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Abstract 

 

Leishmaniasis remains a persistent global public health challenge, particularly in regions where ecological and socioeconomic 

conditions favor vector proliferation and disease transmission. In Morocco, the provinces of Beni Mellal and Khenifra are among the 

most severely affected, necessitating the use of advanced spatial prediction tools to guide effective disease control strategies. This 

study integrated machine learning techniques and Geographic Information System (GIS) technologies to develop a predictive 

framework for cutaneous leishmaniasis risk mapping. A spatial database was constructed by combining reported case data from 2011 

to 2018 with key environmental and climatic variables including temperature, precipitation, normalized difference vegetation index 

(NDVI), altitude, slope, and wind speed. Three machine learning algorithms, Support Vector Regression (SVR), Random Forest (RF), 

and Extreme Gradient Boosting (XGBoost), were evaluated for their predictive performance, while the CORrelation ALignment 

(CORAL) method was applied as a domain adaptation strategy to address distributional differences between training and target 

regions. The results demonstrated that XGBoost achieved the highest predictive accuracy (R² = 0.91, MSE = 0.1229, MAE = 0.2587), 

followed by SVR (R² = 0.89, MSE = 0.1434, MAE = 0.2765), and RF (R² = 0.85, MSE = 0.1925, MAE = 0.3120). Incorporating 

CORAL significantly improved the model generalizability and stability across ecologically diverse zones. The final risk map identified 

high-risk clusters in central and northern Beni Mellal and Khenifra, offering actionable insights into spatially targeted interventions. 

This study presents a scalable GIS-integrated machine learning framework with strong potential for application in other data-scarce 

high-risk regions. Future research should incorporate real-time data and advanced deep learning techniques to further enhance the 

predictive power. 

 

 

1. Introduction 

Leishmaniasis is a vector-borne parasitic disease that continues 

to pose a major public health threat in many tropical and 

subtropical regions of the world, including North Africa. Caused 

by protozoa of the genus Leishmania and transmitted by the bite 

of infected female phlebotomine sandflies, leishmaniasis 

manifests primarily in cutaneous, mucocutaneous, and visceral 

forms. Globally, the World Health Organization (WHO) 

estimates that approximately 700,000 to 1 million new cases 

occur annually, with over 350 million people at risk of infection. 

In Morocco, leishmaniasis is endemic and has demonstrated a 

worrying expansion in both spatial range and case frequency over 

recent decades (El Omari et al., 2019; Talbi et al., 2019). Several 

regions, particularly Fez-Meknes, Sefrou, and Beni Mellal-

Khenifra, have reported recurring outbreaks, largely due to 

ecological, socio-economic, and climatic factors that facilitate 

the proliferation of sandfly vectors and the persistence of the 

Leishmania parasite (El Omari et al., 2019). 

Given the ecological nature of leishmaniasis transmission, 

environmental variables such as temperature, precipitation, 

altitude, vegetation index (NDVI), and humidity play a crucial 

role in shaping disease dynamics. Consequently, spatial 

modeling has emerged as a vital tool for understanding the risk 

landscape of leishmaniasis. Geographic Information Systems 

(GIS) and remote sensing technologies have enabled researchers 

to visualize disease distribution, identify high-risk zones, and 

develop spatial risk prediction maps that aid in targeted 

interventions and resource allocation (Talbi et al., 2019). These 

tools are particularly valuable in Morocco, where 

epidemiological data may be fragmented or underreported in 

certain rural areas. 

More recently, the incorporation of machine learning (ML) into 

spatial epidemiology has transformed the predictive capacity of 

disease mapping models. ML algorithms such as Random Forest 

(RF), Support Vector Regression (SVR), and Gradient Boosting 

Machines (XGBoost) offer powerful alternatives to traditional 

statistical models by capturing complex, nonlinear relationships 

between input features and disease incidence. Studies have 

shown that these models can achieve high predictive accuracy in 

environmental health applications, including flood susceptibility, 

coastal vulnerability, and vector-borne disease risk (Fannassi et 

al., 2023; Meliho et al., 2022; Shabanpour et al., 2022). In the 

context of leishmaniasis, machine learning has proven effective 

for integrating heterogeneous datasets; ranging from satellite 

imagery to climate metrics; into robust spatial prediction 

frameworks (Shabanpour et al., 2022). 

Despite these advances, a major limitation persists: the 

generalizability of ML models across different spatial domains. 

Most models are trained on data from a specific region and may 

perform poorly when applied to new areas with different 

ecological or socio-economic profiles. This issue, known as the 

domain shift problem, has become increasingly relevant in 

geospatial epidemiology, where input feature distributions vary 

significantly between training and target regions. For instance, a 

model trained on environmental data from one province may not 
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effectively predict disease risk in another due to differing 

microclimates, land use patterns, or population densities. 

To address the limitations of poor model transferability across 

regions, recent advances in machine learning have embraced 

domain adaptation: a suite of techniques that improve the ability 

of models trained on one dataset (source domain) to generalize 

well to new, unseen data distributions (target domain). In the 

context of spatial epidemiology, domain adaptation is 

particularly important due to the heterogeneity of environmental 

variables across geographical regions, which can lead to 

distributional mismatch between training and prediction areas 

(Sarafian et al., 2021). 

A widely studied unsupervised domain adaptation method is 

CORrelation ALignment (CORAL), introduced by (B. Sun & 

Saenko, 2016). CORAL works by aligning the second-order 

statistics (i.e., covariance matrices) of the source and target 

feature spaces without requiring labeled data from the target 

domain. This alignment reduces the "domain shift" by 

transforming the source features such that their distribution 

becomes statistically similar to the target, thereby improving the 

generalizability of the model. The original CORAL method 

applies a linear transformation, making it computationally 

efficient and simple to integrate into existing pipelines. 

Subsequent developments led to Deep CORAL, which extends 

this idea to nonlinear feature spaces within deep neural networks 

by aligning the activations of intermediate network layers (B. Sun 

& Saenko, 2016; Y. Wang et al., 2017). These techniques have 

demonstrated state-of-the-art performance on visual recognition 

tasks but are now gaining traction in spatial prediction and health 

informatics, where labeled data are scarce and domain variability 

is high. 

In geospatial applications, CORAL has been used to improve 

temperature predictions across spatial domains (Sarafian et al., 

2021) and has shown promise in low-resource settings where 

training data from the target region are limited or unavailable 

(Lynch & Wookey, 2021). The relevance of domain adaptation 

in this context cannot be overstated: when dealing with public 

health data; often sparse, noisy, or imbalanced; domain 

adaptation provides a statistically principled way to transfer 

learned patterns from data-rich regions to data-poor regions, 

without compromising predictive accuracy. 

This study leverages CORAL to enhance the spatial 

generalizability of leishmaniasis risk prediction models in 

Morocco. The models were initially trained using historical 

epidemiological and environmental data from the province of 

Isfahan, Iran; an area with well-documented CL incidence and 

high-quality spatial datasets (Shabanpour et al., 2022). By 

applying CORAL, we adapted the source-trained models to 

predict disease risk in the Beni Mellal-Khenifra region of 

Morocco. This experimental design simulates a realistic public 

health scenario in which training data from a data-rich endemic 

region (Iran) are transferred to a data-scarce target region 

(Morocco), thereby demonstrating the feasibility and value of 

domain adaptation for cross-regional disease risk modeling. 

