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Abstract

Leishmaniasis remains a persistent global public health challenge, particularly in regions where ecological and socioeconomic
conditions favor vector proliferation and disease transmission. In Morocco, the provinces of Beni Mellal and Khenifra are among the
most severely affected, necessitating the use of advanced spatial prediction tools to guide effective disease control strategies. This
study integrated machine learning techniques and Geographic Information System (GIS) technologies to develop a predictive
framework for cutaneous leishmaniasis risk mapping. A spatial database was constructed by combining reported case data from 2011
to 2018 with key environmental and climatic variables including temperature, precipitation, normalized difference vegetation index
(NDVI), altitude, slope, and wind speed. Three machine learning algorithms, Support Vector Regression (SVR), Random Forest (RF),
and Extreme Gradient Boosting (XGBoost), were evaluated for their predictive performance, while the CORrelation ALignment
(CORAL) method was applied as a domain adaptation strategy to address distributional differences between training and target
regions. The results demonstrated that XGBoost achieved the highest predictive accuracy (R*>=0.91, MSE = 0.1229, MAE = 0.2587),
followed by SVR (R? = 0.89, MSE = 0.1434, MAE = 0.2765), and RF (R* = 0.85, MSE = 0.1925, MAE = 0.3120). Incorporating
CORAL significantly improved the model generalizability and stability across ecologically diverse zones. The final risk map identified
high-risk clusters in central and northern Beni Mellal and Khenifra, offering actionable insights into spatially targeted interventions.
This study presents a scalable GIS-integrated machine learning framework with strong potential for application in other data-scarce
high-risk regions. Future research should incorporate real-time data and advanced deep learning techniques to further enhance the
predictive power.

1. Introduction tools are particularly valuable in Morocco, where
epidemiological data may be fragmented or underreported in

Leishmaniasis is a vector-borne parasitic disease that continues certain rural areas.

to pose a major public health threat in many tropical and
subtropical regions of the world, including North Africa. Caused

by protozoa of the genus Leishmania and transmitted by the bite i . .
of infected female phlebotomine sandflies, leishmaniasis disease mapping models. ML algorithms such as Random Forest

manifests primarily in cutaneous, mucocutaneous, and visceral (RF), Support Vector Regression (SVR), and Gradient Boosting

forms. Globally, the World Health Organization (WHO) Ma.chi.nes (XGBoost) offer. powerful altemat.ives to trgditiopal
statistical models by capturing complex, nonlinear relationships

between input features and disease incidence. Studies have
shown that these models can achieve high predictive accuracy in
environmental health applications, including flood susceptibility,

More recently, the incorporation of machine learning (ML) into
spatial epidemiology has transformed the predictive capacity of

estimates that approximately 700,000 to 1 million new cases
occur annually, with over 350 million people at risk of infection.
In Morocco, leishmaniasis is endemic and has demonstrated a
worrying expansion in both spatial range and case frequency over o . ) .
recent decades (El Omari et al., 2019; Talbi et al., 2019). Several coastal Vulnergblllty, and vector-borne disease risk (Famnassi et
regions, particularly Fez-Meknes, Sefrou, and Beni Mellal- al., 2023; Meliho et al., 2022; Shabanpour et al., 2022). In the

Khenifra, have reported recurring outbreaks, largely due to cont.ext of le;ishmaniasis, machine learning ha§ proven effectiye
ecological, socio-economic, and climatic factors that facilitate for integrating .heterogene(‘)us Qatasets; ranging .from Sa?"‘?‘te
the proliferation of sandfly vectors and the persistence of the imagery to climate metrics; into robust spatial prediction
Leishmania parasite (El Omari et al., 2019). frameworks (Shabanpour et al., 2022).

