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Abstract 

 

Point cloud data from aerial LiDAR scan (“ALS”) are used for object detection and classification of energy industry facilities and 

assets. It is advantageous to be able to carry out point cloud classifications in near real time on secure hardware at the survey location 

and to be able to rapidly train the model on custom object classes. Such requirements create the need for efficient deep learning 

architectures which produce accurate predictions with low computational cost and time. This research presents a solution using 

Modified Point Voxel CNN (“MPVCNN”) which consists of feature-level fusion between voxel and point features for local feature 

extraction. In doing so, this architecture circumvents indexing operations and GPU memory limitations. The MPVCNN developed in 

this research was trialled using dense DALES datasets. Additionally, Aerial LiDAR scan datasets typically suffer from a class 

imbalance for rare objects and those which are physically small or thin-shaped, relative to other object classes. This research explores 

how a second classification pass can be used to improve the initial classification prediction for such imbalanced object classes, by 

using predicted class labels as a criterion to group points which are semantically homogeneous in computing geometric features. This 

paper demonstrates that the MPVCNN architecture is capable of high accuracy (>0.9 F1-score and OA) classifications, with short 

training times (approximately 1 hour), on dense ALS datasets using standard hardware (e.g. 8GB GPU).  

 

1. Introduction 

This paper develops and evaluates an efficient deep learning 

methodology for 3D point cloud classification. The intended 

application is for aerial LiDAR based asset surveillance 

campaigns within the energy industry, with a primary goal to 

detect intrusions or anomalies around critical infrastructures such 

as pipelines and powerlines. There are reported instances of theft 

from oil pipelines across several countries (Smith, 2022), where 

valuable oil products were illegally diverted from the main 

pipeline network causing significant economic loss and creating 

potential hazards (Ambituuni et al., 2015). In addition, critical 

assets require monitoring for signs of ground movement, 

primarily due to landslides, subsidence, erosion, or flooding 

(UKOPA, 2019).  Such infrastructures typically traverse large 

swaths of land, which makes monitoring for safety and security 

a challenging task for asset owners and operators. Due to the 

large data size, the survey data is usually post-processed upon 

completion of the surveillance mission, resulting in a delay 

before any appropriate actions can be taken. From a safety and 

security point of view, the delay could be more detrimental than 

accuracy (or resolution quality) of the captured data. Thus, 

techniques towards rapid 3D point cloud classification are crucial 

for this application, such that objects could be identified during 

the surveillance campaign, instead of days or weeks after the 

event. 

With the advent of high-resolution airborne LiDAR scanners, 

large-scale dense public datasets are becoming more common. 

This study used the relatively new Dayton Annotated LiDAR 

Earth Scan (“DALES”) dataset (Varney et al., 2020). Aerial 

LiDAR scan point cloud coordinate data can be supplemented 

with handcrafted geometric properties as additional information. 

These geometric features (e.g. Verticality, Roughness, Planarity, 

Linearity etc.) represent the shape, size or orientation of the local 

point cloud distribution and are derived from the eigenvalue 

decomposition of a group of points (Weinmann et al., 2013).  

As a classification tool, adequately high prediction accuracy i.e. 

F1-score of above 0.9 on important classes is a reasonable 

performance target; to enable near real-time inferencing during 

field work surveillance campaigns and rapid re-training.  

Therefore, the main goal of this research is to achieve low 

training times of less than 1 hour and inferencing in under 1 

second for a typical tile size of 500m x 200m (to account for the 

width of energy pipeline right-of-way), operating on a laptop 

equipped with a GPU e.g. RTX3070 8GB. In this pursuit, we 

introduce a Modified Point Voxel CNN (“MPVCNN”) 

architecture to address the requirements for a rapid deep learning 

classification tool for aerial asset surveillance.  

A common challenge on aerial point cloud classification is to 

obtain high accuracy on class imbalanced and relatively small 

objects such as ‘car’ and ‘truck’. A case in point is the low F1-

score for ‘car’ object class as reported by the authors of TONIC 

architecture (Özdemir et al., 2021); in the range of 0.666 – 0.682. 

Thus, the second research goal is towards development of 

methodology to detect changes and identify objects from aerial 

surveillance on infrastructures, thus it is in our interest to detect 

signs of human activity via proxies such as vehicle. Therefore, 

the secondary focus of this paper is to develop a methodology to 

improve classification accuracy on objects that are commonly 

impacted from class imbalance, specifically for ‘car’. A higher 

F1-score figure (e.g. above 0.90) would be desirable for reliable 

detection for this object class. 