In this paper, we propose a novel integration of GIS, machine 

learning, and domain adaptation to predict the spatial risk of 

leishmaniasis in Morocco, with a particular focus on the Beni 

Mellal-Khenifra region. This area is ecologically diverse and 

epidemiologically significant, making it an ideal testbed for 

evaluating the effectiveness of domain adaptation in spatial 

disease modeling. Our methodology involves collecting high-

resolution environmental and climatic data from sources such as 

NASA POWER, MODIS NDVI, and digital elevation models 

(DEMs), integrating them within a GIS framework, and applying 

ML models (RF, SVR, and XGBoost) to generate risk maps. The 

CORAL algorithm is then used to adapt the model trained on data 

from a different region, allowing for more accurate risk 

prediction in Beni Mellal-Khenifra. 

The main contributions of this paper are fourfold: we compile 

and preprocess a comprehensive set of environmental, 

epidemiological, and climatic variables relevant to leishmaniasis 

transmission in Morocco; we evaluate the predictive performance 

of several machine learning algorithms for spatial risk mapping, 

using standard metrics such as R², MAE, and MSE; we 

implement CORrelation ALignment (CORAL) as a domain 

adaptation technique to enhance model generalizability across 

ecologically diverse regions; and we generate high-resolution 

leishmaniasis risk maps for the Beni Mellal-Khenifra region, 

offering valuable insights for targeted public health 

interventions. This integrated approach marks a significant 

methodological advance in the spatial prediction of neglected 

tropical diseases. By leveraging the combined power of GIS, 

machine learning, and domain adaptation, the framework directly 

addresses the persistent challenge of model transferability in 

spatial epidemiology and offers a scalable solution that can be 

adapted to similar contexts in other regions or diseases. 

 

 

2. Study area 

 
 

Figure 1. Geographical location of the study area. 

 

The Beni Mellal-Khenifra region, located in central Morocco, 

spans approximately 28,374 km² and includes five provinces: 

Beni Mellal, Azilal, Fquih Ben Salah, Khenifra, and Khouribga. 

With a population exceeding 2.5 million people, it presents a 

balanced distribution between rural and urban communities, 

making it an important socio-demographic and ecological zone 

for spatial health studies (Eddoughri et al., 2022). 

 

2.1. Ecological Zoning 

Ecologically, Beni Mellal-Khenifra is characterized by three 

principal zones. First, the mountainous areas of the High and 

Middle Atlas, predominantly in Azilal and Khenifra, are rich in 

natural forests and biodiversity but are vulnerable to 

environmental degradation. Second, the Tadla plain in Beni 

Mellal and Fquih Ben Salah serves as the region’s agricultural 

heartland, benefiting from extensive irrigation infrastructure and 

fertile soils. Third, the semi-arid foothills, acting as transitional 

zones between plains and mountains, are ecologically fragile and 
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marked by land use pressures and climate variability (Achbah et 

al., 2024). 

 

2.2. Climate and Implications for Leishmaniasis 

The region experiences a continental climate with pronounced 

seasonality; hot, dry summers and cold, wet winters, especially 

at higher altitudes. Precipitation levels range between 300 mm 

and 700 mm annually, while temperature fluctuations create 

microclimates that strongly influence the ecology of vector-borne 

diseases. These environmental conditions; combined with 

moderate humidity and vegetative cover; create optimal habitats 

for Phlebotomus sandflies, the primary vectors of leishmaniasis. 

Recent climatic shifts, including irregular rainfall and prolonged 

droughts, have contributed to the expansion of sandfly habitats 

into new ecological niches within the region, increasing 

transmission risk (Kahime et al., 2014). 

 

2.3. Agricultural Dynamics and Public Health Interface 

Beni Mellal-Khenifra is one of Morocco’s most agriculturally 

productive regions, with over 960,000 hectares of cultivated 

land, including approximately 205,000 hectares under 

irrigation, representing 15% of Morocco’s total irrigated land 

(Eddoughri et al., 2022). Key crops include cereals, olives, fodder 

plants, and economically important species such as carob 

(Ceratonia siliqua L.), which supports both subsistence farming 

and agro-industrial markets (Elfazazi, 2017). However, these 

intensive agricultural activities; particularly the use of open 

irrigation channels, livestock presence, and organic waste 

accumulation; create favorable microhabitats for sandfly 

breeding and resting. The reuse of treated wastewater in 

irrigation, while valuable for water conservation, further 

complicates public health dynamics by enhancing vector 

exposure in farming communities (Faouzi et al., 2020). 

 

2.4. Justification for Study Area Selection 

The choice of Beni Mellal-Khenifra as the study area is guided 

by several factors: 

 

 
 

Figure 2. Study area selection factors 

 

Epidemiological significance, with reported cases of both 

cutaneous and visceral leishmaniasis, 

Environmental and ecological heterogeneity, ideal for testing 

spatial model generalizability, 

High agricultural density, offering insight into human-

environment-vector interactions, 

Data availability, due to ongoing environmental monitoring and 

agricultural programs. 

This combination of geographic, ecological, and epidemiological 

characteristics makes Beni Mellal-Khenifra a strategically 

important and scientifically valuable region for predictive disease 

modeling. 

 

 

3. Data and Materials 

3.1. Epidemiological Data 

This study utilizes epidemiological data on cutaneous 

leishmaniasis (CL) collected from the Beni Mellal and Fquih Ben 

Salah provinces within the Beni Mellal-Khenifra region of 

Morocco. According to a molecular and spatial epidemiological 

study by (Faiza et al., 2015), a total of 584 confirmed cases of 

CL were recorded between 2000 and 2012 in these provinces. 

The most affected sectors were Zaouiat Cheikh, Beni Mellal, 

and Oulad Ayad, with children under the age of 9 constituting 

over 62% of reported cases. This age distribution highlights the 

vulnerability of younger populations to vector exposure in 

endemic zones (Faiza et al., 2015). 

Leishmaniasis surveillance in Morocco is conducted under the 

aegis of the Ministry of Health and includes both passive case 

detection (via local clinics and hospitals) and retrospective case 

registry analysis. For this study, epidemiological data were 

sourced from regional health bulletins, Ministry of Health 

surveillance reports, and prior academic studies focusing on the 

epidemiological status of CL in central Morocco. These sources 

include demographic breakdowns (age, gender), spatial 

distribution of cases at the municipality level, and temporal 

patterns of outbreak occurrence. 

Moreover, a national-level retrospective analysis by (Kahime et 

al., 2016) reported over 41,000 CL cases across Morocco 

between 2004 and 2013, with a significant incidence in Azilal 

province, which is part of the Beni Mellal-Khenifra region. The 

same study emphasized the predominance of Leishmania 

tropica (anthroponotic form) in this region and its association 

with rural living conditions and poor sanitation 

infrastructure, which are known risk amplifiers for disease 

transmission (Kahime et al., 2016). 

In addition to case count data, entomological surveys in the 

region confirm the presence of key vector species, such as 

Phlebotomus sergenti and Phlebotomus papatasi, further 

validating the epidemiological relevance of this study area. These 

data were complemented by the geo-coding of case locations and 

temporal outbreak sequences, enabling integration into the GIS-

based spatial modeling framework employed in this study. 

Collectively, the epidemiological dataset provides the dependent 

variable (leishmaniasis incidence per spatial unit) for model 

training and evaluation, and serves as the foundation for 

constructing risk prediction maps at the provincial and sub-

provincial level. 

