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Abstract

Point cloud data from aerial LiIDAR scan (“ALS”) are used for object detection and classification of energy industry facilities and
assets. It is advantageous to be able to carry out point cloud classifications in near real time on secure hardware at the survey location
and to be able to rapidly train the model on custom object classes. Such requirements create the need for efficient deep learning
architectures which produce accurate predictions with low computational cost and time. This research presents a solution using
Modified Point Voxel CNN (“MPVCNN”) which consists of feature-level fusion between voxel and point features for local feature
extraction. In doing so, this architecture circumvents indexing operations and GPU memory limitations. The MPVCNN developed in
this research was trialled using dense DALES datasets. Additionally, Aerial LIDAR scan datasets typically suffer from a class
imbalance for rare objects and those which are physically small or thin-shaped, relative to other object classes. This research explores
how a second classification pass can be used to improve the initial classification prediction for such imbalanced object classes, by
using predicted class labels as a criterion to group points which are semantically homogeneous in computing geometric features. This
paper demonstrates that the MPVCNN architecture is capable of high accuracy (>0.9 Fl-score and OA) classifications, with short

training times (approximately 1 hour), on dense ALS datasets using standard hardware (e.g. 8GB GPU).

1. Introduction

This paper develops and evaluates an efficient deep learning
methodology for 3D point cloud classification. The intended
application is for aerial LiDAR based asset surveillance
campaigns within the energy industry, with a primary goal to
detect intrusions or anomalies around critical infrastructures such
as pipelines and powerlines. There are reported instances of theft
from oil pipelines across several countries (Smith, 2022), where
valuable oil products were illegally diverted from the main
pipeline network causing significant economic loss and creating
potential hazards (Ambituuni et al., 2015). In addition, critical
assets require monitoring for signs of ground movement,
primarily due to landslides, subsidence, erosion, or flooding
(UKOPA, 2019). Such infrastructures typically traverse large
swaths of land, which makes monitoring for safety and security
a challenging task for asset owners and operators. Due to the
large data size, the survey data is usually post-processed upon
completion of the surveillance mission, resulting in a delay
before any appropriate actions can be taken. From a safety and
security point of view, the delay could be more detrimental than
accuracy (or resolution quality) of the captured data. Thus,
techniques towards rapid 3D point cloud classification are crucial
for this application, such that objects could be identified during
the surveillance campaign, instead of days or weeks after the
event.

With the advent of high-resolution airborne LiDAR scanners,
large-scale dense public datasets are becoming more common.
This study used the relatively new Dayton Annotated LiDAR
Earth Scan (“DALES”) dataset (Varney et al., 2020). Aerial
LiDAR scan point cloud coordinate data can be supplemented
with handcrafted geometric properties as additional information.
These geometric features (e.g. Verticality, Roughness, Planarity,
Linearity etc.) represent the shape, size or orientation of the local
point cloud distribution and are derived from the eigenvalue
decomposition of a group of points (Weinmann et al., 2013).

As a classification tool, adequately high prediction accuracy i.e.
Fl-score of above 0.9 on important classes is a reasonable
performance target; to enable near real-time inferencing during
field work surveillance campaigns and rapid re-training.
Therefore, the main goal of this research is to achieve low
training times of less than 1 hour and inferencing in under 1
second for a typical tile size of 500m x 200m (to account for the
width of energy pipeline right-of-way), operating on a laptop
equipped with a GPU e.g. RTX3070 8GB. In this pursuit, we
introduce a Modified Point Voxel CNN (“MPVCNN”)
architecture to address the requirements for a rapid deep learning
classification tool for aerial asset surveillance.

A common challenge on aerial point cloud classification is to
obtain high accuracy on class imbalanced and relatively small
objects such as ‘car’ and ‘truck’. A case in point is the low F1-
score for ‘car’ object class as reported by the authors of TONIC
architecture (Ozdemir et al., 2021); in the range of 0.666 — 0.682.
Thus, the second research goal is towards development of
methodology to detect changes and identify objects from aerial
surveillance on infrastructures, thus it is in our interest to detect
signs of human activity via proxies such as vehicle. Therefore,
the secondary focus of this paper is to develop a methodology to
improve classification accuracy on objects that are commonly
impacted from class imbalance, specifically for ‘car’. A higher
F1-score figure (e.g. above 0.90) would be desirable for reliable
detection for this object class.