Despite these advances, a major limitation persists: the
generalizability of ML models across different spatial domains.
Most models are trained on data from a specific region and may
perform poorly when applied to new areas with different
ecological or socio-economic profiles. This issue, known as the
domain shift problem, has become increasingly relevant in
geospatial epidemiology, where input feature distributions vary
significantly between training and target regions. For instance, a
model trained on environmental data from one province may not

Given the ecological nature of leishmaniasis transmission,
environmental variables such as temperature, precipitation,
altitude, vegetation index (NDVI), and humidity play a crucial
role in shaping disease dynamics. Consequently, spatial
modeling has emerged as a vital tool for understanding the risk
landscape of leishmaniasis. Geographic Information Systems
(GIS) and remote sensing technologies have enabled researchers
to visualize disease distribution, identify high-risk zones, and
develop spatial risk prediction maps that aid in targeted
interventions and resource allocation (Talbi et al., 2019). These
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effectively predict disease risk in another due to differing
microclimates, land use patterns, or population densities.

To address the limitations of poor model transferability across
regions, recent advances in machine learning have embraced
domain adaptation: a suite of techniques that improve the ability
of models trained on one dataset (source domain) to generalize
well to new, unseen data distributions (target domain). In the
context of spatial epidemiology, domain adaptation is
particularly important due to the heterogeneity of environmental
variables across geographical regions, which can lead to
distributional mismatch between training and prediction areas
(Sarafian et al., 2021).

A widely studied unsupervised domain adaptation method is
CORrelation ALignment (CORAL), introduced by (B. Sun &
Saenko, 2016). CORAL works by aligning the second-order
statistics (i.e., covariance matrices) of the source and target
feature spaces without requiring labeled data from the target
domain. This alignment reduces the "domain shift" by
transforming the source features such that their distribution
becomes statistically similar to the target, thereby improving the
generalizability of the model. The original CORAL method
applies a linear transformation, making it computationally
efficient and simple to integrate into existing pipelines.

Subsequent developments led to Deep CORAL, which extends
this idea to nonlinear feature spaces within deep neural networks
by aligning the activations of intermediate network layers (B. Sun
& Saenko, 2016; Y. Wang et al., 2017). These techniques have
demonstrated state-of-the-art performance on visual recognition
tasks but are now gaining traction in spatial prediction and health
informatics, where labeled data are scarce and domain variability
is high.

In geospatial applications, CORAL has been used to improve
temperature predictions across spatial domains (Sarafian et al.,
2021) and has shown promise in low-resource settings where
training data from the target region are limited or unavailable
(Lynch & Wookey, 2021). The relevance of domain adaptation
in this context cannot be overstated: when dealing with public
health data; often sparse, noisy, or imbalanced; domain
adaptation provides a statistically principled way to transfer
learned patterns from data-rich regions to data-poor regions,
without compromising predictive accuracy.

This study leverages CORAL to enhance the spatial
generalizability of leishmaniasis risk prediction models in
Morocco. The models were initially trained using historical
epidemiological and environmental data from the province of
Isfahan, Iran; an area with well-documented CL incidence and
high-quality spatial datasets (Shabanpour et al., 2022). By
applying CORAL, we adapted the source-trained models to
predict disease risk in the Beni Mellal-Khenifra region of
Morocco. This experimental design simulates a realistic public
health scenario in which training data from a data-rich endemic
region (Iran) are transferred to a data-scarce target region
(Morocco), thereby demonstrating the feasibility and value of
domain adaptation for cross-regional disease risk modeling.

In this paper, we propose a novel integration of GIS, machine
learning, and domain adaptation to predict the spatial risk of
leishmaniasis in Morocco, with a particular focus on the Beni
Mellal-Khenifra region. This area is ecologically diverse and
epidemiologically significant, making it an ideal testbed for
evaluating the effectiveness of domain adaptation in spatial
disease modeling. Our methodology involves collecting high-

resolution environmental and climatic data from sources such as
NASA POWER, MODIS NDVI, and digital elevation models
(DEMs), integrating them within a GIS framework, and applying
ML models (RF, SVR, and XGBoost) to generate risk maps. The
CORAL algorithm is then used to adapt the model trained on data
from a different region, allowing for more accurate risk
prediction in Beni Mellal-Khenifra.