 

3.2. Environmental and Climatic Variables 

The spatial distribution and intensity of leishmaniasis 

transmission are profoundly influenced by environmental and 

climatic factors, which regulate both vector abundance and 

parasite development. In this study, a diverse set of 

environmental and climatic variables was collected and 

integrated into the spatial modeling framework to predict 

leishmaniasis risk in Beni Mellal-Khenifra. These variables were 

chosen based on prior studies demonstrating their ecological 

relevance for Phlebotomus sandflies; the vectors of Leishmania 

spp.; and their accessibility via remote sensing and GIS 

platforms. 

 

3.2.1. Temperature and Precipitation: Temperature plays a 

pivotal role in the development of sandflies and Leishmania 

parasites. High night-time temperatures were significantly 

correlated with increased densities of Phlebotomus papatasi and 

P. sergenti, two dominant sandfly species in Morocco (Boussaa 

et al., 2016a). Additionally, warmer temperatures shorten the 

incubation period of the parasite within the sandfly, thereby 
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accelerating transmission cycles. Precipitation, though not a 

direct requirement for sandfly breeding, influences soil moisture 

and vegetation density, indirectly affecting larval development 

and adult survival. Areas with moderate rainfall and intermittent 

humidity have been shown to exhibit higher leishmaniasis 

incidence, especially in semi-arid zones of Morocco (Kholoud et 

al., 2018). 

 

3.2.2. Normalized Difference Vegetation Index (NDVI): 

NDVI is used to measure green vegetation cover and indirectly 

assess habitat suitability for sandfly breeding and resting. Studies 

have shown that P. sergenti densities are positively correlated 

with NDVI, as vegetation provides shelter and maintains soil 

humidity required for larval development (Boussaa et al., 2016b). 

In Beni Mellal-Khenifra, NDVI data were derived from MODIS 

satellite imagery and aggregated seasonally to capture vegetation 

dynamics. 

3.2.3. Altitude and Slope: Altitude impacts both temperature 

and humidity profiles, which in turn affect vector habitat 

suitability. Regions at mid-elevation (400–1200 meters) in 

Morocco, including parts of the Tadla and Khenifra highlands, 

have shown increased cutaneous leishmaniasis prevalence, likely 

due to overlapping optimal conditions for both vector and host 

(Hakkour et al., 2020). Slope data, extracted from Digital 

Elevation Models (DEMs), were also used to assess terrain 

variability and drainage characteristics, which influence soil 

moisture; a key parameter for vector egg-laying. 

 

3.2.4. Aridity and Soil Conditions: Aridity indices, including 

evapotranspiration and water deficit estimates, were included to 

model environmental stress levels. High aridity has a negative 

correlation with P. papatasi populations, while moderate levels 

are conducive to breeding activity (Ben Salem et al., 2020). Soil 

pH and soil water stress data were obtained from global soil 

datasets and used to refine vector habitat models. 

 

3.2.5. Frost Days and Wind Speed: Frost days (days with 

minimum temperature below 0°C) negatively impact vector 

survival and were used as exclusionary criteria in higher altitude 

zones. Wind speed data, extracted from NASA POWER, were 

used to account for vector mobility and dispersal limitations. 

Strong winds can disrupt sandfly flight and reduce transmission 

potential. 

 

3.2.6. Seasonal Effects: Seasonality significantly modulates 

leishmaniasis incidence. The wet season (October–April) shows 

a higher incidence of cutaneous leishmaniasis, aligning with 

increased vegetation cover and moderate temperatures, which 

favor vector proliferation (Hakkour et al., 2020). To capture these 

temporal dynamics, all climatic variables were processed both 

annually and seasonally using ArcGIS Pro and Google Earth 

Engine. 

Together, these environmental and climatic predictors form the 

basis for spatial risk modeling of leishmaniasis in the Beni 

Mellal-Khenifra region, providing biologically informed 

variables for machine learning algorithms. 

 

3.3. Data Sources 

To construct a robust spatial model for cutaneous leishmaniasis 

(CL) risk in the Beni Mellal-Khenifra region, we integrated a 

suite of environmental and climatic datasets from authoritative 

global sources. These datasets were selected based on their 

relevance to vector ecology, data quality, spatial and temporal 

resolution, and compatibility with Geographic Information 

System (GIS) platforms. 

 

3.3.1. NASA POWER: Meteorological and Solar Parameters 

Meteorological variables such as air temperature, precipitation, 

humidity, wind speed, and solar radiation were sourced from 

NASA’s Prediction of Worldwide Energy Resources 

(POWER) project. The POWER dataset provides satellite-

derived and reanalysis-based meteorological data, tailored for 

applications in agroclimatology and environmental modeling. 

Specifically: 

1 Data Sources include MERRA-2 for meteorology 

and CERES SYN1deg/FLASHFlux for solar data, as 

described in the NASA POWER Data Sources. 

2 Access Method: Data were retrieved through the 

NASA POWER Data Access Viewer (DAV), and 

bulk retrieval was facilitated via NASA’s API 

services. 

3 Available Parameters: A wide range of climate 

variables were selected from the NASA POWER 

Parameters list, including daily maximum/minimum 

temperature, total precipitation, wind speed, solar 

radiation, and relative humidity. 

4 Resolution: Meteorological data are available at 0.5° 

x 0.625°, with daily, monthly, and annual 

aggregations. 

These datasets are crucial for characterizing the environmental 

envelope suitable for Phlebotomus vector activity and 

Leishmania lifecycle progression. 

 

3.3.2. Digital Elevation Models (DEMs): Topographic 

variables, including elevation and slope, were derived from high-

resolution Digital Elevation Models (DEMs). These models are 

critical for understanding the altitudinal distribution of sandfly 

habitats and the influence of terrain on microclimatic conditions. 

DEMs were processed to generate slope and aspect layers, which 

were then incorporated into the spatial analysis framework. 

 

3.3.3. Normalized Difference Vegetation Index (NDVI): 

Vegetation cover, a proxy for suitable sandfly habitats, was 

assessed using the Normalized Difference Vegetation Index 

(NDVI). NDVI data were obtained from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) sensor, providing 16-day 

composites at a spatial resolution of 250 meters. Seasonal NDVI 

averages were calculated to capture temporal variations in 

vegetation density, which influence sandfly breeding and resting 

sites. 

 

3.3.4. Soil and Aridity Indices: Soil characteristics and aridity 

indices were included to evaluate their impact on sandfly larval 

development and survival. Soil data, encompassing parameters 

such as soil moisture and texture, were sourced from global soil 

databases. Aridity indices, including evapotranspiration rates and 

water deficit metrics, were calculated to assess environmental 

stress levels that affect vector ecology. 

 

3.3.5. Data Integration and Processing: All spatial datasets 

were projected to a common coordinate reference system and 

resampled to a uniform spatial resolution to ensure compatibility. 

GIS software, including ArcGIS Pro and QGIS, was employed 

for data preprocessing, spatial analysis, and visualization. The 

integration of these datasets facilitated the development of a 

comprehensive spatial model to predict CL risk areas accurately. 

 

3.4.  Spatial Data Integration with GIS 
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Geographic Information Systems (GIS) play a central role in 

integrating, managing, and analyzing the diverse environmental, 

climatic, and epidemiological datasets used for spatial disease 

modeling. In this study, GIS was employed not only as a mapping 

platform but also as a spatial analysis engine to synthesize 

heterogeneous data sources, compute derived features, and 

generate predictive risk surfaces for cutaneous leishmaniasis in 

Beni Mellal-Khenifra. 