In calculating geometric features, either a fixed radius or k-
nearest neighbours are used to group neighbourhood points
around a given centroid point. It is also likely that the grouped
points are composed from multiple object classes (e.g. ‘car’,
‘vegetation’, ‘ground’) which are commonly found near to each
other. In this situation, the conventional computation of
geometric features has the tendency to aggregate points from a
mixture of object classes. A better representation is to re-
calculate the geometric features for an individual object in a
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discretize manner i.e. points from ‘car’ are segregated from
‘vegetation’. Intuitively, points from different object classes are
unlikely to share similar geometric shapes and features.
Conversely, points that belong to the same class but from
different instances (e.g. ‘car A’ and ‘car B’.) would tend to have
similar geometric shapes and features. This research studies the
use of class information as a filter to group points which are
semantically homogeneous i.e. belonging to the same class for
geometric features computation. The re-calculation of geometric
features is performed during the second train-test pass of the
chosen deep learning architecture. As a proof of concept, we use
MPVCNN architecture for its low training durations and high
accuracy in the development of this second processing pass
technique aptly referred as “Look Twice”.

The contributions of this paper are:

(1) MPVCNN architecture that balances accuracy and F1-score
with low training times and computational resources, suited for
rapid processing in the field.

(i) Look Twice approach: a novel second processing pass
workflow, designed to maximize F1-scores for class imbalanced
objects within ALS dataset i.e. ‘car’ and ‘powerline’, achieving
the highest F1-score values for the DALES dataset to date

2. Related Work

Our Modified Point Voxel CNN (“MPVCNN”) is a new
improvement for aerial point cloud datasets, developed from the
original indoor segmentation task point-voxel deep learning
architecture named PVCNN (Liu et al., 2019). From the onset,
PVCNN was built with goals to achieve low training times and
low computational demand. It has been shown to have superior
accuracy, intersection-over-union and latency against other
benchmark models for indoor scene segmentation using the
S3DIS dataset (Armeni et al., 2016). The main limiting factor of
3D point-voxel architecture is the size of the voxel grids,
specifically the cubic growth of the number of voxels will
increase GPU memory used. The authors of PVCNN did not
include the usage of other input features such as geometric
features, apart from coordinate data and LiDAR derived features.

Other direct point-based architectures, primarily PointNet++ (Qi
et al., 2017) or its derivatives such as Modified PointNet++ (Y.
Chen et al., 2021) and GADH-Net (Li et al., 2020) are known for
their longer train times, due to inherent point sampling and
grouping operations. A PointNet++-like architecture involves
selecting centroid points based on a farthest point sampling
technique, then grouping of neighbourhood points around the
centroid point that resides within a sphere search query. The
subsequent step is known as feature abstraction layer, whereby
multiple convolution steps are then applied on the features
(coordinates or other data representation) contained within the
centroid and its group of neighbourhood points. Structurally,
PointNet++ is a form of U-Net architecture, pioneered by
Ronneberger et al. (2015), in which the network learns by
sampling centroids at various receptive scales to encode
information at different physical sizes. Modified PointNet++ and
GADH-Net were developed using Vaihingen 3D dataset
(Rottensteiner et al., 2012) - a sparse publicly released LiDAR
dataset. The main difference between the two mentioned
architectures is that GADH-Net included geometric features as
its input features. However, for a dataset with large point density,
in order for any PointNet++ derivative architecture to gain
benefit from a large amount of data, it would require more
centroid points to be sampled and grouping of neighbourhood
points, based on distance calculation between all sampled points
and keeping a register of the point indexes, which thus increases

its computational cost. The authors of Modified Pointnet++
reported an average Fl-score of 0.712 for the Vaihingen 3D
dataset with an Overall Accuracy of 0.832, and training time of 2
hours on a 32GB Nvidia Tesla V100. Whereas authors of GADH-
Net achieved an average F1-score of 0.717, Overall Accuracy of
0.850, with training time of 7 hours on 2x12GB Nvidia Titan Xp.