In calculating geometric features, either a fixed radius or k-

nearest neighbours are used to group neighbourhood points 

around a given centroid point. It is also likely that the grouped 

points are composed from multiple object classes (e.g. ‘car’, 

‘vegetation’, ‘ground’) which are commonly found near to each 

other. In this situation, the conventional computation of 

geometric features has the tendency to aggregate points from a 

mixture of object classes. A better representation is to re-

calculate the geometric features for an individual object in a 
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discretize manner i.e. points from ‘car’ are segregated from 

‘vegetation’. Intuitively, points from different object classes are 

unlikely to share similar geometric shapes and features. 

Conversely, points that belong to the same class but from 

different instances (e.g. ‘car A’ and ‘car B’.) would tend to have 

similar geometric shapes and features. This research studies the 

use of class information as a filter to group points which are 

semantically homogeneous i.e. belonging to the same class for 

geometric features computation. The re-calculation of geometric 

features is performed during the second train-test pass of the 

chosen deep learning architecture.  As a proof of concept, we use 

MPVCNN architecture for its low training durations and high 

accuracy in the development of this second processing pass 

technique aptly referred as “Look Twice”.  

The contributions of this paper are: 

(i) MPVCNN architecture that balances accuracy and F1-score 

with low training times and computational resources, suited for 

rapid processing in the field. 

(ii) Look Twice approach: a novel second processing pass 

workflow, designed to maximize F1-scores for class imbalanced 

objects within ALS dataset i.e. ‘car’ and ‘powerline’, achieving 

the highest F1-score values for the DALES dataset to date 

 

2. Related Work 

Our Modified Point Voxel CNN (“MPVCNN”) is a new 

improvement for aerial point cloud datasets, developed from the 

original indoor segmentation task point-voxel deep learning 

architecture named PVCNN (Liu et al., 2019). From the onset, 

PVCNN was built with goals to achieve low training times and 

low computational demand. It has been shown to have superior 

accuracy, intersection-over-union and latency against other 

benchmark models for indoor scene segmentation using the 

S3DIS dataset (Armeni et al., 2016). The main limiting factor of 

3D point-voxel architecture is the size of the voxel grids, 

specifically the cubic growth of the number of voxels will 

increase GPU memory used. The authors of PVCNN did not 

include the usage of other input features such as geometric 

features, apart from coordinate data and LiDAR derived features. 

Other direct point-based architectures, primarily PointNet++ (Qi 

et al., 2017) or its derivatives such as Modified PointNet++ (Y. 

Chen et al., 2021) and GADH-Net (Li et al., 2020) are known for 

their longer train times, due to inherent point sampling and 

grouping operations. A PointNet++-like architecture involves 

selecting centroid points based on a farthest point sampling 

technique, then grouping of neighbourhood points around the 

centroid point that resides within a sphere search query. The 

subsequent step is known as feature abstraction layer, whereby 

multiple convolution steps are then applied on the features 

(coordinates or other data representation) contained within the 

centroid and its group of neighbourhood points. Structurally, 

PointNet++ is a form of U-Net architecture, pioneered by 

Ronneberger et al. (2015), in which the network learns by 

sampling centroids at various receptive scales to encode 

information at different physical sizes. Modified PointNet++ and 

GADH-Net were developed using Vaihingen 3D dataset 

(Rottensteiner et al., 2012) - a sparse publicly released LiDAR 

dataset. The main difference between the two mentioned 

architectures is that GADH-Net included geometric features as 

its input features. However, for a dataset with large point density, 

in order for any PointNet++ derivative architecture to gain 

benefit from a large amount of data, it would require more 

centroid points to be sampled and grouping of neighbourhood 

points, based on distance calculation between all sampled points 

and keeping a register of the point indexes, which thus increases 

its computational cost. The authors of Modified Pointnet++ 

reported an average F1-score of 0.712 for the Vaihingen 3D 

dataset with an Overall Accuracy of 0.832, and training time of 2 

hours on a 32GB Nvidia Tesla V100. Whereas authors of GADH-

Net achieved an average F1-score of 0.717, Overall Accuracy of 

0.850, with training time of 7 hours on 2x12GB Nvidia Titan Xp.   

TONIC (Özdemir et al., 2021) is an architecture which uses 

voxelization step to encode coordinate and LiDAR features (e.g. 

intensity). This is followed by k-nearest neighbour selection; to 

group neighbourhood points around a centroid point. 