All datasets; ranging from NASA POWER climate parameters to 

MODIS-derived NDVI and elevation models; were projected to 

a unified coordinate reference system (WGS 84) and resampled 

to a common spatial resolution using ArcGIS Pro 3.1 and QGIS 

3.22. Raster layers (e.g., temperature, NDVI, slope) were clipped 

to the administrative boundary of the study area, while vector 

datasets (e.g., health facility locations, commune boundaries) 

were spatially joined with disease incidence data for model 

calibration. 

Environmental variables were processed into thematic layers, 

such as: 

1. Topographic layers (elevation, slope, aspect), 

2. Climatic surfaces (annual precipitation, maximum 

and minimum temperature, frost days), 

3. Vegetation and land use indicators (seasonal NDVI, 

land cover classes), 

4. Anthropogenic factors (population density, irrigation 

zones). 

Spatial statistical tools and raster algebra were applied to 

compute zone-based averages (zonal statistics), create buffer 

analyses around populated areas, and extract value-at-point 

features for training machine learning models. Risk surfaces were 

visualized using heatmaps, quantile classification, and natural 

breaks (Jenks) to highlight high-risk zones. 

This spatial data integration approach aligns with findings from 

previous Moroccan studies that emphasize the power of GIS in 

identifying high-incidence zones, exploring altitude-disease 

relationships, and guiding health interventions through 

geospatial targeting (El Omari et al., 2018, 2019; Talbi et al., 

2019). 

The final GIS data stack served as the input layer for the machine 

learning algorithms described in the methodology section, 

enabling spatially explicit prediction of disease risk with high 

granularity. 

 

 

4. Environmental Factors 

Environmental factors play a critical role in shaping the 

ecological suitability for Leishmania vectors and reservoirs. Each 

variable influences sandfly survival, parasite development, and 

human-vector contact rates in distinct but interconnected ways. 

The following environmental and climatic factors were selected 

based on their proven relevance to leishmaniasis transmission in 

North African contexts, particularly in Morocco. 

 

4.1. Temperature 

Temperature is a key driver of sandfly development, feeding 

activity, and parasite maturation. Optimal ranges for 

Phlebotomus papatasi and P. sergenti are between 20°C and 

30°C, which align with typical summer conditions in the Beni 

Mellal-Khenifra region. Warmer temperatures accelerate the 

Leishmania promastigote cycle inside the sandfly gut, reducing 

the extrinsic incubation period and increasing transmission risk 

(Kholoud et al., 2018). 

 

4.2. Precipitation 

While sandflies do not require standing water for breeding, 

moderate rainfall improves soil moisture and supports vegetative 

growth, indirectly favoring larval habitats. In semi-arid zones of 

Morocco, precipitation between 300–600 mm/year has been 

associated with higher leishmaniasis incidence (Ben Salem et al., 

2020). 

 

4.3. Normalized Difference Vegetation Index (NDVI) 

NDVI reflects vegetation density and is a proxy for microhabitats 

suitable for sandfly resting and breeding. Vegetated areas offer 

protection from desiccation and support higher relative humidity. 

Studies show that leishmaniasis incidence correlates with NDVI 

values in the range of 0.2–0.5, typical of semi-arid agricultural 

zones in the region (Boussaa et al., 2016b). 

 

4.4. Altitude 

Altitude influences temperature, humidity, and land cover. Mid-

altitude zones (400–1200 m), prevalent in Beni Mellal and Azilal 

provinces, present an ecological gradient where sandfly vectors 

thrive. In Morocco, CL cases have been reported at altitudes up 

to 1400 m, with increased vector diversity in such transition 

zones (Hakkour et al., 2020). 

 

4.5. Slope 

Slope affects drainage patterns and soil moisture retention. Areas 

with gentle slopes (0°–15°) tend to accumulate organic matter 

and humidity, which favor sandfly oviposition. Steep slopes, by 

contrast, promote rapid runoff and less stable habitats. 

 

4.6. Wind Speed 

Sandflies are weak flyers; thus, wind speed directly influences 

their dispersal capacity. Moderate wind (below 2.5 m/s) allows 

limited movement, while stronger winds reduce activity and 

mating success. Wind also modifies local temperature and 

humidity conditions, indirectly affecting habitat suitability 

(Kholoud et al., 2018). 

 

4.7. Humidity 

Relative humidity above 50% is favorable for adult sandfly 

survival, as it prevents desiccation. In Beni Mellal-Khenifra, 

humidity levels vary seasonally but tend to be higher in irrigated 

and forest-adjacent areas; both linked to elevated leishmaniasis 

risk. 

 

4.8. Frost Days 

Frost days; defined as days with minimum temperature < 0°C; 

are limiting factors for sandfly survival. Frequent frost reduces 

adult vector longevity and larval survival, especially in high-

altitude zones like Khenifra. Areas with <5 frost days annually 

are generally more conducive to stable vector populations 

(Hakkour et al., 2020). 

The spatial patterns of these environmental predictors across 

Beni Mellal-Khénifra are illustrated in Figure 3a–h. 

 
            (a) Temperature    (b) Precipitation 
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   (c) NDVI (Vegetation Index)     (d) Altitude 

 

 
(e) Slope   (f) Wind Speed 

 
     (g) Relative Humidity   (h) Frost Days 

 

Figure 3a–h. Spatial distribution of environmental and climatic 

predictors of cutaneous leishmaniasis risk in Beni Mellal-

Khenifra. 

 

4.9. Ecological and Modeling Relevance of Environmental 

Factors 

Together, these environmental variables define the ecological 

envelope necessary for leishmaniasis transmission. In regions 

like Beni Mellal-Khenifra, the convergence of moderate 

temperatures, seasonal vegetation cycles, and rural agro-

ecological settings fosters high-risk microhabitats for sandfly 

vectors. The interplay of altitude-driven climate gradients, 

irrigated farmlands, and humidity-preserving vegetation zones 

creates favorable conditions for both vector proliferation and 

parasite development. These dynamics render the region 

particularly vulnerable to both endemic persistence and the 

emergence of new transmission foci. 

Importantly, these environmental factors were not only selected 

for their biological relevance but also for their quantitative 

contribution to the spatial risk modeling process. Each variable 

serves as a predictor within the machine learning framework, 

shaping the model’s capacity to detect, delineate, and prioritize 

areas of elevated leishmaniasis risk. Their spatial and temporal 

variability across Beni Mellal-Khenifra directly informs the 

granularity and accuracy of the resulting predictive risk maps, 

supporting more precise and actionable public health 

interventions. 

 

 

5. Methodology 

This study proposes a dual-domain machine learning framework 

for spatial prediction of cutaneous leishmaniasis (CL) using data 

from Isfahan, Iran (as the source domain), and Beni Mellal-

Khenifra, Morocco (as the target domain). The methodology 

(summarized in Figure 4) integrates geographic information 

systems (GIS), environmental predictors, and domain adaptation 

via CORrelation ALignment (CORAL) to enhance model 

transferability between ecologically distinct regions. 

 

 
Figure 4. Overview of the dual-domain methodology used to 

predict CL risk in Morocco, integrating machine learning, 

feature selection, and CORAL-based domain adaptation from 

Iran to Morocco. 

 

5.1. Data Preprocessing 

Before model training, extensive preprocessing was conducted to 

ensure the quality, consistency, and analytical readiness of the 

epidemiological, environmental, and climatic datasets. Given the 

spatial heterogeneity of the input variables, the preprocessing 

workflow focused on spatial alignment, normalization, and 

multicollinearity reduction to enhance model performance and 

interpretability. 