TONIC (Ozdemir et al., 2021) is an architecture which uses
voxelization step to encode coordinate and LiDAR features (e.g.
intensity). This is followed by k-nearest neighbour selection; to
group neighbourhood points around a centroid point.
Subsequently 5 geometric features (Linearity, Sphericity,
Omnivariance, Planarity, Verticality) and 2 height features
(height above ground, height change) are calculated and included
as its input features. The selection criteria on geometric features
were not discussed by the author, which we believe is an
imperative step and included in our study as section 4.3.3. In
TONIC, the input features (point coordinates, derived geometric
and LiDAR sensor data) are encoded as an image map in a 2D
matrix (row: number of points x column: features). The row of
the matrix represented by number of points is sorted based on the
coordinate values, thus providing some order to the data points.
Given the data structure, 2D CNN operations can be applied,
similar to image classification. TONIC is a relevant benchmark
to our research, as the architecture was developed for low training
times and designed to work with dense ALS datasets, using the
DALES dataset for evaluation. When the TONIC model was
trained and tested on DALES tiles it reported high F1-scores (>
0.9) for ‘ground’, ‘vegetation’, ‘powerline’ and ‘building’
classes, but noticeably lower for ‘car’ (0.666) and ‘truck’ (0.000),
which are objects of interest for aerial surveillance. To tackle
processing challenges with large ALS datasets, the TONIC
authors downsampled the data to 5.6% of the original density,
effectively reducing from estimated 15 million points available
in the train tile to less than 1 million points for a tile with the size
of 500m x 500m (equivalent to point density of 3 points / m?), an
approach that while practical, may risks the loss of valuable
information.

In recent times, attention-based architectures have emerged for
point cloud data such as DAPnet (L. Chen et al., 2021).The
authors reported the state-of-the-art performance on Vaihingen
dataset with Average F1-score of 0.823 and Overall Accuracy of
0.907. Structurally, DAPnet uses point sampling and grouping
methods similar to the approach by PointNet++. Where it differs
from PointNet++ is in the feature abstraction layer; extracting
point level and group level features using self-attention method
(instead of multiple Multi Layer Perceptrons in PointNet++
inspired architectures). Nonetheless, the authors did not report
the training duration and GPU size used in the study.

Superpoint Transformer by Robert et al. (2023) was a recent
development using a transformer-based architecture applied on
cluster of point clouds; partitioned based on geometrically
homogeneous groupings known as ‘superpoints’ or reference
points, in contrast to farthest point sampling technique commonly
used in PointNet++ type of architectures. The authors of
Superpoint Transformer also included handcrafted features to
define the relationship between superpoints such as the relative
positions of centroid points, position of paired points in each
superpoint, principal directions, ratio between the superpoints’
length, volume, surface, and point count. These features were
computed once during preprocessing step. In this design,
superpoints are partition as hierarchical graphs (‘parent’ —
‘children’ points relation) at multiple scales. Then a transformer-
based self-attention module (consists of key, query, value
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vectors) is applied at each partition layer to propagate
information between neighbouring superpoints. Using the
DALES dataset, the authors reported mIOU of 0.796. However,
no OA nor F1-scores per class objects were reported, and details
of which tiles were used for training and testing were not
disclosed. In terms of time, the pre-processing step (superpoint
graphs, handcrafted features) took 148min (48 cores CPU) for
DALES dataset but the corresponding train duration was not
reported. On the S3DIS dataset, the preprocessing time was 12
minutes plus training time of around 3 hours (on A40 DPU with
512Gb RAM). As such, we could infer that this methodology
would consume higher than the targeted 1 hour train time.

On the second processing pass workflow, to the best of our
knowledge, no other prior study has explored the approach of
introducing a second pass to take the predicted class labels as a
filter in a further point cloud classification processing pipeline.

3. Methodology
3.1 Dataset

Dayton Annotated LiDAR Earth Scan (“DALES”) dataset by
Varney et al. (2020) is a relatively recent large-scale ALS made
accessible to public, with nearly a half-billion points spanning an
area of 10 km?. This data was captured using a Riegl Q1560
LiDAR scanner over the city of Surrey, Canada, from an altitude
of 1300m with four overlapping passes to increase point density.
To put in context, in comparison to Vaihingen 3D dataset,
DALES dataset contains 400x greater number of points and 7x
more point density. This dataset is divided into 29 train and 11
test files, covering urban, suburban, rural, and commercial areas.
On average, each file contains 12 million points, with tile size of
500m x 500m, with a point density of approximately 48
points/m?.