Subsequently 5 geometric features (Linearity, Sphericity, 

Omnivariance, Planarity, Verticality) and 2 height features 

(height above ground, height change) are calculated and included 

as its input features. The selection criteria on geometric features 

were not discussed by the author, which we believe is an 

imperative step and included in our study as section 4.3.3. In 

TONIC, the input features (point coordinates, derived geometric 

and LiDAR sensor data) are encoded as an image map in a 2D 

matrix (row: number of points x column: features). The row of 

the matrix represented by number of points is sorted based on the 

coordinate values, thus providing some order to the data points. 

Given the data structure, 2D CNN operations can be applied, 

similar to image classification. TONIC is a relevant benchmark 

to our research, as the architecture was developed for low training 

times and designed to work with dense ALS datasets, using the 

DALES dataset for evaluation. When the TONIC model was 

trained and tested on DALES tiles it reported high F1-scores (> 

0.9) for ‘ground’, ‘vegetation’, ‘powerline’ and ‘building’ 

classes, but noticeably lower for ‘car’ (0.666) and ‘truck’ (0.000), 

which are objects of interest for aerial surveillance. To tackle 

processing challenges with large ALS datasets, the TONIC 

authors downsampled the data to 5.6% of the original density, 

effectively reducing from estimated 15 million points available 

in the train tile to less than 1 million points for a tile with the size 

of 500m x 500m (equivalent to point density of 3 points / m2), an 

approach that while practical, may risks the loss of valuable 

information. 

In recent times, attention-based architectures have emerged for 

point cloud data such as DAPnet (L. Chen et al., 2021).The 

authors reported the state-of-the-art performance on Vaihingen 

dataset with Average F1-score of 0.823 and Overall Accuracy of 

0.907. Structurally, DAPnet uses point sampling and grouping 

methods similar to the approach by PointNet++. Where it differs 

from PointNet++ is in the feature abstraction layer; extracting 

point level and group level features using self-attention method 

(instead of multiple Multi Layer Perceptrons in PointNet++ 

inspired architectures).  Nonetheless, the authors did not report 

the training duration and GPU size used in the study. 

Superpoint Transformer by Robert et al. (2023) was a recent 

development using a transformer-based architecture applied on 

cluster of point clouds; partitioned based on geometrically 

homogeneous groupings known as ‘superpoints’ or reference 

points, in contrast to farthest point sampling technique commonly 

used in PointNet++ type of architectures. The authors of 

Superpoint Transformer also included handcrafted features to 

define the relationship between superpoints such as the relative 

positions of centroid points, position of paired points in each 

superpoint, principal directions, ratio between the superpoints’ 

length, volume, surface, and point count. These features were 

computed once during preprocessing step. In this design, 

superpoints are partition as hierarchical graphs (‘parent’ – 

‘children’ points relation) at multiple scales. Then a transformer-

based self-attention module (consists of key, query, value 
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vectors) is applied at each partition layer to propagate 

information between neighbouring superpoints.  Using the 

DALES dataset, the authors reported mIOU of 0.796. However, 

no OA nor F1-scores per class objects were reported, and details 

of which tiles were used for training and testing were not 

disclosed. In terms of time, the pre-processing step (superpoint 

graphs, handcrafted features) took 148min (48 cores CPU) for 

DALES dataset but the corresponding train duration was not 

reported. On the S3DIS dataset, the preprocessing time was 12 

minutes plus training time of around 3 hours (on A40 DPU with 

512Gb RAM). As such, we could infer that this methodology 

would consume higher than the targeted 1 hour train time. 

On the second processing pass workflow, to the best of our 

knowledge, no other prior study has explored the approach of 

introducing a second pass to take the predicted class labels as a 

filter in a further point cloud classification processing pipeline. 

 

3. Methodology 

3.1 Dataset 

Dayton Annotated LiDAR Earth Scan (“DALES”) dataset by 

Varney et al. (2020) is a relatively recent large-scale ALS made 

accessible to public, with nearly a half-billion points spanning an 

area of 10 km2. This data was captured using a Riegl Q1560 

LiDAR scanner over the city of Surrey, Canada, from an altitude 

of 1300m with four overlapping passes to increase point density. 

To put in context, in comparison to Vaihingen 3D dataset, 

DALES dataset contains 400x greater number of points and 7x 

more point density. This dataset is divided into 29 train and 11 

test files, covering urban, suburban, rural, and commercial areas. 