 

5.1.1. Source Domain (Iran): Epidemiological data and ten 

environmental variables; including temperature, precipitation, 

NDVI, altitude, slope, and frost days; were collected for Isfahan 

Province from 2011 to 2018. These variables were selected based 

on known ecological relevance to CL and used extensively in 

prior spatial modeling efforts (Shabanpour et al., 2022). 

Preprocessing included reprojection to WGS 84, resampling to 1 

km² resolution, NDVI compositing, and terrain feature extraction 

from DEMs. Noise and missing values were addressed using 

inverse distance weighting (IDW) and zonal smoothing filters. 

 

5.1.2. Target Domain (Morocco): Environmental and climatic 

variables for Beni Mellal-Khenifra were processed using the 

same protocols to ensure compatibility with the source domain. 

Harmonized raster stacks were generated and clipped to 

administrative boundaries. These datasets served as the basis for 

model testing and adaptation. 

 

 

5.2.  Feature Selection (Correlation, VIF, KDE)  
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5.2.1. Feature Selection (Iran): To minimize multicollinearity 

and enhance interpretability, three statistical tools were 

employed: 

• Pearson correlation (threshold |r| > 0.85) 

• Variance Inflation Factor (VIF < 10) 

• Kernel Density Estimation (KDE) to identify feature 

distributions around case hotspots 

This process yielded an optimal set of predictors: spring NDVI, 

mean temperature, frost days, slope, and humidity. 

 

5.2.2. Covariance Estimation (Morocco): For CORAL-based 

domain adaptation, the covariance matrix of Moroccan feature 

distributions was computed. This matrix represented the 

statistical target to which source domain features were aligned. 

 

 

5.3.  Machine Learning Models (SVR, RF, XGBoost) 

To predict the spatial risk of cutaneous leishmaniasis in Beni 

Mellal-Khenifra, three supervised machine learning models were 

employed: Support Vector Regression (SVR), Random Forest 

(RF), and Extreme Gradient Boosting (XGBoost). These 

algorithms were selected based on their proven effectiveness in 

handling high-dimensional, nonlinear environmental data and 

their strong performance in disease mapping and geospatial 

prediction tasks (Guma et al., 2023; Shabanpour et al., 2022; J. 

Sun et al., 2023). 

 

5.3.1. Support Vector Regression (SVR): SVR is a regression-

based extension of Support Vector Machines (SVM), designed to 

fit a function within a defined error margin (ε-insensitive loss 

function). Its objective is to find a hyperplane that best 

appronkoximates the relationship between independent variables 

𝑥 and a continuous dependent variable 𝑦, while minimizing the 

model’s complexity. The SVR loss function is defined as: 

 

𝑚𝑖𝑛 (
1

2
‖𝑤‖² + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1 )                    (1) 

 

Subject to: 

𝑦𝑖 −  𝑤𝑇𝑥𝑖  − 𝑏 ≤ 𝜖 + 𝜉𝑖  and  𝑤𝑇𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤  𝜖 + 𝜉𝑖
∗ 

where 𝐶 is the regularization parameter, ϵ defines the margin of 

tolerance, and 𝜉𝑖 , 𝜉𝑖
∗ are slack variables. SVR has been 

successfully applied to spatial disease modeling due to its 

generalization ability even with limited data (Shabanpour et al., 

2022). 

 

5.3.2. Random Forest (RF): RF is an ensemble learning 

algorithm that constructs multiple decision trees during training 

and outputs the average prediction of the individual trees. It is 

robust to overfitting, handles noisy data, and performs internal 

feature selection via its random sampling mechanism. The RF 

model learns from bagged subsets of the data and introduces 

randomness in feature selection at each tree node, improving 

generalization: 

 

𝑓𝑅𝐹(𝑥)  =  
1

𝐵
∑ 𝑇𝑏(𝑥)𝐵

𝑏=1               (2) 

 

where 𝑇𝑏(𝑥) is the prediction from the 𝑏𝑡ℎ decision tree. In 

geospatial applications, RF is particularly valuable due to its 

interpretability through feature importance scores and its ability 

to capture complex nonlinear patterns (J. Sun et al., 2023). 

 

5.3.3. Extreme Gradient Boosting (XGBoost): XGBoost is an 

advanced implementation of gradient boosting decision trees 

(GBDT), designed to optimize computational efficiency and 

predictive accuracy. Unlike RF, which builds trees in parallel, 

XGBoost constructs trees sequentially, where each tree aims to 

correct the errors of the previous one. The objective function 

includes a regularization term to penalize complexity and avoid 

overfitting: 

 

𝑂𝑏𝑗 =  ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑ 𝛺(𝑓𝑘)𝐾
𝑘=1

𝑛
𝑖=1              (3) 

 

With:  

𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖²                    (4) 

where 𝑙 is the loss function (e.g., squared error), 𝑇 is the number 

of leaves, and λ is the L2 regularization term. XGBoost supports 

missing value handling, early stopping, and parallelized 

computation, making it particularly suited for large-scale spatial 

risk modeling (Guma et al., 2023). 

 

5.3.4. Model Training and Validation: Each model was trained 

on 70% of the dataset and validated on the remaining 30% using 

a hold-out strategy. Input features included environmental and 

climatic predictors retained after feature selection (Section 5.2). 

Hyperparameters were optimized via grid search using cross-

validation to prevent overfitting and ensure generalizability. 

These three models form the core of the spatial risk prediction 

engine, with results compared in terms of performance metrics 

(MSE, MAE, R²) in the Results section. 

 

5.4. Domain Adaptation with CORAL 

One of the most critical challenges in geospatial disease 

modeling is domain shift; the variation in environmental 

distributions between regions, which can compromise a model’s 

generalizability when applied outside the training zone. In 

Morocco, climatic, topographic, and ecological variables differ 

significantly across provinces. As such, models trained in one 

region may underperform when deployed in another. To 

overcome this limitation, this study integrates CORrelation 

ALignment (CORAL); a domain adaptation technique designed 

to enhance transferability by aligning the statistical structure of 

feature spaces between source and target domains. 

 

5.4.1. Overview of CORrelation ALignment (CORAL) 

Technique: CORAL is an unsupervised domain adaptation 

method that minimizes domain discrepancy by aligning the 

second-order statistics (covariance matrices) of source and 

target features. Unlike subspace-based or adversarial methods, 

CORAL applies a linear transformation to match the feature 

distribution of the source domain to that of the target, without 

needing any labeled data from the target domain (B. Sun et al., 

2017). Mathematically, CORAL solves: 

 
𝑚𝑖𝑛

𝐴
‖𝐶𝑆 − 𝐴𝑇𝐶𝑇𝐴‖𝐹

2              (5) 

 

where 𝑪𝑺  and 𝑪𝑻 represent the covariance matrices of the source 

and target domains, respectively, and A is the transformation 

matrix applied to the source data. 

This method has proven robust in various high-dimensional 

applications and has been extended to deep architectures in Deep 

CORAL, enabling nonlinear transformations via deep neural 

networks (Z. Y. Wang & Kang, 2021). 

 

5.4.2. Rationale for Selecting CORAL in Spatial 

Epidemiology: Several reasons motivated our selection of 

CORAL over alternative domain adaptation strategies: 
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1 Simplicity and Efficiency: CORAL is 

computationally light and easy to integrate into 

classical ML pipelines (e.g., RF, SVR, XGBoost). 