The dataset consists of XYZ coordinates, LIDAR return intensity
and was manually classified into 8 classes: ‘ground’ (road, grass
covered surface), ‘vegetation’ (including tree, shrubs, hedges),
‘car’, ‘truck’, ‘powerline’, ‘poles’, ‘fence’ (residential and
highway barriers), ‘building’ (residential, —commercial,
warehouse). Major classes in this dataset are: ‘ground’,
‘vegetation’, and ‘building’. The DALES dataset covers rural
areas, hence dense vegetation areas are included. Class imbalance

is also prevalent in the DALES dataset as depicted in Table 1.

Training % Testing %

1 Ground 4,974,996 | 433 | 6,201,250 | 53.3
2 | Vegetation | 2,888,008 | 25.1 | 2,908,888 | 25.0
3 Car 66,146 0.6 133,464 1.2
4 Truck 63,669 0.6 11,523 0.1
5 | Powerline 55,534 0.5 31,358 0.3
6 Fence 11,732 0.1 107,560 0.9
7 Pole 12,114 0.1 8,566 0.1
8 | Building 3,424,274 | 29.7 | 2,237,107 19.1
Total 11,496,473 100 | 11,639,716 100

Table 1 - Number of points per class within DALES train tile
5095-54440 & test tile 5135-54435 (500m x 500m)

For batch training, the tile data was divided into 25m x 25m
blocks with overlap of 12.5m - to eliminate edge effects and to
increase the number of data points for training. Data
downsampling was implemented to avoid excessively large data

to be processed during model training and substantial computing
resources that would be needed. In this study, train and test data
were reduced to 25% of the original data points provided in the
DALES dataset. To circumvent the stochastic effects from
different points being sampled in each train run, a sample size of
8192 points was used per data grid block. This figure is above the
average number of points within a 25m x 25m grid block, thus
consuming 100% of the available data points as samples. A lower
sample size (e.g. 4096 points) would randomly include different
points in each training run, leading towards varying F1-scores on
particularly sensitive imbalanced object classes.

3.2 Input Features

Input data used from DALES dataset are X,Y,Z coordinates and
LiDAR intensity (I). To account for terrain elevation impact, Z
coordinates are converted into height-above-ground (“H”) using
third party software (QGIS). In which, points classed as ‘ground’
were used to interpolate ground elevation in raster format in
QGIS. Thereafter, height-above-ground values are calculated by
subtracting Z coordinates from the interpolated ground level
raster. Subsequently the input features X, Y, H and I values are
normalized between 0 and 1 using min-max scaling.

Just as variance indicates the degree of spread within a group of
data points (in this case XYZ coordinates), covariance indicates
the orientation in the distribution of the data. In the case of point
cloud data, the covariance matrix is derived from the distribution
of neighbouring point clouds around a reference point. As
defined by Weinmann et al. (2013) from the covariance matrix
and its consequent eigenvalues (L), several geometric parameters
can be derived, with example included as Equation 1. The
features are Anisotropy (Ax) - a measure of oriented or non-
oriented, Eigenentropy (Ex) - a measure of order or disorder,
Linearity (L), Omnivariance (Ox) — a measure of spread in the
group of points, Planarity (P2), Sphericity (Sx). Roughness (Rx) is
another representation of geometric feature described by Glira et
al. (2015), which corresponds to the standard deviation of the
selected points from the estimated plane. The largest eigenvalue
corresponds to the covariance matrix and indicates the magnitude
and direction of the largest spread within a given data. In a 3-
coordinate system, there are 3 corresponding eigenvalues (A1, A2,
A3) with A1 being the largest and A3 the smallest. As a good
practice for network training, the input features are normalized
from 0 to 1. Thus, each of the three eigenvalues are normalized
by dividing it with the sum of the eigenvalues, for instance e1 =
A1/ (M+ A2+ A3), such that the sum of the normalized eigenvalues
(e1 + e2 + e3) would be equal to 1.

)
Pr== Ry= J2; (M

In addition to eigenvalues-derived geometric features, other
parameters such as local point cloud density (D) and surface
normal along the z-axis or verticality (V) are also evaluated as
features. Local point cloud density is a measure of number of
neighbouring points within a search sphere with a defined radius
(in this study, we chosen r=3 metres). Eigenvalues and
consequent geometric features are also dependent on the number
of points selected here nearest neighbour searches of k=5 and
k=30 were explored to study the impact of various search scales.

