
Rapid Classification of Large Aerial LiDAR Datasets

Fauzy Othman 1,2, Phil Bartie 1, Dongdong Chen 1

1 School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK

2 PETRONAS, Malaysia

*Correspondence: fobo2000@hw.ac.uk / fauzyomar@petronas.com

Keywords: Classification, semantic segmentation, point clouds, DALES, MPVCNN, Look Twice

Abstract

Point cloud data from aerial LiDAR scan (“ALS”) are used for object detection and classification of energy industry facilities and

assets. It is advantageous to be able to carry out point cloud classifications in near real time on secure hardware at the survey location

and to be able to rapidly train the model on custom object classes. Such requirements create the need for efficient deep learning

architectures which produce accurate predictions with low computational cost and time. This research presents a solution using

Modified Point Voxel CNN (“MPVCNN”) which consists of feature-level fusion between voxel and point features for local feature

extraction. In doing so, this architecture circumvents indexing operations and GPU memory limitations. The MPVCNN developed in

this research was trialled using dense DALES datasets. Additionally, Aerial LiDAR scan datasets typically suffer from a class

imbalance for rare objects and those which are physically small or thin-shaped, relative to other object classes. This research explores

how a second classification pass can be used to improve the initial classification prediction for such imbalanced object classes, by

using predicted class labels as a criterion to group points which are semantically homogeneous in computing geometric features. This

paper demonstrates that the MPVCNN architecture is capable of high accuracy (>0.9 F1-score and OA) classifications, with short

training times (approximately 1 hour), on dense ALS datasets using standard hardware (e.g. 8GB GPU).

1. Introduction

This paper develops and evaluates an efficient deep learning

methodology for 3D point cloud classification. The intended

application is for aerial LiDAR based asset surveillance

campaigns within the energy industry, with a primary goal to

detect intrusions or anomalies around critical infrastructures such

as pipelines and powerlines. There are reported instances of theft

from oil pipelines across several countries (Smith, 2022), where

valuable oil products were illegally diverted from the main

pipeline network causing significant economic loss and creating

potential hazards (Ambituuni et al., 2015). In addition, critical

assets require monitoring for signs of ground movement,

primarily due to landslides, subsidence, erosion, or flooding

(UKOPA, 2019). Such infrastructures typically traverse large

swaths of land, which makes monitoring for safety and security

a challenging task for asset owners and operators. Due to the

large data size, the survey data is usually post-processed upon

completion of the surveillance mission, resulting in a delay

before any appropriate actions can be taken. From a safety and

security point of view, the delay could be more detrimental than

accuracy (or resolution quality) of the captured data. Thus,

techniques towards rapid 3D point cloud classification are crucial

for this application, such that objects could be identified during

the surveillance campaign, instead of days or weeks after the

event.

With the advent of high-resolution airborne LiDAR scanners,

large-scale dense public datasets are becoming more common.

This study used the relatively new Dayton Annotated LiDAR

Earth Scan (“DALES”) dataset (Varney et al., 2020). Aerial

LiDAR scan point cloud coordinate data can be supplemented

with handcrafted geometric properties as additional information.

These geometric features (e.g. Verticality, Roughness, Planarity,

Linearity etc.) represent the shape, size or orientation of the local

point cloud distribution and are derived from the eigenvalue

decomposition of a group of points (Weinmann et al., 2013).

As a classification tool, adequately high prediction accuracy i.e.

F1-score of above 0.9 on important classes is a reasonable

performance target; to enable near real-time inferencing during

field work surveillance campaigns and rapid re-training.

Therefore, the main goal of this research is to achieve low

training times of less than 1 hour and inferencing in under 1

second for a typical tile size of 500m x 200m (to account for the

width of energy pipeline right-of-way), operating on a laptop

equipped with a GPU e.g. RTX3070 8GB. In this pursuit, we

introduce a Modified Point Voxel CNN (“MPVCNN”)

architecture to address the requirements for a rapid deep learning

classification tool for aerial asset surveillance.

A common challenge on aerial point cloud classification is to

obtain high accuracy on class imbalanced and relatively small

objects such as ‘car’ and ‘truck’. A case in point is the low F1-

score for ‘car’ object class as reported by the authors of TONIC

architecture (Özdemir et al., 2021); in the range of 0.666 – 0.682.

Thus, the second research goal is towards development of

methodology to detect changes and identify objects from aerial

surveillance on infrastructures, thus it is in our interest to detect

signs of human activity via proxies such as vehicle. Therefore,

the secondary focus of this paper is to develop a methodology to

improve classification accuracy on objects that are commonly

impacted from class imbalance, specifically for ‘car’. A higher

F1-score figure (e.g. above 0.90) would be desirable for reliable

detection for this object class.

