woodlands 0.10
Buildings and/or bare lands -0.40

Table 2. Estimated weight for each variable

3. Results and Discussion
3.1 Agroforestry suitability napping

Agroforestry, combining agriculture and tree management,
requires a thorough analysis of environmental factors to identify
suitable areas. We mapped agroforestry suitability by
considering soil texture and fertility, pH, slope, population
density, erosion, vegetation cover, and other climatic and
geophysical elements. Each factor plays a vital role in assessing
land suitability for sustainable agroforestry systems. For
instance, well-drained, fertile soils promote tree and crop
growth, while steep slopes and erosion-prone areas present
challenges. Our mapping approach, using remote sensing and
geospatial tools like GEE, integrated data from multiple sources
to generate accurate agroforestry suitability maps, highlighting
optimal zones and how environmental factors influence land
suitability. These results serve as a valuable resource for
decision-makers and land managers to support sustainable
natural resource management. For the analysis, we normalized
variables like slope, NDVI, soil texture, forest cover,
precipitation, temperature, erosion risk, population density, pH,
and NDWI to a scale from 0 to 1 to ensure consistency across
factors. In weighting the factors, we first applied equal weights
to all variables for an initial suitability map. However,
recognizing local variations, we later adjusted the weights based
on each factor’s relative importance—soil quality and
population density received higher weights, while erosion and
slope were less influential in certain areas. This approach
resulted in a more accurate suitability map, identifying low,
medium, and high suitability zones for agroforestry
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interventions. The weights assigned were designed to reflect the
relative importance of each factor, with cultivated and pasture
lands receiving the highest weight (0.40), while buildings were

assigned a negative weight (-0.40), as they reduce available land
for agroforestry. (Figure 4)
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Figure 4. Suitability maps for agroforestry in Tazekka National Park - (1): with uniform weights - (2): with variable weights

3.2 Results validation

By comparing two methods of spatial analysis of suitability for
agroforestry, we found significant differences in accuracy and
local relevance. The first approach, which applied equal weights
to all variables, produced a uniform suitability map,
oversimplifying the region and neglecting critical factors such
as slope, soil texture, and population density. This approach
failed to capture the complexity of the landscape and its
suitability for agroforestry.

On the other hand, the second approach, which applied
differentiated weightings to the variables, produced a much
more nuanced and realistic assessment. It effectively
highlighted areas of varying suitability—high, medium, and
low—~by incorporating local conditions into the analysis. This
approach better reflects the various environmental and socio-
economic factors that influence the success of agroforestry.

Given the lack of local data on agroforestry, direct validation
was not possible. Instead, alternative methods such as suitability
index distribution, zonal statistics, and variance mapping were
employed to assess model reliability. The first approach showed
little variability, while the second displayed a much wider range
of suitability, aligning more closely with actual land conditions.

The second method (Figure 4 (2)), which utilizes variable
weighting, offers a more precise, nuanced, and contextually
relevant depiction of agroforestry suitability. This approach
facilitates better decision-making and enhances planning by
identifying areas that are most suitable for successful
agroforestry interventions, ensuring effective allocation of
resources.

3.3 Discussion

The study at Tazekka National Park uses Multi-Criteria
Analysis (MCA) and Google Earth Engine (GEE) to find the
most suitable agroforestry zones. It combined classification
methods like Random Forest (RF) and Support VVector Machine
(SVM) with a variety of environmental factors, such as
temperature, precipitation, slope, soil properties, and vegetation

indices. Outstanding accuracy ratings of 92.21% for SVM and
91.61% for RF were achieved with this combined approach. To
increase the validity and applicability of the findings, the study
did, however, also point out a number of limitations that need to
be investigated.

Since the results mostly depended on indirect remote sensing
data, the lack of field validation is a major drawback that could
lead to errors when compared to actual ground conditions.
Furthermore, the satellite imagery's resolution was inadequate
to adequately depict fine-scale topography differences,
including small-scale ridges or depressions, or to capture vital
water resources concealed beneath thick tree canopies.
Additionally, crucial soil characteristics like permeability and
drainage depth were not included, which affected the precision
of water retention evaluations and might have resulted in
overestimations or underestimations of the land's suitability for
agroforestry.

The failure to include land policy issues, which are essential to
the viability and deployment of agroforestry systems, is another
significant drawback. The study's recommendations might not
be entirely feasible or sustainable in practice if local land
management laws and policies are not taken into account.

Although MCA was successful in combining different
agroforestry suitability criteria, it might be greatly improved by
adding more advanced artificial intelligence (Al) methods like
neural networks and data envelope analysis (DEA). These
techniques could improve the impartiality and accuracy of the
suitability evaluation by offering greater insights into intricate,
nonlinear interactions between environmental variables.

Long-term monitoring of important environmental and land-use
variables will be crucial to adjust to the difficulties presented by
climatic variability and guarantee their resilience by so
improving agroforestry plans. Future studies in this field should
combine more thorough soil data covering important factors
like permeability and drainage depth with on-site validation,
higher-resolution images from sources including the
Mohammed VI satellite, LIDAR, and drones. Including land
policy analysis will also offer a more all-encompassing method
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of agroforestry design, therefore guaranteeing that plans are
both socially feasible and ecologically sustainable.

4, Conclusion

The agroforestry suitability analysis in Tazekka National Park
highlighted the critical role of variable weighting in result
accuracy. Initially, assigning equal weights to all variables led
to imprecise assessments, underestimating or overestimating
key areas. Adjusting the weights significantly improved
accuracy, revealing the dominant influence of factors like
rainfall, temperature, and slope in identifying optimal
agroforestry zones. These findings emphasize the need for
tailored approaches that consider local environmental
complexities. The results provide valuable insights for
sustainable park management, helping balance conservation
with local livelihoods by promoting agroforestry systems that
enhance biodiversity, prevent soil erosion, and support rural
communities. Integrating this research into long-term strategies
can strengthen ecosystem resilience against climate change and
land degradation. Beyond Tazekka, this study serves as a model
for regional agroforestry planning, encouraging data-driven
decision-making to address soil degradation, biodiversity loss,
and food security challenges. By promoting agroforestry,
communities can diversify incomes, improve food security, and
enhance environmental sustainability. Ultimately, this research
lays the groundwork for practical, scalable agroforestry
solutions, fostering ecological and economic sustainability
while informing broader natural resource management
initiatives.
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