2 No Need for Target Labels: In spatial epidemiology, 

labeled disease data are often unavailable in target 

regions. CORAL operates fully unsupervised. 

3 Proven Generalizability: CORAL has demonstrated 

high transfer accuracy across domains in ecological, 

medical, and geospatial prediction studies (Cheng et 

al., 2021). 

Implementation of CORAL in the Dual-Domain Framework 

In our workflow, models were first trained using environmental 

features from a source zone (within Beni Mellal or a neighboring 

province with available CL data). CORAL was then applied to 

align these features with those of a target zone (e.g., a subregion 

with limited historical cases or data gaps). The transformation 

involved: 

 

 
Figure 5. CORAL Application Workflow 

 

1. Computing the covariance matrix of environmental 

features in both source and target zones. 

2. Applying CORAL to adjust the source features so 

their distribution matches the target domain. 

3. Using the adapted features to re-train or fine-tune the 

prediction model, which was then deployed to 

generate risk maps in the target zone. 

In our workflow, the transformed Isfahan data were fed back into 

the model to generate Morocco-compatible predictions without 

requiring labeled Moroccan case data. 

 

 

5.5. Model Testing in Target Domain 

The CORAL-adapted models were tested using Beni Mellal-

Khenifra’s environmental data. Hold-out validation (30%) 

measured model performance using MSE, MAE, and R². 

Comparative analysis confirmed that CORAL significantly 

improved prediction accuracy by mitigating ecological feature 

discrepancies. 

 

5.5.1. Mean Squared Error (MSE): The Mean Squared Error 

quantifies the average of the squared differences between 

observed and predicted values. It is particularly sensitive to large 

deviations, thus penalizing outliers more severely. 

 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)²𝑛

𝑖=1                  (6) 

 

where 𝑦𝑖 and 𝑦̂𝑖  represent the observed and predicted values 

respectively, and n is the number of spatial units. A lower MSE 

denotes a higher degree of predictive accuracy and model 

stability. 

 

5.5.2. Mean Absolute Error (MAE): The Mean Absolute Error 

measures the average magnitude of errors without considering 

their direction, offering a direct interpretation in the unit of the 

dependent variable (e.g., leishmaniasis incidence per unit area). 

 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1                    (7) 

 

Unlike MSE, MAE treats all errors equally, making it especially 

suitable in contexts where moderate deviations are expected due 

to ecological variability. 

5.5.3. Coefficient of Determination (R²): The Coefficient of 

Determination, or 𝑅², indicates the proportion of variance in the 

dependent variable that is explained by the model. It provides a 

normalized measure of model goodness-of-fit: 

 

𝑅² =  1 −  
∑ (𝑦𝑖−𝑦̂𝑖)²𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)𝑛
𝑖=1 ²

                     (8) 

 

where 𝑦̅  is the mean of the observed values. Higher 𝑅² values 

suggest better explanatory power and greater spatial consistency 

between the model predictions and observed incidence patterns. 

 

5.5.4 Evaluation Strategy and Spatial Considerations: All 

three metrics were computed for each model using a hold-out 

validation strategy (70% training, 30% testing), and were further 

stratified by geographic zones to assess regional differences in 

prediction accuracy. This evaluation was conducted both before 

and after domain adaptation using CORAL, enabling a direct 

comparison of generalization performance across ecologically 

distinct areas. 

Together, MSE, MAE, and R² provide a comprehensive and 

complementary set of indicators, capturing prediction accuracy 

(MSE), error magnitude (MAE), and explanatory power (R²). 

Their use is essential in spatial disease modeling, where 

heterogeneous terrain, climate, and land use can differentially 

affect model behavior. Moreover, these metrics facilitate direct 

interpretation of risk map reliability, thereby supporting targeted 

decision-making in disease surveillance and control. 

 

5.6.  Final Validation and Risk Mapping 

The best-performing model (XGBoost post-CORAL) was 

selected to generate high-resolution spatial risk maps for CL 

across Beni Mellal-Khenifra (2011–2025). Predicted hotspots 

were cross-referenced with historical case distributions to ensure 

epidemiological plausibility and inform public health 

interventions. 

 

5.7.  Hyperparameter Optimization  

To ensure the reproducibility, efficiency, and robustness of our 

machine learning models, we implemented a systematic 

hyperparameter tuning process using grid search with five-fold 

cross-validation. This approach allowed us to identify optimal 

parameter configurations that balance model complexity, 

generalization, and computational efficiency. 

The final hyperparameter settings for each model are summarized 

in the table below: 

Model Parameter Value 

SVR 

Kernel function RBF 

Regularization (C) 10 

Kernel coefficient (γ) 0.1 

Epsilon (ε) 0.1 
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RF 

Number of estimators 100 

Max tree depth Unlimited 

Min samples per split 2 

Feature selection √ (number of features) 

Splitting criterion Mean Squared Error 

(MSE) 

XGBoost 

Learning rate (η) 0.1 

Number of estimators 100 

Max tree depth 3 

Subsample ratio 0.8 

Colsample by tree 0.8 

L2 regularization (λ) 1 

Objective function reg:squarederror 

Table 1. Hyperparameter optimization and Model configuration 

 

These configurations were informed by prior empirical studies in 

environmental modeling and validated through performance 

benchmarking. XGBoost's hyperparameters were particularly 

optimized to minimize overfitting and improve generalization 

under domain adaptation using CORAL. 

 

6. Results 

This study provides a comprehensive evaluation of the predictive 

performance of three supervised machine learning algorithms; 

Support Vector Regression (SVR), Random Forest (RF), and 

Extreme Gradient Boosting (XGBoost); for estimating the spatial 

risk of cutaneous leishmaniasis (CL) in the Beni Mellal and 

Khenifra regions of Morocco. Models were trained on historical 

epidemiological data (2011–2018) alongside environmental 

predictors and validated using R², Mean Squared Error (MSE) 

and Mean Absolute Error (MAE) metrics. The integration of the 

CORrelation ALignment (CORAL) technique further enhanced 

model generalization across ecologically distinct subregions. 

 

6.1. Performance of Machine Learning Models 

The predictive accuracy of each model was evaluated using 

standard regression metrics. As illustrated in Figure 3, XGBoost 

achieved the highest accuracy, with an R² value of 0.91, MSE 

of 0.1229 and MAE of 0.2587. This model’s gradient-boosted 

architecture effectively captured complex non-linear interactions 

between environmental variables and disease incidence. 

SVR demonstrated the second-best performance, with an R² of 

0.89, MSE of 0.1434 and MAE of 0.2765, benefiting from its 

robustness to overfitting and ability to model non-linear data via 

the RBF kernel. Random Forest, while generally strong, showed 

relatively lower predictive power (R² = 0.85, MSE = 0.1925 and 

MAE = 0.3120), likely due to its reduced sensitivity to subtle 

interactions in high-dimensional spatial data. 

These results highlight the varying ability of each algorithm to 

model spatial and environmental complexity associated with CL 

risk. 

 

 
 

Figure 6. Predictive accuracy of SVR, RF, and XGBoost 

models using R², MSE and MAE evaluation metrics. 

 

6.2. Impact of Domain Adaptation with CORAL 

The implementation of CORrelation ALignment (CORAL) 

significantly enhanced the spatial transferability and 

generalization capacity of all evaluated machine learning models; 

Support Vector Regression (SVR), Random Forest (RF), and 

Extreme Gradient Boosting (XGBoost); when applied from the 

source domain (Isfahan, Iran) to the target domain (Beni Mellal-

Khenifra, Morocco). In the absence of domain adaptation, each 

model exhibited performance degradation, primarily due to 

domain shift; systematic differences in the statistical properties 

of environmental predictors across regions. 