In calculating geometric features, either a fixed radius or k-

nearest neighbours are used to group neighbourhood points

around a given centroid point. It is also likely that the grouped

points are composed from multiple object classes (e.g. ‘car’,

‘vegetation’, ‘ground’) which are commonly found near to each

other. In this situation, the conventional computation of

geometric features has the tendency to aggregate points from a

mixture of object classes. A better representation is to re-

calculate the geometric features for an individual object in a

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-393-2026 | © Author(s) 2026. CC BY 4.0 License.

393

mailto:fobo2000@hw.ac.uk
mailto:fauzyomar@petronas.com

discretize manner i.e. points from ‘car’ are segregated from

‘vegetation’. Intuitively, points from different object classes are

unlikely to share similar geometric shapes and features.

Conversely, points that belong to the same class but from

different instances (e.g. ‘car A’ and ‘car B’.) would tend to have

similar geometric shapes and features. This research studies the

use of class information as a filter to group points which are

semantically homogeneous i.e. belonging to the same class for

geometric features computation. The re-calculation of geometric

features is performed during the second train-test pass of the

chosen deep learning architecture. As a proof of concept, we use

MPVCNN architecture for its low training durations and high

accuracy in the development of this second processing pass

technique aptly referred as “Look Twice”.

The contributions of this paper are:

(i) MPVCNN architecture that balances accuracy and F1-score

with low training times and computational resources, suited for

rapid processing in the field.

(ii) Look Twice approach: a novel second processing pass

workflow, designed to maximize F1-scores for class imbalanced

objects within ALS dataset i.e. ‘car’ and ‘powerline’, achieving

the highest F1-score values for the DALES dataset to date

2. Related Work

Our Modified Point Voxel CNN (“MPVCNN”) is a new

improvement for aerial point cloud datasets, developed from the

original indoor segmentation task point-voxel deep learning

architecture named PVCNN (Liu et al., 2019). From the onset,

PVCNN was built with goals to achieve low training times and

low computational demand. It has been shown to have superior

accuracy, intersection-over-union and latency against other

benchmark models for indoor scene segmentation using the

S3DIS dataset (Armeni et al., 2016). The main limiting factor of

3D point-voxel architecture is the size of the voxel grids,

specifically the cubic growth of the number of voxels will

increase GPU memory used. The authors of PVCNN did not

include the usage of other input features such as geometric

features, apart from coordinate data and LiDAR derived features.

Other direct point-based architectures, primarily PointNet++ (Qi

et al., 2017) or its derivatives such as Modified PointNet++ (Y.

Chen et al., 2021) and GADH-Net (Li et al., 2020) are known for

their longer train times, due to inherent point sampling and

grouping operations. A PointNet++-like architecture involves

selecting centroid points based on a farthest point sampling

technique, then grouping of neighbourhood points around the

centroid point that resides within a sphere search query. The

subsequent step is known as feature abstraction layer, whereby

multiple convolution steps are then applied on the features

(coordinates or other data representation) contained within the

centroid and its group of neighbourhood points. Structurally,

PointNet++ is a form of U-Net architecture, pioneered by

Ronneberger et al. (2015), in which the network learns by

sampling centroids at various receptive scales to encode

information at different physical sizes. Modified PointNet++ and

GADH-Net were developed using Vaihingen 3D dataset

(Rottensteiner et al., 2012) - a sparse publicly released LiDAR

dataset. The main difference between the two mentioned

architectures is that GADH-Net included geometric features as

its input features. However, for a dataset with large point density,

in order for any PointNet++ derivative architecture to gain

benefit from a large amount of data, it would require more

centroid points to be sampled and grouping of neighbourhood

points, based on distance calculation between all sampled points

and keeping a register of the point indexes, which thus increases

its computational cost. The authors of Modified Pointnet++

reported an average F1-score of 0.712 for the Vaihingen 3D

dataset with an Overall Accuracy of 0.832, and training time of 2

hours on a 32GB Nvidia Tesla V100. Whereas authors of GADH-

Net achieved an average F1-score of 0.717, Overall Accuracy of

0.850, with training time of 7 hours on 2x12GB Nvidia Titan Xp.

TONIC (Özdemir et al., 2021) is an architecture which uses

voxelization step to encode coordinate and LiDAR features (e.g.

intensity). This is followed by k-nearest neighbour selection; to

group neighbourhood points around a centroid point.

Subsequently 5 geometric features (Linearity, Sphericity,

Omnivariance, Planarity, Verticality) and 2 height features

(height above ground, height change) are calculated and included

as its input features. The selection criteria on geometric features

were not discussed by the author, which we believe is an

imperative step and included in our study as section 4.3.3. In

TONIC, the input features (point coordinates, derived geometric

and LiDAR sensor data) are encoded as an image map in a 2D

matrix (row: number of points x column: features). The row of

the matrix represented by number of points is sorted based on the

coordinate values, thus providing some order to the data points.