The main contributions of this paper are fourfold: we compile
and preprocess a comprehensive set of environmental,
epidemiological, and climatic variables relevant to leishmaniasis
transmission in Morocco; we evaluate the predictive performance
of several machine learning algorithms for spatial risk mapping,
using standard metrics such as R?% MAE, and MSE; we
implement CORrelation ALignment (CORAL) as a domain
adaptation technique to enhance model generalizability across
ecologically diverse regions; and we generate high-resolution
leishmaniasis risk maps for the Beni Mellal-Khenifra region,
offering valuable insights for targeted public health
interventions. This integrated approach marks a significant
methodological advance in the spatial prediction of neglected
tropical diseases. By leveraging the combined power of GIS,
machine learning, and domain adaptation, the framework directly
addresses the persistent challenge of model transferability in
spatial epidemiology and offers a scalable solution that can be
adapted to similar contexts in other regions or diseases.

2. Study area
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Figure 1. Geographical location of the study area.

The Beni Mellal-Khenifra region, located in central Morocco,
spans approximately 28,374 km? and includes five provinces:
Beni Mellal, Azilal, Fquih Ben Salah, Khenifra, and Khouribga.
With a population exceeding 2.5 million people, it presents a
balanced distribution between rural and urban communities,
making it an important socio-demographic and ecological zone
for spatial health studies (Eddoughri et al., 2022).

2.1. Ecological Zoning

Ecologically, Beni Mellal-Khenifra is characterized by three
principal zones. First, the mountainous areas of the High and
Middle Atlas, predominantly in Azilal and Khenifra, are rich in
natural forests and biodiversity but are vulnerable to
environmental degradation. Second, the Tadla plain in Beni
Mellal and Fquih Ben Salah serves as the region’s agricultural
heartland, benefiting from extensive irrigation infrastructure and
fertile soils. Third, the semi-arid foothills, acting as transitional
zones between plains and mountains, are ecologically fragile and
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marked by land use pressures and climate variability (Achbah et
al., 2024).

2.2. Climate and Implications for Leishmaniasis

The region experiences a continental climate with pronounced
seasonality; hot, dry summers and cold, wet winters, especially
at higher altitudes. Precipitation levels range between 300 mm
and 700 mm annually, while temperature fluctuations create
microclimates that strongly influence the ecology of vector-borne
diseases. These environmental conditions; combined with
moderate humidity and vegetative cover; create optimal habitats
for Phlebotomus sandflies, the primary vectors of leishmaniasis.
Recent climatic shifts, including irregular rainfall and prolonged
droughts, have contributed to the expansion of sandfly habitats
into new ecological niches within the region, increasing
transmission risk (Kahime et al., 2014).

2.3. Agricultural Dynamics and Public Health Interface

Beni Mellal-Khenifra is one of Morocco’s most agriculturally
productive regions, with over 960,000 hectares of cultivated
land, including approximately 205,000 hectares under
irrigation, representing 15% of Morocco’s total irrigated land
(Eddoughri et al., 2022). Key crops include cereals, olives, fodder
plants, and economically important species such as carob
(Ceratonia siliqua L.), which supports both subsistence farming
and agro-industrial markets (Elfazazi, 2017). However, these
intensive agricultural activities; particularly the use of open
irrigation channels, livestock presence, and organic waste
accumulation; create favorable microhabitats for sandfly
breeding and resting. The reuse of treated wastewater in
irrigation, while valuable for water conservation, further
complicates public health dynamics by enhancing vector
exposure in farming communities (Faouzi et al., 2020).

2.4. Justification for Study Area Selection
The choice of Beni Mellal-Khenifra as the study area is guided
by several factors:

Epidemiological Data
Significance Availability

Reported cases of leal for testing
leishmaniasis in spatial m |

Figure 2. Study area selection factors

Epidemiological significance, with reported cases of both
cutaneous and visceral leishmaniasis,

Environmental and ecological heterogeneity, ideal for testing
spatial model generalizability,

High agricultural density, offering insight into human-
environment-vector interactions,

Data availability, due to ongoing environmental monitoring and
agricultural programs.

This combination of geographic, ecological, and epidemiological
characteristics makes Beni Mellal-Khenifra a strategically
important and scientifically valuable region for predictive disease
modeling.