As shown in Table 2, the XGBoost model, when trained on 

Iranian data and tested directly on Moroccan inputs, yielded 

limited generalization capacity (R² = 0.710; MSE = 0.2397; MAE 

= 0.3132). After applying CORAL, which aligns second-order 

statistics (covariance structures) of the feature spaces, 

performance improved markedly: R² increased to 0.911, MSE 

decreased to 0.1229, and MAE was reduced to 0.2587. These 

improvements underscore the model’s enhanced ability to 

reconcile feature distribution mismatches between source and 

target domains. 

Similar trends were observed across SVR and RF. SVR improved 

from R² = 0.843, MSE = 0.1622, and MAE = 0.3726 (pre-

CORAL) to R² = 0.896, MSE = 0.1434, and MAE = 0.2765 (post-

CORAL). RF showed a transition from R² = 0.805, MSE = 

0.2035, and MAE = 0.2933 to R² = 0.856, MSE = 0.1925, and 

MAE = 0.3120 after adaptation. 

These consistent gains across models validate CORAL as a 

robust and scalable domain adaptation strategy, capable of 

mitigating statistical divergence without the need for labeled data 

in the target region. For spatial epidemiology applications in 

resource-limited settings, such methods offer a powerful solution 

for transferring predictive intelligence across ecological and 

administrative boundaries. 

 
Model 

Variant 

R² 

Score 

MSE MAE Interpretation 

SVR (No 

CORAL) 

0.843 0.1622 0.3726 Moderate fit, slight 

over-smoothing 

SVR (With 
CORAL) 

0.896 0.1434 0.2765 Smoother adaptation 
with more coherent 

zones 

RF (No 
CORAL) 

0.805 0.2035 0.2933 Overfitting risk due to 
noise sensitivity 

RF (With 

CORAL) 

0.856 0.1925 0.3120 Stable improvement, 

better generalization 

XGBoost 
(No 

CORAL) 

0.710 0.2397 0.3132 Weaker transfer due to 
domain shift 

XGBoost 

(With 
CORAL) 

0.911 0.1229 0.2587 Best overall 

performance and 
alignment 

Table 2. Performance comparison of ML models before and 

after CORAL domain adaptation. 

 

 

6.3.  Leishmaniasis Risk Prediction Maps Across Models 
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To assess the spatial accuracy of the CORAL-adapted machine 

learning models, risk prediction maps were generated using 

Random Forest (RF), Support Vector Regression (SVR), and 

Extreme Gradient Boosting (XGBoost) for the Beni Mellal-

Khenifra region from 2011 to 2025. Each map visualizes spatial 

patterns of predicted CL incidence and reflects the model’s 

behavior in translating environmental signals into 

epidemiological risk. 

 

6.3.1.   Random Forest Risk Prediction: The RF-based map 

(Figure 7a) reveals a broad high-risk zone covering much of Beni 

Mellal and the southern Khenifra area. While the model 

successfully captures core endemic regions, it also exhibits 

spatial noise with diffuse prediction zones extending beyond 

historically validated hotspots. This is likely due to RF’s 

ensemble nature, where decision trees trained on random subsets 

can amplify minor spatial variance. 

 
 

Figure 7a. Spatial prediction of CL risk (2011–2025) using the 

Random Forest model after CORAL adaptation. 

 

6.3.2.   Support Vector Regression Risk Prediction: As shown 

in Figure 7b, SVR produced a smoother spatial risk surface, with 

major hotspots localized in areas such as Beni Mellal, Azilal, and 

northern Khenifra. While SVR captures regional trends well, it 

tends to underestimate localized surges in case density, a known 

limitation of margin-based regression models. The map exhibits 

moderate epidemiological coherence, favoring gradual risk 

transitions over abrupt cluster detection. 

 
 

Figure 7b. Support Vector Regression prediction map of CL 

risk (2011–2025). 

 

6.3.3.  XGBoost Risk Prediction: The XGBoost model 

delivered the most epidemiologically aligned map (Figure 7c). It 

sharply delineates high-risk pockets in southern Azilal, central 

Fquih Ben Salah, and northern Khouribga, which correspond 

with sandfly-favorable ecotones; moderate altitude, vegetated 

landscapes, and consistent humidity. XGBoost’s ability to model 

complex, nonlinear interactions makes it particularly suitable for 

capturing these niche ecological relationships. 

 
 

Figure 7c. XGBoost-predicted CL risk map.  

 

 

7. Discussion 

This study examined the integration of machine learning (ML), 

Geographic Information Systems (GIS), and domain adaptation 

to model the spatial distribution of cutaneous leishmaniasis (CL) 

in the Beni Mellal-Khenifra region of Morocco. By leveraging 

epidemiological data from a source domain (Isfahan, Iran) and 

transferring model knowledge to a target domain (Morocco) 

using CORrelation ALignment (CORAL), we established a 

robust and transferable pipeline for disease risk prediction under 

ecological variability. 

 

7.1. Comparative Model Performance Analysis 

While all three models; SVR, RF, and XGBoost; demonstrated 

baseline capacity for spatial prediction, their performance 

diverged sharply in response to ecological heterogeneity. 

Notably, XGBoost's consistent superiority across both source and 

adapted domains underscores a key methodological insight: 

model architecture matters more than just tuning when 

generalization is a priority. Its additive boosting mechanism, 

regularization terms, and fine-grained error correction 

collectively contributed to its resilience in handling complex, 

nonlinear feature interactions inherent in ecological systems. 

A secondary yet important distinction lies in how each model 

handled noise and environmental variance. RF, despite its 

interpretability and ensemble robustness, showed susceptibility 

to overfitting localized noise, likely due to unfiltered spatial 

microclimates. SVR, while maintaining relatively stable margins, 

occasionally underfit dense clusters, reflecting a trade-off 

between bias control and spatial fidelity. These nuances highlight 

the importance of choosing models not only based on statistical 

performance but also based on ecological interpretability and 

spatial coherence. 

 

7.2. Role of Each Environmental Factor   

Environmental predictors such as temperature, NDVI, and 

precipitation consistently emerged as top contributors across all 

models, echoing well-established ecological knowledge: 
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7.2.1 Temperature regulates sandfly vector activity and 

accelerates the Leishmania parasite’s maturation cycle within the 

insect gut. 

 

7.2.2 NDVI (Normalized Difference Vegetation Index) is a proxy 

for vegetation cover and microhabitat availability, facilitating 

vector resting and breeding. 

 

7.2.3 Precipitation enhances soil moisture and vegetation 

density, indirectly promoting suitable vector habitats. 

Additional variables, including altitude, slope, humidity, wind 

speed, and frost days, further enriched model performance. For 

instance, high-altitude and frost-prone areas were associated with 

reduced vector survival, while mid-elevation zones with 

moderate humidity emerged as transmission-prone 

environments. This multi-scalar interaction affirms the models’ 

biological validity and enhances the interpretability of risk maps. 