Given the data structure, 2D CNN operations can be applied,

similar to image classification. TONIC is a relevant benchmark

to our research, as the architecture was developed for low training

times and designed to work with dense ALS datasets, using the

DALES dataset for evaluation. When the TONIC model was

trained and tested on DALES tiles it reported high F1-scores (>

0.9) for ‘ground’, ‘vegetation’, ‘powerline’ and ‘building’

classes, but noticeably lower for ‘car’ (0.666) and ‘truck’ (0.000),

which are objects of interest for aerial surveillance. To tackle

processing challenges with large ALS datasets, the TONIC

authors downsampled the data to 5.6% of the original density,

effectively reducing from estimated 15 million points available

in the train tile to less than 1 million points for a tile with the size

of 500m x 500m (equivalent to point density of 3 points / m2), an

approach that while practical, may risks the loss of valuable

information.

In recent times, attention-based architectures have emerged for

point cloud data such as DAPnet (L. Chen et al., 2021).The

authors reported the state-of-the-art performance on Vaihingen

dataset with Average F1-score of 0.823 and Overall Accuracy of

0.907. Structurally, DAPnet uses point sampling and grouping

methods similar to the approach by PointNet++. Where it differs

from PointNet++ is in the feature abstraction layer; extracting

point level and group level features using self-attention method

(instead of multiple Multi Layer Perceptrons in PointNet++

inspired architectures). Nonetheless, the authors did not report

the training duration and GPU size used in the study.

Superpoint Transformer by Robert et al. (2023) was a recent

development using a transformer-based architecture applied on

cluster of point clouds; partitioned based on geometrically

homogeneous groupings known as ‘superpoints’ or reference

points, in contrast to farthest point sampling technique commonly

used in PointNet++ type of architectures. The authors of

Superpoint Transformer also included handcrafted features to

define the relationship between superpoints such as the relative

positions of centroid points, position of paired points in each

superpoint, principal directions, ratio between the superpoints’

length, volume, surface, and point count. These features were

computed once during preprocessing step. In this design,

superpoints are partition as hierarchical graphs (‘parent’ –

‘children’ points relation) at multiple scales. Then a transformer-

based self-attention module (consists of key, query, value

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-393-2026 | © Author(s) 2026. CC BY 4.0 License.

394

vectors) is applied at each partition layer to propagate

information between neighbouring superpoints. Using the

DALES dataset, the authors reported mIOU of 0.796. However,

no OA nor F1-scores per class objects were reported, and details

of which tiles were used for training and testing were not

disclosed. In terms of time, the pre-processing step (superpoint

graphs, handcrafted features) took 148min (48 cores CPU) for

DALES dataset but the corresponding train duration was not

reported. On the S3DIS dataset, the preprocessing time was 12

minutes plus training time of around 3 hours (on A40 DPU with

512Gb RAM). As such, we could infer that this methodology

would consume higher than the targeted 1 hour train time.

On the second processing pass workflow, to the best of our

knowledge, no other prior study has explored the approach of

introducing a second pass to take the predicted class labels as a

filter in a further point cloud classification processing pipeline.

3. Methodology

3.1 Dataset

Dayton Annotated LiDAR Earth Scan (“DALES”) dataset by

Varney et al. (2020) is a relatively recent large-scale ALS made

accessible to public, with nearly a half-billion points spanning an

area of 10 km2. This data was captured using a Riegl Q1560

LiDAR scanner over the city of Surrey, Canada, from an altitude

of 1300m with four overlapping passes to increase point density.

To put in context, in comparison to Vaihingen 3D dataset,

DALES dataset contains 400x greater number of points and 7x

more point density. This dataset is divided into 29 train and 11

test files, covering urban, suburban, rural, and commercial areas.

On average, each file contains 12 million points, with tile size of

500m x 500m, with a point density of approximately 48

points/m2.

The dataset consists of XYZ coordinates, LiDAR return intensity

and was manually classified into 8 classes: ‘ground’ (road, grass

covered surface), ‘vegetation’ (including tree, shrubs, hedges),

‘car’, ‘truck’, ‘powerline’, ‘poles’, ‘fence’ (residential and

highway barriers), ‘building’ (residential, commercial,

warehouse). Major classes in this dataset are: ‘ground’,

‘vegetation’, and ‘building’. The DALES dataset covers rural

areas, hence dense vegetation areas are included. Class imbalance

is also prevalent in the DALES dataset as depicted in Table 1.