On average, each file contains 12 million points, with tile size of 

500m x 500m, with a point density of approximately 48 

points/m2.  

The dataset consists of XYZ coordinates, LiDAR return intensity 

and was manually classified into 8 classes: ‘ground’ (road, grass 

covered surface), ‘vegetation’ (including tree, shrubs, hedges), 

‘car’, ‘truck’, ‘powerline’, ‘poles’, ‘fence’ (residential and 

highway barriers), ‘building’ (residential, commercial, 

warehouse). Major classes in this dataset are: ‘ground’, 

‘vegetation’, and ‘building’. The DALES dataset covers rural 

areas, hence dense vegetation areas are included. Class imbalance 

is also prevalent in the DALES dataset as depicted in Table 1.  

  Training % Testing % 

1 Ground 4,974,996 43.3 6,201,250 53.3 

2 Vegetation 2,888,008 25.1 2,908,888 25.0 

3 Car 66,146 0.6 133,464 1.2 

4 Truck 63,669 0.6 11,523 0.1 

5 Powerline 55,534 0.5 31,358 0.3 

6 Fence 11,732 0.1 107,560 0.9 

7 Pole 12,114 0.1 8,566 0.1 

8 Building 3,424,274 29.7 2,237,107 19.1 

 Total 11,496,473 100 11,639,716 100 

Table 1 - Number of points per class within DALES train tile 

5095-54440 & test tile 5135-54435 (500m x 500m) 

For batch training, the tile data was divided into 25m x 25m 

blocks with overlap of 12.5m - to eliminate edge effects and to 

increase the number of data points for training. Data 

downsampling was implemented to avoid excessively large data 

to be processed during model training and substantial computing 

resources that would be needed. In this study, train and test data 

were reduced to 25% of the original data points provided in the 

DALES dataset. To circumvent the stochastic effects from 

different points being sampled in each train run, a sample size of 

8192 points was used per data grid block. This figure is above the 

average number of points within a 25m x 25m grid block, thus 

consuming 100% of the available data points as samples. A lower 

sample size (e.g. 4096 points) would randomly include different 

points in each training run, leading towards varying F1-scores on 

particularly sensitive imbalanced object classes. 

 

3.2 Input Features 

Input data used from DALES dataset are X,Y,Z coordinates and 

LiDAR intensity (I). To account for terrain elevation impact, Z 

coordinates are converted into height-above-ground (“H”) using 

third party software (QGIS). In which, points classed as ‘ground’ 

were used to interpolate ground elevation in raster format in 

QGIS. Thereafter, height-above-ground values are calculated by 

subtracting Z coordinates from the interpolated ground level 

raster. Subsequently the input features X, Y, H and I values are 

normalized between 0 and 1 using min-max scaling.  

Just as variance indicates the degree of spread within a group of 

data points (in this case XYZ coordinates), covariance indicates 

the orientation in the distribution of the data. In the case of point 

cloud data, the covariance matrix is derived from the distribution 

of neighbouring point clouds around a reference point. As 

defined by Weinmann et al. (2013) from the covariance matrix 

and its consequent eigenvalues (λ), several geometric parameters 

can be derived, with example included as Equation 1. The 

features are Anisotropy (Aλ) - a measure of oriented or non-

oriented, Eigenentropy (Eλ) - a measure of order or disorder, 

Linearity (Lλ), Omnivariance (Oλ) – a measure of spread in the 

group of points, Planarity (Pλ), Sphericity (Sλ). Roughness (Rλ) is 

another representation of geometric feature described by Glira et 

al. (2015), which corresponds to the standard deviation of the 

selected points from the estimated plane. The largest eigenvalue 

corresponds to the covariance matrix and indicates the magnitude 

and direction of the largest spread within a given data. In a 3-

coordinate system, there are 3 corresponding eigenvalues (λ1, λ2, 

λ3) with λ1 being the largest and λ3 the smallest. As a good 

practice for network training, the input features are normalized 

from 0 to 1. Thus, each of the three eigenvalues are normalized 

by dividing it with the sum of the eigenvalues, for instance e1 = 

λ1 / (λ1+ λ2 + λ3), such that the sum of the normalized eigenvalues 

(e1 + e2 + e3) would be equal to 1.  