As reported by Weinmann et al. (2013), geometric features can
be redundant or irrelevant to the classification task. Although one
could expect a deep learning network to learn and reduce
information contributed from insignificant features, but in
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practice, this may not be the case. As such, feature relevance and
feature selection are included in our approach. Analysis of
variance (“ANOVA”) was used to determine the degree of
variability between different geometric features, as a ratio to the
degree of variability within the feature itself. In some literatures,
ANOVA is referred as F-test.

In our approach, calculation of geometric features was performed
as a pre-processing step, prior to sampling of data points through
the voxelization step. In this way, the geometric feature
calculation has access to the complete dataset without being
limited by grouping points that reside only in the same voxel cell.
The data points are grouped according to a defined search radius
(r=3 m) and then the first k=30 nearest neighbour points were
selected.

3.3 Deep Learning Architecture

A key design in MPVCNN and PVCNN is the fusion of features
using two encoding branches; a voxel-based branch which
considers the effect of local neighbourhood point features, and a
Multi Layer Perceptron (“MLP”) for individual point features. In
the voxel branch, local neighbourhood point cloud {pk, fk} where
Pk = (Xk, Yk, zk) is the normalized coordinates and features fk of
k™ input are transformed into a voxel grid system (u,v,w). These
operations are performed for two voxel sizes (64° and 323) to
account for different receptive scales. Subsequently, an average
pool operation is applied on the voxelized features Vuy,w,. (€.g.
coordinates, intensity, geometric features, feature maps); by
averaging the sum of the features divided by the number of points
in the voxel, as described in Equation 2.

Vi = 5o Zhaalll floor (i x 1) = w, floor(y x 1) = v,

floor(z, ><'rv) =w] X fic 2

Where r represents the voxel resolution, I[.] denotes the binary
indicator if pk occupies a voxel grid (u,v,w), fk,c represents the
feature c* channel which correspond to point pk, N is the number
of points within the voxel grid.

Layerl: in=64, out=64
© Layer 2: in=64, out=64

Conv3D
Batch Norm
LeakyRelu

Laver 4_out=64
ConvlD
Batch Norm
Relu

various scales

Trilinear

Voxelization De-Voxelize

Geometric
Feature Block

Repeat for
various voxel
scales

Voxel size:
32&64

Layerl: out=512
Laver 2: out=256
Layer 3: out=number of classes

Classifier:
ConvlD

Figure 1 — MPVCNN network architecture

Upon this step, the network executes two layers of 3D
Convolution operations on the voxel grid (also with batch
normalization & nonlinear activation function on each layer)
producing output features tensor in dimension of batch size,
output channel size, number of sampled points. The ‘voxel

feature’ branch in Figure 1 however represents the
neighbourhood information in a coarse granularity. For finer
granularity at individual point level, the ‘point feature’ branch in
the same Figure 1 extracts information of the (individual) point.

In the devoxelization step, the network re-maps voxel domain
features back to the point cloud cartesian grid domain. To avoid
excessive loss of information if all the points in the same voxel
grid were to have the same value, a trilinear interpolation method
is used. More importantly, trilinear interpolation is a
differentiable function, thus enabling the voxel branch to be
trainable.

Referring to Figure 1 modification to the original PVCNN
architecture is marked by the boxes outlined in ‘red’. One of the
two improvements introduced in our MPVCNN is the geometric
feature block as an input feature, in addition to coordinate data.
Thus, providing more information and dimensionality towards
ALS type data. The other improvement introduced in MPVCNN
is within the ‘point feature’ branch - for finer granularity at
individual point level, we utilised 3 sequences of MLPs in the
form of 1D Convolution operation with kernel size of 1 i.e. 1x1
filter, and setting its bias as zero. The network begins with an
MLP layer with large input channel at the beginning and
gradually reducing the input channel towards the third MLP
layer.

Both branches, from high-resolution individual point information
and low-resolution voxel-based neighbourhood information, are
concatenated for more complete information for per-point
classification operations. This fused feature map is passed
through a max pooling operator to down-sample and select only
the maximum value among the various feature maps. The max
pooled feature map is appended to the fused feature map and
subsequently fed into two fully connected layers in the
classification step. The final output is class prediction for each
point in the point cloud sampled set.