 Training % Testing %

1 Ground 4,974,996 43.3 6,201,250 53.3

2 Vegetation 2,888,008 25.1 2,908,888 25.0

3 Car 66,146 0.6 133,464 1.2

4 Truck 63,669 0.6 11,523 0.1

5 Powerline 55,534 0.5 31,358 0.3

6 Fence 11,732 0.1 107,560 0.9

7 Pole 12,114 0.1 8,566 0.1

8 Building 3,424,274 29.7 2,237,107 19.1

 Total 11,496,473 100 11,639,716 100

Table 1 - Number of points per class within DALES train tile

5095-54440 & test tile 5135-54435 (500m x 500m)

For batch training, the tile data was divided into 25m x 25m

blocks with overlap of 12.5m - to eliminate edge effects and to

increase the number of data points for training. Data

downsampling was implemented to avoid excessively large data

to be processed during model training and substantial computing

resources that would be needed. In this study, train and test data

were reduced to 25% of the original data points provided in the

DALES dataset. To circumvent the stochastic effects from

different points being sampled in each train run, a sample size of

8192 points was used per data grid block. This figure is above the

average number of points within a 25m x 25m grid block, thus

consuming 100% of the available data points as samples. A lower

sample size (e.g. 4096 points) would randomly include different

points in each training run, leading towards varying F1-scores on

particularly sensitive imbalanced object classes.

3.2 Input Features

Input data used from DALES dataset are X,Y,Z coordinates and

LiDAR intensity (I). To account for terrain elevation impact, Z

coordinates are converted into height-above-ground (“H”) using

third party software (QGIS). In which, points classed as ‘ground’

were used to interpolate ground elevation in raster format in

QGIS. Thereafter, height-above-ground values are calculated by

subtracting Z coordinates from the interpolated ground level

raster. Subsequently the input features X, Y, H and I values are

normalized between 0 and 1 using min-max scaling.

Just as variance indicates the degree of spread within a group of

data points (in this case XYZ coordinates), covariance indicates

the orientation in the distribution of the data. In the case of point

cloud data, the covariance matrix is derived from the distribution

of neighbouring point clouds around a reference point. As

defined by Weinmann et al. (2013) from the covariance matrix

and its consequent eigenvalues (λ), several geometric parameters

can be derived, with example included as Equation 1. The

features are Anisotropy (Aλ) - a measure of oriented or non-

oriented, Eigenentropy (Eλ) - a measure of order or disorder,

Linearity (Lλ), Omnivariance (Oλ) – a measure of spread in the

group of points, Planarity (Pλ), Sphericity (Sλ). Roughness (Rλ) is

another representation of geometric feature described by Glira et

al. (2015), which corresponds to the standard deviation of the

selected points from the estimated plane. The largest eigenvalue

corresponds to the covariance matrix and indicates the magnitude

and direction of the largest spread within a given data. In a 3-

coordinate system, there are 3 corresponding eigenvalues (λ1, λ2,

λ3) with λ1 being the largest and λ3 the smallest. As a good

practice for network training, the input features are normalized

from 0 to 1. Thus, each of the three eigenvalues are normalized

by dividing it with the sum of the eigenvalues, for instance e1 =

λ1 / (λ1+ λ2 + λ3), such that the sum of the normalized eigenvalues

(e1 + e2 + e3) would be equal to 1.

Pλ =
λ2−λ3

λ1
 Rλ = √λ3 (1)

In addition to eigenvalues-derived geometric features, other

parameters such as local point cloud density (D) and surface

normal along the z-axis or verticality (V) are also evaluated as

features. Local point cloud density is a measure of number of

neighbouring points within a search sphere with a defined radius

(in this study, we chosen r=3 metres). Eigenvalues and

consequent geometric features are also dependent on the number

of points selected here nearest neighbour searches of k=5 and

k=30 were explored to study the impact of various search scales.

As reported by Weinmann et al. (2013), geometric features can

be redundant or irrelevant to the classification task. Although one

could expect a deep learning network to learn and reduce

information contributed from insignificant features, but in

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-393-2026 | © Author(s) 2026. CC BY 4.0 License.

395

practice, this may not be the case. As such, feature relevance and

feature selection are included in our approach. Analysis of

variance (“ANOVA”) was used to determine the degree of

variability between different geometric features, as a ratio to the

degree of variability within the feature itself. In some literatures,

ANOVA is referred as F-test.

In our approach, calculation of geometric features was performed

as a pre-processing step, prior to sampling of data points through

the voxelization step. In this way, the geometric feature

calculation has access to the complete dataset without being

limited by grouping points that reside only in the same voxel cell.

The data points are grouped according to a defined search radius

(r=3 m) and then the first k=30 nearest neighbour points were

selected.

3.3 Deep Learning Architecture

A key design in MPVCNN and PVCNN is the fusion of features

using two encoding branches; a voxel-based branch which

considers the effect of local neighbourhood point features, and a

Multi Layer Perceptron (“MLP”) for individual point features. In

the voxel branch, local neighbourhood point cloud {pk, fk} where

pk = (xk, yk, zk) is the normalized coordinates and features fk of

kth input are transformed into a voxel grid system (u,v,w). These

operations are performed for two voxel sizes (643 and 323) to

account for different receptive scales. Subsequently, an average

pool operation is applied on the voxelized features Vu,v,w,c (e.g.

coordinates, intensity, geometric features, feature maps); by

averaging the sum of the features divided by the number of points

in the voxel, as described in Equation 2.