Pλ =
λ2−λ3

λ1
   Rλ = √λ3     (1) 

In addition to eigenvalues-derived geometric features, other 

parameters such as local point cloud density (D) and surface 

normal along the z-axis or verticality (V) are also evaluated as 

features. Local point cloud density is a measure of number of 

neighbouring points within a search sphere with a defined radius 

(in this study, we chosen r=3 metres). Eigenvalues and 

consequent geometric features are also dependent on the number 

of points selected here nearest neighbour searches of k=5 and 

k=30 were explored to study the impact of various search scales.  

As reported by Weinmann et al. (2013), geometric features can 

be redundant or irrelevant to the classification task. Although one 

could expect a deep learning network to learn and reduce 

information contributed from insignificant features, but in 
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practice, this may not be the case. As such, feature relevance and 

feature selection are included in our approach. Analysis of 

variance (“ANOVA”) was used to determine the degree of 

variability between different geometric features, as a ratio to the 

degree of variability within the feature itself. In some literatures, 

ANOVA is referred as F-test.  

In our approach, calculation of geometric features was performed 

as a pre-processing step, prior to sampling of data points through 

the voxelization step. In this way, the geometric feature 

calculation has access to the complete dataset without being 

limited by grouping points that reside only in the same voxel cell. 

The data points are grouped according to a defined search radius 

(r=3 m) and then the first k=30 nearest neighbour points were 

selected. 

 

3.3 Deep Learning Architecture 

A key design in MPVCNN and PVCNN is the fusion of features 

using two encoding branches; a voxel-based branch which 

considers the effect of local neighbourhood point features, and a 

Multi Layer Perceptron (“MLP”) for individual point features. In 

the voxel branch, local neighbourhood point cloud {pk, fk} where 

pk = (xk, yk, zk) is the normalized coordinates and features fk of 

kth input are transformed into a voxel grid system (u,v,w). These 

operations are performed for two voxel sizes (643 and 323) to 

account for different receptive scales. Subsequently, an average 

pool operation is applied on the voxelized features Vu,v,w,c (e.g. 

coordinates, intensity, geometric features, feature maps); by 

averaging the sum of the features divided by the number of points 

in the voxel, as described in Equation 2. 

𝑉𝑢,𝑣,𝑤,𝑐 =
1

𝑁𝑢,𝑣,𝑤
∑ ‖[ 𝑓𝑙𝑜𝑜𝑟(𝑥𝑘 × 𝑟) = 𝑢,𝑛

𝑘=1  𝑓𝑙𝑜𝑜𝑟(𝑦𝑘 × 𝑟) = 𝑣,

𝑓𝑙𝑜𝑜𝑟(𝑧𝑘 × 𝑟) = 𝑤 ]  × 𝑓𝑘,𝑐      (2) 

Where r represents the voxel resolution, ‖[.] denotes the binary 

indicator if pk occupies a voxel grid (u,v,w), fk,c represents the 

feature cth channel which correspond to point pk, N is the number 

of points within the voxel grid. 

 

Figure 1 – MPVCNN network architecture 

 

Upon this step, the network executes two layers of 3D 

Convolution operations on the voxel grid (also with batch 

normalization & nonlinear activation function on each layer) 

producing output features tensor in dimension of batch size, 

output channel size, number of sampled points. The ‘voxel 

feature’ branch in Figure 1 however represents the 

neighbourhood information in a coarse granularity. For finer 

granularity at individual point level, the ‘point feature’ branch in 

the same Figure 1 extracts information of the (individual) point. 

In the devoxelization step, the network re-maps voxel domain 

features back to the point cloud cartesian grid domain. To avoid 

excessive loss of information if all the points in the same voxel 

grid were to have the same value, a trilinear interpolation method 

is used. More importantly, trilinear interpolation is a 

differentiable function, thus enabling the voxel branch to be 

trainable. 

Referring to Figure 1 modification to the original PVCNN 

architecture is marked by the boxes outlined in ‘red’. One of the 

two improvements introduced in our MPVCNN is the geometric 

feature block as an input feature, in addition to coordinate data. 

Thus, providing more information and dimensionality towards 

ALS type data.  The other improvement introduced in MPVCNN 

is within the ‘point feature’ branch - for finer granularity at 

individual point level, we utilised 3 sequences of MLPs in the 

form of 1D Convolution operation with kernel size of 1 i.e. 1x1 

filter, and setting its bias as zero. The network begins with an 

MLP layer with large input channel at the beginning and 

gradually reducing the input channel towards the third MLP 

layer.  