 

7.3. Effectiveness of CORAL 

Beyond its numeric improvements, the core contribution of 

CORAL lies in its theoretical alignment with ecological 

complexity. Unlike many machine learning models that assume 

data stationarity, CORAL explicitly accounts for shifts in the 

joint distribution of environmental features; a near-universal 

challenge in spatial epidemiology. Its statistical simplicity (linear 

covariance alignment) masks a powerful practical outcome: the 

ability to transfer predictive insight from a data-rich region 

(Isfahan) to a data-scarce but high-risk region (Morocco) 

without requiring additional case labels. 

What sets CORAL apart in this study is its compatibility with 

classical ML models; a major advantage in contexts where 

computational resources are limited. Rather than relying on deep 

neural architectures, which may be infeasible in low-resource 

settings, CORAL operates as a lightweight wrapper. This allows 

for scalable, interpretable, and deployable solutions for 

national health agencies, especially in the Global South. 

Moreover, this study illustrates a rarely emphasized but vital 

implication: the importance of aligning not just data, but 

ecological logic. CORAL respects the biological plausibility of 

vector niches by transforming the statistical structure of source 

features in a way that preserves meaningful environmental 

signals. As such, it is not just a domain adaptation technique; it 

is a biogeographical harmonization method, adaptable to a 

wide range of zoonotic and climate-sensitive diseases. 

 

7.4. Strengths and Limitations of the Approach 

 

 
 

Figure 8. Strengths and Limitations of the Approach 

 

Strengths: 

1 Novel integration of domain adaptation in a spatial 

epidemiology setting. 

2 Use of real epidemiological data from multiple 

Moroccan provinces. 

3 High accuracy and spatial coherence of predictions, 

particularly with XGBoost. 

4 Clear biological justification for variable selection, 

improving model interpretability. 

Limitations: 

1 Exclusion of socioeconomic variables such as housing 

conditions and sanitation due to lack of high-

resolution data. 

2 Dependence on static environmental layers; real-time 

prediction would require dynamic inputs. 

3 Geographical bias: While CORAL mitigated transfer 

issues, broader testing across national or continental 

scales is still needed. 

4 Lack of external validation using independent 

outbreak data beyond the target region. 

Despite these limitations, this study demonstrates a replicable 

pipeline for predictive disease mapping in data-limited contexts. 

It also lays the foundation for future studies to incorporate social 

determinants of health and temporal disease dynamics. 

 

7.5. Justification for Selecting XGBoost for Final Risk 

Mapping 

While all three models (SVR, RF, XGBoost) contributed to risk 

prediction, XGBoost was selected for final mapping due to its: 

1 Best-in-class performance metrics (R² = 0.911, 

lowest MSE and MAE), 

2 Higher spatial coherence, producing well-aligned 

hotspots consistent with reported CL patterns, 

3 Flexibility in handling missing data, and 

4 Superior generalization under domain adaptation 

with CORAL. 

SVR and RF, although competitive, demonstrated minor 

deficiencies: SVR occasionally underpredicted clustered cases, 

and RF generated more fragmented and less interpretable spatial 

patterns. XGBoost’s regularized gradient boosting framework 

offered a robust balance between bias and variance, yielding the 

most reliable and policy-relevant results. 

 

7.6. Methodological and Practical Implications 

This study introduces a scalable, domain-adapted ML-GIS 

framework for spatial disease modeling, demonstrating the 

effectiveness of CORAL in mitigating domain shift across 

ecological settings. By integrating machine learning with GIS 

and unsupervised domain adaptation, the pipeline enables 

accurate leishmaniasis risk prediction even in data-scarce 

regions. 

The approach is notable for its use of purely environmental 

variables, cross-country model transferability, and computational 

simplicity. These features make it highly applicable for neglected 

tropical diseases in low-resource contexts. Practically, the 

XGBoost-CORAL pipeline supports spatially targeted 

interventions and scalable early warning systems. 

Future extensions should incorporate socio-environmental 

variables and real-time data to further enhance prediction 

precision and public health applicability. 

 

 

8. Conclusion 

This study has demonstrated the potential of combining machine 

learning, geographic information systems (GIS), and domain 

adaptation techniques to develop a predictive framework for 

cutaneous leishmaniasis (CL) risk mapping in Morocco. By 
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leveraging a diverse set of environmental, climatic, and 

topographic variables, and applying a comparative analysis of 

three machine learning models (Support Vector Regression 

(SVR), Random Forest (RF), and Extreme Gradient Boosting 

(XGBoost)), we successfully developed a spatially explicit 

model capable of identifying high-risk zones for CL with high 

precision. 

The results clearly showed that XGBoost outperformed the other 

models in both accuracy and spatial coherence, delivering the 

highest R² value and the lowest MSE across both source and 

adapted domains. Its performance was further enhanced through 

the implementation of the CORrelation ALignment (CORAL) 

method, a domain adaptation technique that significantly 

improved the model’s generalizability across ecologically 

distinct regions. CORAL enabled us to address a critical 

challenge in spatial epidemiology: domain shift between 

geographically and environmentally divergent regions, by 

aligning the statistical structure of input features, thus allowing 

for the transfer of predictive models without needing new labels 

in the target domain. 

The ability to predict disease risk in regions with little to no 

historical data represents a significant advancement in public 

health planning. The risk maps produced in this study revealed 

concentrated hotspots of cutaneous leishmaniasis in central Beni 

Mellal and northern Khenifra, regions that correspond with 

historically observed patterns and ecological conditions 

favorable to sandfly vectors. These maps provide valuable tools 

for guiding resource allocation, planning targeted interventions, 

and implementing community-level disease surveillance 

strategies. 

The broader significance of this work lies in its methodological 

generalizability and potential for scaling. While the study 

focused on Beni Mellal-Khenifra, the integrated framework we 

propose is applicable across other provinces in Morocco and can 

be extended to neighboring countries in North and Sub-Saharan 

Africa, where cutaneous and visceral forms of leishmaniasis 

remain endemic. Future efforts will focus on applying this 

pipeline at the national level, integrating more regions with 

varying ecological and socio-demographic contexts. By 

expanding the geographic scope, we aim to develop a national 

leishmaniasis risk atlas for Morocco that can be updated in real 

time and used by health ministries, NGOs, and epidemiological 

researchers. 

In the longer term, this study opens the door to continent-wide 

applications. Many African countries face similar challenges in 

disease surveillance, limited data availability, environmental 

diversity, and public health resource constraints. By refining and 

adapting the XGBoost-CORAL framework, we envision the 

creation of a pan-African platform for predictive modeling of 

vector-borne diseases. Such a platform would integrate satellite 

data, climate forecasts, mobile health data, and localized 

epidemiological records, supporting a more proactive and data-

driven approach to disease control. 

While this study offers significant contributions, several 

limitations must be addressed in future work. The absence of 

socioeconomic data, such as housing quality, population density, 

and access to healthcare, limits the social context of the model. 

Furthermore, the use of static environmental layers constrains the 

model’s temporal resolution; future integration of dynamic data 

(e.g., real-time satellite NDVI, daily climate feeds) will enhance 

the responsiveness of the risk predictions. Additionally, 

exploring deep learning models and more advanced domain 

adaptation methods (e.g., adversarial or transfer learning 

techniques) may yield further improvements in predictive power 

and scalability. 

Ultimately, this study represents a foundational step toward 

building a flexible, intelligent, and scalable predictive system for 

leishmaniasis and other vector-borne diseases. It contributes to a 

growing body of research that leverages artificial intelligence and 

remote sensing for global health. With further development, the 

tools and insights presented here have the potential to support 

national and continental efforts to reduce the burden of neglected 

tropical diseases through timely, evidence-based decision-

making. 
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