𝑉𝑢,𝑣,𝑤,𝑐 =
1

𝑁𝑢,𝑣,𝑤
∑ ‖[𝑓𝑙𝑜𝑜𝑟(𝑥𝑘 × 𝑟) = 𝑢,𝑛

𝑘=1 𝑓𝑙𝑜𝑜𝑟(𝑦𝑘 × 𝑟) = 𝑣,

𝑓𝑙𝑜𝑜𝑟(𝑧𝑘 × 𝑟) = 𝑤] × 𝑓𝑘,𝑐 (2)

Where r represents the voxel resolution, ‖[.] denotes the binary

indicator if pk occupies a voxel grid (u,v,w), fk,c represents the

feature cth channel which correspond to point pk, N is the number

of points within the voxel grid.

Figure 1 – MPVCNN network architecture

Upon this step, the network executes two layers of 3D

Convolution operations on the voxel grid (also with batch

normalization & nonlinear activation function on each layer)

producing output features tensor in dimension of batch size,

output channel size, number of sampled points. The ‘voxel

feature’ branch in Figure 1 however represents the

neighbourhood information in a coarse granularity. For finer

granularity at individual point level, the ‘point feature’ branch in

the same Figure 1 extracts information of the (individual) point.

In the devoxelization step, the network re-maps voxel domain

features back to the point cloud cartesian grid domain. To avoid

excessive loss of information if all the points in the same voxel

grid were to have the same value, a trilinear interpolation method

is used. More importantly, trilinear interpolation is a

differentiable function, thus enabling the voxel branch to be

trainable.

Referring to Figure 1 modification to the original PVCNN

architecture is marked by the boxes outlined in ‘red’. One of the

two improvements introduced in our MPVCNN is the geometric

feature block as an input feature, in addition to coordinate data.

Thus, providing more information and dimensionality towards

ALS type data. The other improvement introduced in MPVCNN

is within the ‘point feature’ branch - for finer granularity at

individual point level, we utilised 3 sequences of MLPs in the

form of 1D Convolution operation with kernel size of 1 i.e. 1x1

filter, and setting its bias as zero. The network begins with an

MLP layer with large input channel at the beginning and

gradually reducing the input channel towards the third MLP

layer.

Both branches, from high-resolution individual point information

and low-resolution voxel-based neighbourhood information, are

concatenated for more complete information for per-point

classification operations. This fused feature map is passed

through a max pooling operator to down-sample and select only

the maximum value among the various feature maps. The max

pooled feature map is appended to the fused feature map and

subsequently fed into two fully connected layers in the

classification step. The final output is class prediction for each

point in the point cloud sampled set.

3.4 Look Twice Workflow

For the second processing pass, the geometric features were

calculated from class-filtered group of points e.g. calculated from

nearby points that share the same class label as the index points.

For the second pass training dataset, the provided ground truth

labels were used to search and group points belonging to the same

class labels. At this stage, the model will be trained and learn the

‘sanitized’ geometric features associated with an ideal-case

objects, where all the points in an object are from the same

classes, i.e. ‘car’ verticality feature being calculated only from

points belonging to the ‘car’ class. This is not a problem for a

training dataset where class labels are provided, but would be a

missing piece of information in an unclassified test dataset, of

which obtaining the class label is the intended purpose.

Therefore, for the second pass test dataset, class label information

needs to be generated from the result of the test dataset evaluated

from a prior deep learning model. This first processing pass is

executed in a typical train-test sequence of deep learning

framework, without applying class-based filter, to generate class

labels prediction in the test dataset. Albeit, at this stage, the

predicted label in the test dataset is not 100% accurate, containing

prediction errors (false negative and false positive predictions) of

the first processing pass. Even so, we hypothesize that despite the

erroneous predicted labels from the first pass, the grouped points

are still semantically similar without inclusion from points

belonging to other classes, and will also be evaluated on

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-393-2026 | © Author(s) 2026. CC BY 4.0 License.

396

geometric features derived from the same class filtered points.

The overall workflow of our second processing method is

depicted in Figure 2. Both models (from first pass and second

pass) once trained, are ready to process a new unseen test data.

 The proposed ‘Look Twice’ method can be summarized as

follows:

1) Run the first processing pass - execution of train-test deep

learning classifier, without applying a class filter. Generate

predicted class labels in the test dataset.

2) Run the second processing pass (training) - for the training

dataset use ground truth class labels and apply a class-based

filter to group neighbouring points. The same (or different,

user choice) deep learning architecture is then trained with

the class filter being applied.