Both branches, from high-resolution individual point information 

and low-resolution voxel-based neighbourhood information, are 

concatenated for more complete information for per-point 

classification operations. This fused feature map is passed 

through a max pooling operator to down-sample and select only 

the maximum value among the various feature maps. The max 

pooled feature map is appended to the fused feature map and 

subsequently fed into two fully connected layers in the 

classification step. The final output is class prediction for each 

point in the point cloud sampled set. 

 

3.4 Look Twice Workflow 

For the second processing pass, the geometric features were 

calculated from class-filtered group of points e.g. calculated from 

nearby points that share the same class label as the index points. 

For the second pass training dataset, the provided ground truth 

labels were used to search and group points belonging to the same 

class labels. At this stage, the model will be trained and learn the 

‘sanitized’ geometric features associated with an ideal-case 

objects, where all the points in an object are from the same 

classes, i.e. ‘car’ verticality feature being calculated only from 

points belonging to the ‘car’ class. This is not a problem for a 

training dataset where class labels are provided, but would be a 

missing piece of information in an unclassified test dataset, of 

which obtaining the class label is the intended purpose.  

Therefore, for the second pass test dataset, class label information 

needs to be generated from the result of the test dataset evaluated 

from a prior deep learning model. This first processing pass is 

executed in a typical train-test sequence of deep learning 

framework, without applying class-based filter, to generate class 

labels prediction in the test dataset. Albeit, at this stage, the 

predicted label in the test dataset is not 100% accurate, containing 

prediction errors (false negative and false positive predictions) of 

the first processing pass. Even so, we hypothesize that despite the 

erroneous predicted labels from the first pass, the grouped points 

are still semantically similar without inclusion from points 

belonging to other classes, and will also be evaluated on 
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geometric features derived from the same class filtered points. 

The overall workflow of our second processing method is 

depicted in Figure 2. Both models (from first pass and second 

pass) once trained, are ready to process a new unseen test data. 

 The proposed ‘Look Twice’ method can be summarized as 

follows:  

1) Run the first processing pass - execution of train-test deep 

learning classifier, without applying a class filter.  Generate 

predicted class labels in the test dataset. 

2) Run the second processing pass (training) - for the training 

dataset use ground truth class labels and apply a class-based 

filter to group neighbouring points. The same (or different, 

user choice) deep learning architecture is then trained with 

the class filter being applied.  

3) Run the second processing evaluation step in the second 

processing pass, the test dataset makes use of the predicted 

class labels from the first processing pass; as criterion in 

neighbourhood points grouping or sampling for the test 

dataset. Ultimately an evaluation run from this second 

processing pass generates the updated and final class label 

predictions.  

 

 
Figure 2 - Workflow first & second processing pass for train & 

test runs 

 

4. Results and Discussion 

4.1 Features Selection 

To determine which geometric features to include as model 

inputs, ANOVA scores (Table 2) were used to rank features 

based on their sensitivity to the class labels. Subsequently, 

Pearson correlation was applied to eliminate geometric features 

which are highly correlated and therefore deemed as duplicates. 

, High degrees of correlation were found between Roughness, 

Omnivariance, Sphericity and Anisotropy, thus, the latter three 

features are excluded to avoid noise in the data whilst Roughness 

was retained as a representative input feature. Using these tools 

to aid feature selection, Verticality and Roughness were selected 

as the top two features. The next two features selected were 

Eigenentropy and Local Density as they both have similar 

ANOVA scores. Thus, the selected features used in this study are: 

Verticality, Roughness, Eigenentropy, Local Density and 

Planarity.  

Feature 
ANOVA 

score 
Feature 

ANOVA 

score 

Z 213731 Intensity 45629 

Verticality 166115 Eigenentropy 34719 

Roughness 159234 Local Density 32448 

Omnivariance 150087 X 16474 

Sphericity 84142 Y 3647 

Anisotropy 84140 Planarity 2220 

Table 2 - ANOVA scores for feature selection 

 

 

4.2 MPVCNN 

The DALES dataset is relatively recent, therefore only a few deep 

learning networks have been developed using this dataset as 

reference. For benchmarking purposes, we present the IoU results 

as published by the authors of TONIC architecture (Özdemir et 

al., 2021) and the authors of DALES dataset  (Varney et al., 2020) 

in Table 3. This table also includes the IoU results from 

MPVCNN trained on tile 5185_54485 (500m x 500m). For test, 

we selected tiles 5135_54430 + 5135_54435 (combined size of 

500m x 1000m). The authors of TONIC and DALES did not 

explicitly indicate the tiles used for training and testing in their 

reporting, thus no meaningful comparison on the same train and 

test tile sets could be made in Table 3. Nonetheless, IoU figures 

are indicators on the trends among various methods. From the 

results, two MPVCNN models attained high OA and IoU scores 

for ‘ground’, ‘vegetation’, ‘powerline’, ‘building’ object classes 

at above 0.9, close to KPConv (Thomas et al., 2019) figures. 