3. Data and Materials

3.1. Epidemiological Data

This study utilizes epidemiological data on cutaneous
leishmaniasis (CL) collected from the Beni Mellal and Fquih Ben
Salah provinces within the Beni Mellal-Khenifra region of
Morocco. According to a molecular and spatial epidemiological
study by (Faiza et al., 2015), a total of 584 confirmed cases of
CL were recorded between 2000 and 2012 in these provinces.
The most affected sectors were Zaouiat Cheikh, Beni Mellal,
and Oulad Ayad, with children under the age of 9 constituting
over 62% of reported cases. This age distribution highlights the
vulnerability of younger populations to vector exposure in
endemic zones (Faiza et al., 2015).

Leishmaniasis surveillance in Morocco is conducted under the
aegis of the Ministry of Health and includes both passive case
detection (via local clinics and hospitals) and retrospective case
registry analysis. For this study, epidemiological data were
sourced from regional health bulletins, Ministry of Health
surveillance reports, and prior academic studies focusing on the
epidemiological status of CL in central Morocco. These sources
include demographic breakdowns (age, gender), spatial
distribution of cases at the municipality level, and temporal
patterns of outbreak occurrence.

Moreover, a national-level retrospective analysis by (Kahime et
al., 2016) reported over 41,000 CL cases across Morocco
between 2004 and 2013, with a significant incidence in Azilal
province, which is part of the Beni Mellal-Khenifra region. The
same study emphasized the predominance of Leishmania
tropica (anthroponotic form) in this region and its association
with rural living conditions and poor sanitation
infrastructure, which are known risk amplifiers for disease
transmission (Kahime et al., 2016).

In addition to case count data, entomological surveys in the
region confirm the presence of key vector species, such as
Phlebotomus sergenti and Phlebotomus papatasi, further
validating the epidemiological relevance of this study area. These
data were complemented by the geo-coding of case locations and
temporal outbreak sequences, enabling integration into the GIS-
based spatial modeling framework employed in this study.
Collectively, the epidemiological dataset provides the dependent
variable (leishmaniasis incidence per spatial unit) for model
training and evaluation, and serves as the foundation for
constructing risk prediction maps at the provincial and sub-
provincial level.

3.2. Environmental and Climatic Variables

The spatial distribution and intensity of leishmaniasis
transmission are profoundly influenced by environmental and
climatic factors, which regulate both vector abundance and
parasite development. In this study, a diverse set of
environmental and climatic variables was collected and
integrated into the spatial modeling framework to predict
leishmaniasis risk in Beni Mellal-Khenifra. These variables were
chosen based on prior studies demonstrating their ecological
relevance for Phlebotomus sandflies; the vectors of Leishmania
spp.; and their accessibility via remote sensing and GIS
platforms.

3.2.1. Temperature and Precipitation: Temperature plays a
pivotal role in the development of sandflies and Leishmania
parasites. High night-time temperatures were significantly
correlated with increased densities of Phlebotomus papatasi and
P. sergenti, two dominant sandfly species in Morocco (Boussaa
et al., 2016a). Additionally, warmer temperatures shorten the
incubation period of the parasite within the sandfly, thereby
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accelerating transmission cycles. Precipitation, though not a
direct requirement for sandfly breeding, influences soil moisture
and vegetation density, indirectly affecting larval development
and adult survival. Areas with moderate rainfall and intermittent
humidity have been shown to exhibit higher leishmaniasis
incidence, especially in semi-arid zones of Morocco (Kholoud et
al., 2018).

3.2.2. Normalized Difference Vegetation Index (NDVI):
NDVI is used to measure green vegetation cover and indirectly
assess habitat suitability for sandfly breeding and resting. Studies
have shown that P. sergenti densities are positively correlated
with NDVI, as vegetation provides shelter and maintains soil
humidity required for larval development (Boussaa et al., 2016b).
In Beni Mellal-Khenifra, NDVI data were derived from MODIS
satellite imagery and aggregated seasonally to capture vegetation
dynamics.