3) Run the second processing evaluation step in the second

processing pass, the test dataset makes use of the predicted

class labels from the first processing pass; as criterion in

neighbourhood points grouping or sampling for the test

dataset. Ultimately an evaluation run from this second

processing pass generates the updated and final class label

predictions.

Figure 2 - Workflow first & second processing pass for train &

test runs

4. Results and Discussion

4.1 Features Selection

To determine which geometric features to include as model

inputs, ANOVA scores (Table 2) were used to rank features

based on their sensitivity to the class labels. Subsequently,

Pearson correlation was applied to eliminate geometric features

which are highly correlated and therefore deemed as duplicates.

, High degrees of correlation were found between Roughness,

Omnivariance, Sphericity and Anisotropy, thus, the latter three

features are excluded to avoid noise in the data whilst Roughness

was retained as a representative input feature. Using these tools

to aid feature selection, Verticality and Roughness were selected

as the top two features. The next two features selected were

Eigenentropy and Local Density as they both have similar

ANOVA scores. Thus, the selected features used in this study are:

Verticality, Roughness, Eigenentropy, Local Density and

Planarity.

Feature
ANOVA

score
Feature

ANOVA

score

Z 213731 Intensity 45629

Verticality 166115 Eigenentropy 34719

Roughness 159234 Local Density 32448

Omnivariance 150087 X 16474

Sphericity 84142 Y 3647

Anisotropy 84140 Planarity 2220

Table 2 - ANOVA scores for feature selection

4.2 MPVCNN

The DALES dataset is relatively recent, therefore only a few deep

learning networks have been developed using this dataset as

reference. For benchmarking purposes, we present the IoU results

as published by the authors of TONIC architecture (Özdemir et

al., 2021) and the authors of DALES dataset (Varney et al., 2020)

in Table 3. This table also includes the IoU results from

MPVCNN trained on tile 5185_54485 (500m x 500m). For test,

we selected tiles 5135_54430 + 5135_54435 (combined size of

500m x 1000m). The authors of TONIC and DALES did not

explicitly indicate the tiles used for training and testing in their

reporting, thus no meaningful comparison on the same train and

test tile sets could be made in Table 3. Nonetheless, IoU figures

are indicators on the trends among various methods. From the

results, two MPVCNN models attained high OA and IoU scores

for ‘ground’, ‘vegetation’, ‘powerline’, ‘building’ object classes

at above 0.9, close to KPConv (Thomas et al., 2019) figures.

Model

g
ro

u
n

d

v
eg

et
at

io
n

ca
r

tr
u

ck

p
o

w
er

li
n

e

fe
n

ce

p
o

le

b
u

il
d

in
g

OA

KPConv * 0.971 0.941 0.853 0.419 0.955 0.635 0.750 0.966 0.978

PointNet++

*
0.941 0.912 0.754 0.303 0.799 0.462 0.400 0.891 0.957

TONIC

(2DCNN)
0.926 0.863 0.499 0.000 0.823 0.360 0.306 0.837 0.938

MPVCNN

VREDP k=5
0.959 0.930 0.681 0.130 0.279 0.502 0.015 0.950 0.970

MPVCNN

VR k=30
0.954 0.915 0.647 0.085 0.917 0.430 0.031 0.924 0.967

*sourced from Varney et al. (2020)

Table 3 - IoU benchmark vs MPVCNN

In terms of F1-score benchmark (Table 4), we could draw

comparison with TONIC architecture of which the authors have

reported its figures. TONIC also highlighted its fast train time

(0.5 hours on Vaihingen dataset, on 11GB Nvidia RTX 2080Ti

GPU) which share similar ethos as our study. Again, without the

tile information and data density on the experiments conducted

using TONIC, we are unable to conclusively state which

architecture is superior in terms of performance. Nonetheless,

MPVCNN recorded higher OA, F1-scores for ‘ground’,

‘vegetation’ and ‘building’ on two separate test tiles. The author

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-393-2026 | © Author(s) 2026. CC BY 4.0 License.

397

of DALES did not include in the published paper the performance

in F1-score for KPConv and PointNet++, hence excluded in

Table 4.

Duration for model training for two tile sizes of 130,000m2 and

250,000m2 were 50 and 95 minutes respectively, each was set at

40 epochs. Additional preprocessing of geometric features (2

features e.g. VR) took approximately 10 and 20 minutes

respectively for the mentioned tile sizes, when performed on 8GB

RAM GPU RTX3070 machine.