3.4 Look Twice Workflow

For the second processing pass, the geometric features were
calculated from class-filtered group of points e.g. calculated from
nearby points that share the same class label as the index points.
For the second pass training dataset, the provided ground truth
labels were used to search and group points belonging to the same
class labels. At this stage, the model will be trained and learn the
‘sanitized’ geometric features associated with an ideal-case
objects, where all the points in an object are from the same
classes, i.e. ‘car’ verticality feature being calculated only from
points belonging to the ‘car’ class. This is not a problem for a
training dataset where class labels are provided, but would be a
missing piece of information in an unclassified test dataset, of
which obtaining the class label is the intended purpose.

Therefore, for the second pass test dataset, class label information
needs to be generated from the result of the test dataset evaluated
from a prior deep learning model. This first processing pass is
executed in a typical train-test sequence of deep learning
framework, without applying class-based filter, to generate class
labels prediction in the test dataset. Albeit, at this stage, the
predicted label in the test dataset is not 100% accurate, containing
prediction errors (false negative and false positive predictions) of
the first processing pass. Even so, we hypothesize that despite the
erroneous predicted labels from the first pass, the grouped points
are still semantically similar without inclusion from points
belonging to other classes, and will also be evaluated on
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geometric features derived from the same class filtered points.
The overall workflow of our second processing method is
depicted in Figure 2. Both models (from first pass and second
pass) once trained, are ready to process a new unseen test data.

The proposed ‘Look Twice’ method can be summarized as

follows:

1) Run the first processing pass - execution of train-test deep
learning classifier, without applying a class filter. Generate
predicted class labels in the test dataset.

2) Run the second processing pass (training) - for the training
dataset use ground truth class labels and apply a class-based
filter to group neighbouring points. The same (or different,
user choice) deep learning architecture is then trained with
the class filter being applied.

3) Run the second processing evaluation step in the second
processing pass, the test dataset makes use of the predicted
class labels from the first processing pass; as criterion in
neighbourhood points grouping or sampling for the test
dataset. Ultimately an evaluation run from this second
processing pass generates the updated and final class label
predictions.

First Processing Pass

Train Data
Input:
XYHI

+
Geometric Features

Test Data
Input:
XYHI

+
Geometric Features

Output Eval
MUEI 1 Predicted
Class

Second Processing Pass

TrainData Test Data
Input: Input:
XYHI XYHI

+ +
Geometric Features: Geometric Features:
Supplied Class > Predicted Class >
Class-Filter Class-Filter
Grouping Grouping

Output Eval

Final Class

Figure 2 - Workflow first & second processing pass for train &
test runs

4. Results and Discussion
4.1 Features Selection

To determine which geometric features to include as model
inputs, ANOVA scores (Table 2) were used to rank features
based on their sensitivity to the class labels. Subsequently,
Pearson correlation was applied to eliminate geometric features
which are highly correlated and therefore deemed as duplicates.
, High degrees of correlation were found between Roughness,
Omnivariance, Sphericity and Anisotropy, thus, the latter three
features are excluded to avoid noise in the data whilst Roughness
was retained as a representative input feature. Using these tools
to aid feature selection, Verticality and Roughness were selected
as the top two features. The next two features selected were
Eigenentropy and Local Density as they both have similar
ANOVA scores. Thus, the selected features used in this study are:

Verticality, Roughness, Eigenentropy, Local Density and
Planarity.

Feature ANOVA Feature ANOVA
score score
z 213731 Intensity 45629
Verticality 166115 Eigenentropy 34719
Roughness 159234 | Local Density 32448
Omnivariance 150087 X 16474
Sphericity 84142 Y 3647
Anisotropy 84140 Planarity 2220

Table 2 - ANOVA scores for feature selection

4.2 MPVCNN

The DALES dataset is relatively recent, therefore only a few deep
learning networks have been developed using this dataset as
reference. For benchmarking purposes, we present the IoU results
as published by the authors of TONIC architecture (Ozdemir et
al., 2021) and the authors of DALES dataset (Varney et al., 2020)
in Table 3. This table also includes the IoU results from
MPVCNN trained on tile 5185 54485 (500m x 500m). For test,
we selected tiles 5135 54430 + 5135 54435 (combined size of
500m x 1000m). The authors of TONIC and DALES did not
explicitly indicate the tiles used for training and testing in their
reporting, thus no meaningful comparison on the same train and
test tile sets could be made in Table 3. Nonetheless, loU figures
are indicators on the trends among various methods. From the
results, two MPVCNN models attained high OA and IoU scores
for ‘ground’, ‘vegetation’, ‘powerline’, ‘building’ object classes
at above 0.9, close to KPConv (Thomas et al., 2019) figures.