3.2.3. Altitude and Slope: Altitude impacts both temperature
and humidity profiles, which in turn affect vector habitat
suitability. Regions at mid-elevation (400-1200 meters) in
Morocco, including parts of the Tadla and Khenifra highlands,
have shown increased cutaneous leishmaniasis prevalence, likely
due to overlapping optimal conditions for both vector and host
(Hakkour et al., 2020). Slope data, extracted from Digital
Elevation Models (DEMs), were also used to assess terrain
variability and drainage characteristics, which influence soil
moisture; a key parameter for vector egg-laying.

3.2.4. Aridity and Soil Conditions: Aridity indices, including
evapotranspiration and water deficit estimates, were included to
model environmental stress levels. High aridity has a negative
correlation with P. papatasi populations, while moderate levels
are conducive to breeding activity (Ben Salem et al., 2020). Soil
pH and soil water stress data were obtained from global soil
datasets and used to refine vector habitat models.

3.2.5. Frost Days and Wind Speed: Frost days (days with
minimum temperature below 0°C) negatively impact vector
survival and were used as exclusionary criteria in higher altitude
zones. Wind speed data, extracted from NASA POWER, were
used to account for vector mobility and dispersal limitations.
Strong winds can disrupt sandfly flight and reduce transmission
potential.

3.2.6. Seasonal Effects: Seasonality significantly modulates
leishmaniasis incidence. The wet season (October—April) shows
a higher incidence of cutaneous leishmaniasis, aligning with
increased vegetation cover and moderate temperatures, which
favor vector proliferation (Hakkour et al., 2020). To capture these
temporal dynamics, all climatic variables were processed both
annually and seasonally using ArcGIS Pro and Google Earth
Engine.

Together, these environmental and climatic predictors form the
basis for spatial risk modeling of leishmaniasis in the Beni
Mellal-Khenifra region, providing biologically informed
variables for machine learning algorithms.

3.3. Data Sources

To construct a robust spatial model for cutaneous leishmaniasis
(CL) risk in the Beni Mellal-Khenifra region, we integrated a
suite of environmental and climatic datasets from authoritative
global sources. These datasets were selected based on their
relevance to vector ecology, data quality, spatial and temporal
resolution, and compatibility with Geographic Information
System (GIS) platforms.

3.3.1. NASA POWER: Meteorological and Solar Parameters

Meteorological variables such as air temperature, precipitation,
humidity, wind speed, and solar radiation were sourced from
NASA’s Prediction of Worldwide Energy Resources
(POWER) project. The POWER dataset provides satellite-
derived and reanalysis-based meteorological data, tailored for
applications in agroclimatology and environmental modeling.
Specifically:
1  Data Sources include MERRA-2 for meteorology
and CERES SYNl1deg/FLASHFlux for solar data, as
described in the NASA POWER Data Sources.

2 Access Method: Data were retrieved through the
NASA POWER Data Access Viewer (DAV), and
bulk retrieval was facilitated via NASA’s API
services.

3 Available Parameters: A wide range of climate
variables were selected from the NASA POWER
Parameters list, including daily maximum/minimum
temperature, total precipitation, wind speed, solar
radiation, and relative humidity.

4 Resolution: Meteorological data are available at 0.5°
x 0.625°, with daily, monthly, and annual
aggregations.

These datasets are crucial for characterizing the environmental
envelope suitable for Phlebotomus vector activity and
Leishmania lifecycle progression.

3.3.2. Digital Elevation Models (DEMs): Topographic
variables, including elevation and slope, were derived from high-
resolution Digital Elevation Models (DEMs). These models are
critical for understanding the altitudinal distribution of sandfly
habitats and the influence of terrain on microclimatic conditions.
DEMs were processed to generate slope and aspect layers, which
were then incorporated into the spatial analysis framework.

3.3.3. Normalized Difference Vegetation Index (NDVI):
Vegetation cover, a proxy for suitable sandfly habitats, was
assessed using the Normalized Difference Vegetation Index
(NDVI). NDVI data were obtained from the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor, providing 16-day
composites at a spatial resolution of 250 meters. Seasonal NDVI
averages were calculated to capture temporal variations in
vegetation density, which influence sandfly breeding and resting
sites.