Model 

g
ro

u
n

d
 

v
eg

et
at

io
n

 

ca
r 

tr
u

ck
 

p
o

w
er

li
n

e
 

fe
n

ce
 

p
o

le
 

b
u

il
d

in
g

 

OA 

KPConv * 0.971 0.941 0.853 0.419 0.955 0.635 0.750 0.966 0.978 

PointNet++ 

* 
0.941 0.912 0.754 0.303 0.799 0.462 0.400 0.891 0.957 

TONIC 

(2DCNN)  
0.926 0.863 0.499 0.000 0.823 0.360 0.306 0.837 0.938 

MPVCNN 

VREDP k=5 
0.959 0.930 0.681 0.130 0.279 0.502 0.015 0.950 0.970 

MPVCNN 

VR k=30 
0.954 0.915 0.647 0.085 0.917 0.430 0.031 0.924 0.967 

*sourced from Varney et al. (2020) 

Table 3 - IoU benchmark vs MPVCNN 

 

In terms of F1-score benchmark (Table 4), we could draw 

comparison with TONIC architecture of which the authors have 

reported its figures. TONIC also highlighted its fast train time 

(0.5 hours on Vaihingen dataset, on 11GB Nvidia RTX 2080Ti 

GPU) which share similar ethos as our study. Again, without the 

tile information and data density on the experiments conducted 

using TONIC, we are unable to conclusively state which 

architecture is superior in terms of performance. Nonetheless, 

MPVCNN recorded higher OA, F1-scores for ‘ground’, 

‘vegetation’ and ‘building’ on two separate test tiles. The author 
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of DALES did not include in the published paper the performance 

in F1-score for KPConv and PointNet++, hence excluded in 

Table 4. 

Duration for model training for two tile sizes of 130,000m2 and 

250,000m2 were 50 and 95 minutes respectively, each was set at 

40 epochs. Additional preprocessing of geometric features (2 

features e.g. VR) took approximately 10 and 20 minutes 

respectively for the mentioned tile sizes, when performed on 8GB 

RAM GPU RTX3070 machine. 
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TONIC 

(2DCNN)  
0.962 0.927 0.666 0.000 0.903 0.530 0.468 0.911 0.938 

MPVCNN 

VREDP 

k=5 

0.982 0.965 0.810 0.235 0.436 0.669 0.032 0.975 0.970 

MPVCNN 

VR k=30 
0.981 0.959 0.788 0.167 0.963 0.606 0.059 0.962 0.967 

Table 4 - F1-score benchmark vs MPVCNN 

 

4.3 Look Twice  

The results of the model train-test with a second processing pass 

is summarized in Table 5. In the same table, we included the 

results from (first pass) MPVCNN model VR k=30 as a baseline 

comparison with the test accuracies and F1-scores from second 

pass models. On class imbalanced objects such as ‘car’, model 

VR k=30 has produced a range of gains in F1-scores by 8% and 

12 % when tested on two different tiles, corresponding to actual 

F1-score of 0.852 and 0.814 respectively. This is the highest 

figure within the benchmark data reported for DALES dataset.  
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OA 

VR k=30  

1st pass 
0.981 0.959 0.788 0.167 0.963 0.606 0.059 0.962 0.967 

VR k=30  

2nd pass 
0.983 0.967 0.852 0.227 0.900 0.620 0.071 0.975 0.973 

VREDP 

k=30     

2nd pass 

0.983 0.967 0.814 0.280 0.988 0.554 0.096 0.975 0.973 

Table 5 - F1-score and OA between 1st and 2nd pass models 

Referring to Figure 3, with class filter grouping, the Eigenentropy 

for ‘powerline’ exhibited distinctly reduced overlap with 

‘vegetation’. This could be the probable explanation on the 

further gain observed in F1-score from the second pass model 

VREDP k=30 in Table 5 on ‘powerline’, above the first pass 

value.  