= o
Model 2 £ o | OA
2 3 v - 5} —é
5 151
) S 2 2 2 =
E |2 |5 |2 |8 |8 & |2
KPConv * | 0.971 | 0.941 | 0.853 | 0.419 | 0955 | 0.635 | 0.750 | 0.966 | 0.978
i -+
PointNet 0.941 | 0912 | 0.754 | 0303 | 0.799 | 0.462 | 0.400 | 0.891 | 0.957
TONIC
0.926 | 0.863 | 0.499 | 0.000 | 0.823 | 0.360 | 0.306 | 0.837 | 0.938
(2DCNN) ? ?
MPVCNN
. . 681 | 0130 | 0279 | 0.502 | 0.015 | 0. .
VREDP kes | 0959 | 0930 | 0.681 [ 0.130 | 0.279 | 0.502 | 0.015 | 0950 | 0.970
MPVCNN
0.954 | 0.915 | 0.647 | 0.085 | 0.917 | 0.430 | 0.031 | 0.924 | 0.967
VR k=30

*sourced from Varney et al. (2020)
Table 3 - IoU benchmark vs MPVCNN

In terms of Fl-score benchmark (Table 4), we could draw
comparison with TONIC architecture of which the authors have
reported its figures. TONIC also highlighted its fast train time
(0.5 hours on Vaihingen dataset, on 11GB Nvidia RTX 2080Ti
GPU) which share similar ethos as our study. Again, without the
tile information and data density on the experiments conducted
using TONIC, we are unable to conclusively state which
architecture is superior in terms of performance. Nonetheless,
MPVCNN recorded higher OA, Fl-scores for ‘ground’,
‘vegetation’ and ‘building’ on two separate test tiles. The author
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of DALES did not include in the published paper the performance
in Fl-score for KPConv and PointNet++, hence excluded in
Table 4.

Duration for model training for two tile sizes of 130,000m? and
250,000m? were 50 and 95 minutes respectively, each was set at
40 epochs. Additional preprocessing of geometric features (2
features e.g. VR) took approximately 10 and 20 minutes
respectively for the mentioned tile sizes, when performed on 8GB
RAM GPU RTX3070 machine.

=} Q
Model 2 £ o OA
T |E <« |8 |3 e
=2 o o ) -
2 ) 2 z 2 =
& |2 |8 |2 |2 |8 |2 |2
TONIC
(2DCNN) 0.962 | 0.927 | 0.666 | 0.000 | 0.903 | 0.530 | 0.468 | 0.911 | 0.938
MPVCNN

VREDP 0.982 | 0.965 | 0.810 | 0.235 | 0.436 | 0.669 | 0.032 | 0.975 | 0.970
k=5

MPVCNN

VR k=30 0.98110.959 | 0.788 | 0.167 | 0.963 | 0.606 | 0.059 | 0.962 | 0.967

Table 4 - F1-score benchmark vs MPVCNN
4.3 Look Twice

The results of the model train-test with a second processing pass
is summarized in Table 5. In the same table, we included the
results from (first pass) MPVCNN model VR k=30 as a baseline
comparison with the test accuracies and F1-scores from second
pass models. On class imbalanced objects such as ‘car’, model
VR k=30 has produced a range of gains in F1-scores by 8% and
12 % when tested on two different tiles, corresponding to actual
Fl-score of 0.852 and 0.814 respectively. This is the highest
figure within the benchmark data reported for DALES dataset.

MPVCN = 5

k=) ‘% £ @ |0A
N Model S £ % g 8 © 5

2 & 5 E 3 5 s E

en > o = o “— o o
VR k=30 0.981]0.959 | 0.788 | 0.167 | 0.963 | 0.606 | 0.059 | 0.962 | 0.967
Ist pass
VR k=30 0.983 1 0.967 | 0.852 | 0.227 | 0.900 | 0.620 | 0.071 | 0.975 | 0.973
2nd pass
VREDP
k=30 0.983 1 0.967 | 0.814 | 0.280 | 0.988 | 0.554 | 0.096 | 0.975 | 0.973
2nd pass

Table 5 - Fl1-score and OA between 1st and 2nd pass models

Referring to Figure 3, with class filter grouping, the Eigenentropy
for ‘powerline’ exhibited distinctly reduced overlap with
‘vegetation’. This could be the probable explanation on the
further gain observed in F1-score from the second pass model
VREDP k=30 in Table 5 on ‘powerline’, above the first pass
value.