3.3.4. Soil and Aridity Indices: Soil characteristics and aridity
indices were included to evaluate their impact on sandfly larval
development and survival. Soil data, encompassing parameters
such as soil moisture and texture, were sourced from global soil
databases. Aridity indices, including evapotranspiration rates and
water deficit metrics, were calculated to assess environmental
stress levels that affect vector ecology.

3.3.5. Data Integration and Processing: All spatial datasets
were projected to a common coordinate reference system and
resampled to a uniform spatial resolution to ensure compatibility.
GIS software, including ArcGIS Pro and QGIS, was employed
for data preprocessing, spatial analysis, and visualization. The
integration of these datasets facilitated the development of a
comprehensive spatial model to predict CL risk areas accurately.

3.4. Spatial Data Integration with GIS
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Geographic Information Systems (GIS) play a central role in
integrating, managing, and analyzing the diverse environmental,
climatic, and epidemiological datasets used for spatial disease
modeling. In this study, GIS was employed not only as a mapping
platform but also as a spatial analysis engine to synthesize
heterogeneous data sources, compute derived features, and
generate predictive risk surfaces for cutaneous leishmaniasis in
Beni Mellal-Khenifra.
All datasets; ranging from NASA POWER climate parameters to
MODIS-derived NDVI and elevation models; were projected to
a unified coordinate reference system (WGS 84) and resampled
to a common spatial resolution using ArcGIS Pro 3.1 and QGIS
3.22. Raster layers (e.g., temperature, NDVI, slope) were clipped
to the administrative boundary of the study area, while vector
datasets (e.g., health facility locations, commune boundaries)
were spatially joined with disease incidence data for model
calibration.
Environmental variables were processed into thematic layers,
such as:

1. Topographic layers (elevation, slope, aspect),

2. Climatic surfaces (annual precipitation, maximum
and minimum temperature, frost days),

3. Vegetation and land use indicators (seasonal NDVI,
land cover classes),

4. Anthropogenic factors (population density, irrigation
zones).

Spatial statistical tools and raster algebra were applied to
compute zone-based averages (zonal statistics), create buffer
analyses around populated areas, and extract value-at-point
features for training machine learning models. Risk surfaces were
visualized using heatmaps, quantile classification, and natural
breaks (Jenks) to highlight high-risk zones.

This spatial data integration approach aligns with findings from
previous Moroccan studies that emphasize the power of GIS in
identifying high-incidence zones, exploring altitude-disease
relationships, and guiding health interventions through
geospatial targeting (El Omari et al., 2018, 2019; Talbi et al.,
2019).

The final GIS data stack served as the input layer for the machine
learning algorithms described in the methodology section,
enabling spatially explicit prediction of disease risk with high
granularity.

4. Environmental Factors

Environmental factors play a critical role in shaping the
ecological suitability for Leishmania vectors and reservoirs. Each
variable influences sandfly survival, parasite development, and
human-vector contact rates in distinct but interconnected ways.
The following environmental and climatic factors were selected
based on their proven relevance to leishmaniasis transmission in
North African contexts, particularly in Morocco.

4.1. Temperature

Temperature is a key driver of sandfly development, feeding
activity, and parasite maturation. Optimal ranges for
Phlebotomus papatasi and P. sergenti are between 20°C and
30°C, which align with typical summer conditions in the Beni
Mellal-Khenifra region. Warmer temperatures accelerate the
Leishmania promastigote cycle inside the sandfly gut, reducing
the extrinsic incubation period and increasing transmission risk
(Kholoud et al., 2018).

4.2. Precipitation

While sandflies do not require standing water for breeding,
moderate rainfall improves soil moisture and supports vegetative
growth, indirectly favoring larval habitats. In semi-arid zones of
Morocco, precipitation between 300-600 mm/year has been
associated with higher leishmaniasis incidence (Ben Salem et al.,
2020).