Model

g
ro

u
n
d

v
eg

et
at

io
n

ca
r

tr
u
ck

p
o
w

er
li

n
e

fe
n
ce

p
o
le

b
u
il

d
in

g

OA

TONIC

(2DCNN)
0.962 0.927 0.666 0.000 0.903 0.530 0.468 0.911 0.938

MPVCNN

VREDP

k=5

0.982 0.965 0.810 0.235 0.436 0.669 0.032 0.975 0.970

MPVCNN

VR k=30
0.981 0.959 0.788 0.167 0.963 0.606 0.059 0.962 0.967

Table 4 - F1-score benchmark vs MPVCNN

4.3 Look Twice

The results of the model train-test with a second processing pass

is summarized in Table 5. In the same table, we included the

results from (first pass) MPVCNN model VR k=30 as a baseline

comparison with the test accuracies and F1-scores from second

pass models. On class imbalanced objects such as ‘car’, model

VR k=30 has produced a range of gains in F1-scores by 8% and

12 % when tested on two different tiles, corresponding to actual

F1-score of 0.852 and 0.814 respectively. This is the highest

figure within the benchmark data reported for DALES dataset.

MPVCN

N Model

g
ro

u
n

d

v
eg

et
at

io
n

ca
r

tr
u

ck

p
o

w
er

li
n

e

fe
n

ce

p
o

le

b
u

il
d

in
g

OA

VR k=30

1st pass
0.981 0.959 0.788 0.167 0.963 0.606 0.059 0.962 0.967

VR k=30

2nd pass
0.983 0.967 0.852 0.227 0.900 0.620 0.071 0.975 0.973

VREDP

k=30

2nd pass

0.983 0.967 0.814 0.280 0.988 0.554 0.096 0.975 0.973

Table 5 - F1-score and OA between 1st and 2nd pass models

Referring to Figure 3, with class filter grouping, the Eigenentropy

for ‘powerline’ exhibited distinctly reduced overlap with

‘vegetation’. This could be the probable explanation on the

further gain observed in F1-score from the second pass model

VREDP k=30 in Table 5 on ‘powerline’, above the first pass

value.

To aide visualizing the effects of class filter grouping, we include

the verticality map of the train tile without class-filter i.e. first

pass (Figure 4(b)) and with class-filtered grouping i.e. second

pass (Figure 4(c)). With class-filter grouping, ‘car’ objects have

noticeably narrow band of verticality values, indicated by the

colour range, unlike the wide band observed without class-

filtered. As reference, ground truth class label for the train tile is

included as Figure 4(a). On the test tiles prediction results; Figure

5(b) depicts without class-filter and Figure 5(c) depicts with

class-filter being applied. In Figure 5, specifically on the four

purple-coloured arrows indicating ‘car’ objects, the prediction

from the first pass model contains mixture of two class labels:

‘car’ and ‘vegetation’ (Figure 5(b)). Upon the second pass, with

class-filtered geometric feature, the updated model has corrected

some of the previously erroneous ‘vegetation’ points to ‘car’

(Figure 5(c)), which explains the increase in F1-score in Table 5

for the second pass models.

 (a) without class filter

 (b) with class filter

Figure 3 - Geometric features ‘Eigenentropy’ distribution plot per

class for DALES train tile 5185_54485 (k=30)

Upsides from this model as a second processing pass were also

observed on the Overall Accuracy (“OA”) and slight

improvement in F1-scores for large objects & major classes

(‘ground’, ‘vegetation’, ‘building’). As anticipated, the impact of

this methodology would be pronounced on areas with presence

of two or more classes and imbalanced classes. On large objects,

there may not be substantial information gain from the second

pass method, further away from the object boundary. Also,

corrections made at the boundary edges are relatively small in

comparison to the substantially large point counts associated with

big objects such as ‘ground’ and ‘vegetation’ to affect F1-scores.

ground vegetation car

truck powerline fence

pole building

ground vegetation car

truck powerline fence

pole building

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-393-2026 | © Author(s) 2026. CC BY 4.0 License.

398

(a) ground truth class labels

(b) verticality map without class-filter

(c) verticality map with class-filter

Figure 4 - Train tile 5185_54445

(a) ground truth class label

(b) without class-filter predicted class labels

(c) with class-filter predicted class label

Figure 5 – Test tile 5135_54430 + 5135_54435

Powerline

Vegetation

Building

Pole

Ground

Car
Truck

Fence

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-393-2026 | © Author(s) 2026. CC BY 4.0 License.

399

5. Conclusions

We have demonstrated MPVCNN architecture as an efficient

end-to-end deep learning architecture with high accuracy (>0.9

F1-score and OA), low demand in GPU memory (e.g. 8GB) and

with low train times (approximately 1 hour) on dense ALS

datasets. In practical use, these qualities are beneficial when

processing new datasets from different geographies or adding

new object classes, which may require persistent updated

training. In terms of overall accuracy and F1-score performance

in Table 4, our MPVCNN model is potentially superior to other

benchmark such as the TONIC framework, but without the

information of the benchmark train-test tiles used by other

literatures, no definitive performance comparison can be drawn.