To aide visualizing the effects of class filter grouping, we include 

the verticality map of the train tile without class-filter i.e. first 

pass (Figure 4(b)) and with class-filtered grouping i.e. second 

pass (Figure 4(c)). With class-filter grouping, ‘car’ objects have 

noticeably narrow band of verticality values, indicated by the 

colour range, unlike the wide band observed without class-

filtered.  As reference, ground truth class label for the train tile is 

included as Figure 4(a). On the test tiles prediction results; Figure 

5(b) depicts without class-filter and Figure 5(c) depicts with 

class-filter being applied. In Figure 5, specifically on the four 

purple-coloured arrows indicating ‘car’ objects, the prediction 

from the first pass model contains mixture of two class labels: 

‘car’ and ‘vegetation’ (Figure 5(b)). Upon the second pass, with 

class-filtered geometric feature, the updated model has corrected 

some of the previously erroneous ‘vegetation’ points to ‘car’ 

(Figure 5(c)), which explains the increase in F1-score in Table 5 

for the second pass models. 

 

 (a) without class filter 

 

 (b) with class filter 

Figure 3 - Geometric features ‘Eigenentropy’ distribution plot per 

class for DALES train tile 5185_54485 (k=30) 

 

Upsides from this model as a second processing pass were also 

observed on the Overall Accuracy (“OA”) and slight 

improvement in F1-scores for large objects & major classes 

(‘ground’, ‘vegetation’, ‘building’). As anticipated, the impact of 

this methodology would be pronounced on areas with presence 

of two or more classes and imbalanced classes. On large objects, 

there may not be substantial information gain from the second 

pass method, further away from the object boundary. Also, 

corrections made at the boundary edges are relatively small in 

comparison to the substantially large point counts associated with 

big objects such as ‘ground’ and ‘vegetation’ to affect F1-scores. 

 

 

ground vegetation car 

truck powerline fence

pole building 

ground vegetation car 

truck powerline fence

pole building 
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(a) ground truth class labels 

 

 

 

             
(b) verticality map without class-filter  

 

 
 

(c) verticality map with class-filter 

 

Figure 4 - Train tile 5185_54445 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) ground truth class label 

 

 
(b) without class-filter predicted class labels  
 

 
(c) with class-filter predicted class label 

 

Figure 5 – Test tile 5135_54430 + 5135_54435 
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5. Conclusions 

We have demonstrated MPVCNN architecture as an efficient 

end-to-end deep learning architecture with high accuracy (>0.9 

F1-score and OA), low demand in GPU memory (e.g. 8GB) and 

with low train times (approximately 1 hour) on dense ALS 

datasets. In practical use, these qualities are beneficial when 

processing new datasets from different geographies or adding 

new object classes, which may require persistent updated 

training. In terms of overall accuracy and F1-score performance 

in Table 4, our MPVCNN model is potentially superior to other 

benchmark such as the TONIC framework, but without the 

information of the benchmark train-test tiles used by other 

literatures, no definitive performance comparison can be drawn. 

The class-filter grouping technique in the second train-test deep 

learning processing pass using MPVCNN is an effective tool 

towards extracting higher F1-scores on low frequency data points 

and small physical size objects such as ‘car’ and on thin objects 

such as ‘powerline’. For both classes, ‘car’ and ‘powerline’, we 

recorded the highest F1-scores for DALES dataset at 0.852 and 

0.988 respectively, with F1-score increment in the range of 8% 

to 12% (Table 5). Using class-filtered grouping, geometric 

features were determined based on a single object class, with 

more distinctive profiles than geometric features computed from 

an aerial dataset without class-filter grouping. Which also 

supports the benefit of this methodology in correcting prediction 

via learning from an ideal definition of the geometric features, 

especially on the less frequent classes. 

In addition to the increased F1-score on two targeted class 

imbalanced objects (‘car’, ‘powerline’), this method was also 

observed to produce minor positive gain in F1-scores for bulk 

objects with higher representation of data points such as 

‘ground’, ‘vegetation’ and ‘building’. Understandably, this 

method is not intended nor anticipated to provide substantial 

improvement on large objects and major classes, as the corrective 

predictions are expected to be made at boundary areas with the 

presence of multiple object classes. 

On other class imbalanced objects such as ‘truck’ and ‘pole’, 

there are lesser gains from this method. We believe this could be 

attributed to overlapping geometric features between ‘truck’ and 

‘building’, ‘pole’ and ‘vegetation’. Moreover, the instances and 

number of points for ‘truck’ and ‘pole’ are relatively low, making 

training for such objects remain a challenge. As such, other 

features or descriptors are needed beyond what is included in this 

study to adequately differentiate such objects. 
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