To aide visualizing the effects of class filter grouping, we include
the verticality map of the train tile without class-filter i.e. first
pass (Figure 4(b)) and with class-filtered grouping i.e. second
pass (Figure 4(c)). With class-filter grouping, ‘car’ objects have
noticeably narrow band of verticality values, indicated by the
colour range, unlike the wide band observed without class-
filtered. As reference, ground truth class label for the train tile is

included as Figure 4(a). On the test tiles prediction results; Figure
5(b) depicts without class-filter and Figure 5(c) depicts with
class-filter being applied. In Figure 5, specifically on the four
purple-coloured arrows indicating ‘car’ objects, the prediction
from the first pass model contains mixture of two class labels:
‘car’ and ‘vegetation’ (Figure 5(b)). Upon the second pass, with
class-filtered geometric feature, the updated model has corrected
some of the previously erroneous ‘vegetation’ points to ‘car’
(Figure 5(c)), which explains the increase in F1-score in Table 5
for the second pass models.
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Figure 3 - Geometric features ‘Eigenentropy’ distribution plot per
class for DALES train tile 5185 54485 (k=30)

Upsides from this model as a second processing pass were also
observed on the Overall Accuracy (“OA”) and slight
improvement in Fl-scores for large objects & major classes
(‘ground’, ‘vegetation’, ‘building’). As anticipated, the impact of
this methodology would be pronounced on areas with presence
of two or more classes and imbalanced classes. On large objects,
there may not be substantial information gain from the second
pass method, further away from the object boundary. Also,
corrections made at the boundary edges are relatively small in
comparison to the substantially large point counts associated with
big objects such as ‘ground’ and ‘vegetation’ to affect F1-scores.
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5. Conclusions

We have demonstrated MPVCNN architecture as an efficient
end-to-end deep learning architecture with high accuracy (>0.9
F1-score and OA), low demand in GPU memory (e.g. 8GB) and
with low train times (approximately 1 hour) on dense ALS
datasets. In practical use, these qualities are beneficial when
processing new datasets from different geographies or adding
new object classes, which may require persistent updated
training. In terms of overall accuracy and F1-score performance
in Table 4, our MPVCNN model is potentially superior to other
benchmark such as the TONIC framework, but without the
information of the benchmark train-test tiles used by other
literatures, no definitive performance comparison can be drawn.

The class-filter grouping technique in the second train-test deep
learning processing pass using MPVCNN is an effective tool
towards extracting higher F1-scores on low frequency data points
and small physical size objects such as ‘car’ and on thin objects
such as ‘powerline’. For both classes, ‘car’ and ‘powerline’, we
recorded the highest F1-scores for DALES dataset at 0.852 and
0.988 respectively, with F1-score increment in the range of 8%
to 12% (Table 5). Using class-filtered grouping, geometric
features were determined based on a single object class, with
more distinctive profiles than geometric features computed from
an aerial dataset without class-filter grouping. Which also
supports the benefit of this methodology in correcting prediction
via learning from an ideal definition of the geometric features,
especially on the less frequent classes.

In addition to the increased Fl-score on two targeted class
imbalanced objects (‘car’, ‘powerline’), this method was also
observed to produce minor positive gain in F1l-scores for bulk
objects with higher representation of data points such as
‘ground’, ‘vegetation’ and ‘building’. Understandably, this
method is not intended nor anticipated to provide substantial
improvement on large objects and major classes, as the corrective
predictions are expected to be made at boundary areas with the
presence of multiple object classes.

On other class imbalanced objects such as ‘truck’ and ‘pole’,
there are lesser gains from this method. We believe this could be
attributed to overlapping geometric features between ‘truck’ and
‘building’, ‘pole’ and ‘vegetation’. Moreover, the instances and
number of points for ‘truck’ and ‘pole’ are relatively low, making
training for such objects remain a challenge. As such, other
features or descriptors are needed beyond what is included in this
study to adequately differentiate such objects.
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