The class-filter grouping technique in the second train-test deep

learning processing pass using MPVCNN is an effective tool

towards extracting higher F1-scores on low frequency data points

and small physical size objects such as ‘car’ and on thin objects

such as ‘powerline’. For both classes, ‘car’ and ‘powerline’, we

recorded the highest F1-scores for DALES dataset at 0.852 and

0.988 respectively, with F1-score increment in the range of 8%

to 12% (Table 5). Using class-filtered grouping, geometric

features were determined based on a single object class, with

more distinctive profiles than geometric features computed from

an aerial dataset without class-filter grouping. Which also

supports the benefit of this methodology in correcting prediction

via learning from an ideal definition of the geometric features,

especially on the less frequent classes.

In addition to the increased F1-score on two targeted class

imbalanced objects (‘car’, ‘powerline’), this method was also

observed to produce minor positive gain in F1-scores for bulk

objects with higher representation of data points such as

‘ground’, ‘vegetation’ and ‘building’. Understandably, this

method is not intended nor anticipated to provide substantial

improvement on large objects and major classes, as the corrective

predictions are expected to be made at boundary areas with the

presence of multiple object classes.

On other class imbalanced objects such as ‘truck’ and ‘pole’,

there are lesser gains from this method. We believe this could be

attributed to overlapping geometric features between ‘truck’ and

‘building’, ‘pole’ and ‘vegetation’. Moreover, the instances and

number of points for ‘truck’ and ‘pole’ are relatively low, making

training for such objects remain a challenge. As such, other

features or descriptors are needed beyond what is included in this

study to adequately differentiate such objects.

Acknowledgements

The authors acknowledge the contribution by PETRONAS for

sponsoring this research, as part of a PhD project.

References

Ambituuni, A., Hopkins, P., Amezaga, J., Werner, D., & Wood,

J. (2015). Risk assessment of a petroleum product pipeline in

Nigeria: the realtities of managig problems of theft/sabotage.

WIT Transactions of The Built Environment, 151, 49-60.

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer,

M., & Savarese, S. (2016). 3d semantic parsing of large-scale

indoor spaces. Proceedings of the IEEE conference on computer

vision and pattern recognition,

Chen, L., Chen, W., Xu, Z., Huang, H., Wang, S., Zhu, Q., & Li,

H. (2021). DAPnet: A double self-attention convolutional

network for point cloud semantic labeling. IEEE Journal of

Selected Topics in Applied Earth Observations and Remote

Sensing, 14, 9680-9691.

Chen, Y., Liu, G., Xu, Y., Pan, P., & Xing, Y. (2021). PointNet++

network architecture with individual point level and global

features on centroid for ALS point cloud classification. Remote

Sensing, 13(3), 472.

Li, W., Wang, F.-D., & Xia, G.-S. (2020). A geometry-attentional

network for ALS point cloud classification. ISPRS Journal of

Photogrammetry and Remote Sensing, 164, 26-40.

Liu, Z., Tang, H., Lin, Y., & Han, S. (2019). Point-voxel cnn for

efficient 3d deep learning. Advances in neural information

processing systems, 32.

Özdemir, E., Remondino, F., & Golkar, A. (2021). An efficient

and general framework for aerial point cloud classification in

urban scenarios. Remote Sensing, 13(10), 1985.

Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017). Pointnet++: Deep

hierarchical feature learning on point sets in a metric space.

Advances in neural information processing systems, 30.

Robert, D., Raguet, H., & Landrieu, L. (2023). Efficient 3D

semantic segmentation with superpoint transformer. Proceedings

of the IEEE/CVF International Conference on Computer Vision,

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net:

Convolutional networks for biomedical image segmentation.

Medical image computing and computer-assisted intervention–

MICCAI 2015: 18th international conference, Munich, Germany,

October 5-9, 2015, proceedings, part III 18,

Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C.,

Benitez, S., & Breitkopf, U. (2012). The ISPRS benchmark on

urban object classification and 3D building reconstruction.

ISPRS Annals of the Photogrammetry, Remote Sensing and

Spatial Information Sciences; I-3, 1(1), 293-298.

Smith, H. (2022). Progress and challenges in pipeline theft

detection. Pipeline Technology Conference 2022, Berlin

Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B., Goulette,

F., & Guibas, L. J. (2019). Kpconv: Flexible and deformable

convolution for point clouds. Proceedings of the IEEE/CVF

international conference on computer vision,

UKOPA. (2019). Good Practice Guide - Managing pipelines

subject to ground movement [Industry Guideline].

(UKOPA/GP/020 Edition 1).

Varney, N., Asari, V. K., & Graehling, Q. (2020). DALES: A

large-scale aerial LiDAR data set for semantic segmentation.

Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition workshops,

Weinmann, M., Jutzi, B., & Mallet, C. (2013). Feature relevance

assessment for the semantic interpretation of 3D point cloud data.

ISPRS Annals of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, 2, 313-318.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-393-2026 | © Author(s) 2026. CC BY 4.0 License.

400