4.3. Normalized Difference Vegetation Index (NDVI)

NDVI reflects vegetation density and is a proxy for microhabitats
suitable for sandfly resting and breeding. Vegetated areas offer
protection from desiccation and support higher relative humidity.
Studies show that leishmaniasis incidence correlates with NDVI
values in the range of 0.2-0.5, typical of semi-arid agricultural
zones in the region (Boussaa et al., 2016b).

4.4. Altitude

Altitude influences temperature, humidity, and land cover. Mid-
altitude zones (400—1200 m), prevalent in Beni Mellal and Azilal
provinces, present an ecological gradient where sandfly vectors
thrive. In Morocco, CL cases have been reported at altitudes up
to 1400 m, with increased vector diversity in such transition
zones (Hakkour et al., 2020).

4.5. Slope

Slope affects drainage patterns and soil moisture retention. Areas
with gentle slopes (0°-15°) tend to accumulate organic matter
and humidity, which favor sandfly oviposition. Steep slopes, by
contrast, promote rapid runoff and less stable habitats.

4.6. Wind Speed

Sandflies are weak flyers; thus, wind speed directly influences
their dispersal capacity. Moderate wind (below 2.5 m/s) allows
limited movement, while stronger winds reduce activity and
mating success. Wind also modifies local temperature and
humidity conditions, indirectly affecting habitat suitability
(Kholoud et al., 2018).

4.7. Humidity

Relative humidity above 50% is favorable for adult sandfly
survival, as it prevents desiccation. In Beni Mellal-Khenifra,
humidity levels vary seasonally but tend to be higher in irrigated
and forest-adjacent areas; both linked to elevated leishmaniasis
risk.

4.8. Frost Days
Frost days; defined as days with minimum temperature < 0°C;
are limiting factors for sandfly survival. Frequent frost reduces
adult vector longevity and larval survival, especially in high-
altitude zones like Khenifra. Areas with <5 frost days annually
are generally more conducive to stable vector populations
(Hakkour et al., 2020).

The spatial patterns of these environmental predictors across
Beni Mellal-Khénifra are illustrated in Figure 3a—h.

(a) Temperature (b) Precipitation
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systems (GIS), environmental predictors, and domain adaptation
2 via CORrelation ALignment (CORAL) to enhance model
transferability between ecologically distinct regions.
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Figure 3a—h. Spatial distribution of environmental and climatic
predictors of cutaneous leishmaniasis risk in Beni Mellal-
Khenifra.

4.9. Ecological and Modeling Relevance of Environmental
Factors

Together, these environmental variables define the ecological
envelope necessary for leishmaniasis transmission. In regions
like Beni Mellal-Khenifra, the convergence of moderate
temperatures, seasonal vegetation cycles, and rural agro-
ecological settings fosters high-risk microhabitats for sandfly
vectors. The interplay of altitude-driven climate gradients,
irrigated farmlands, and humidity-preserving vegetation zones
creates favorable conditions for both vector proliferation and
parasite development. These dynamics render the region
particularly vulnerable to both endemic persistence and the
emergence of new transmission foci.

Importantly, these environmental factors were not only selected
for their biological relevance but also for their quantitative
contribution to the spatial risk modeling process. Each variable
serves as a predictor within the machine learning framework,
shaping the model’s capacity to detect, delineate, and prioritize
areas of elevated leishmaniasis risk. Their spatial and temporal
variability across Beni Mellal-Khenifra directly informs the
granularity and accuracy of the resulting predictive risk maps,
supporting more precise and actionable public health
interventions.

5. Methodology

This study proposes a dual-domain machine learning framework
for spatial prediction of cutaneous leishmaniasis (CL) using data
from Isfahan, Iran (as the source domain), and Beni Mellal-
Khenifra, Morocco (as the target domain). The methodology
(summarized in Figure 4) integrates geographic information

Linear alignment of source features
to match target distribution

]

[ Model tested on Moroccan ]

data (hold-out validation:
MSE, MAE, R?)

e ~
Validation using Moroccan
epidemiological records

\ J

v
Spatial risk prediction maps for
Beni Mellal-Khenifra (2011-2025)

Figure 4. Overview of the dual-domain methodology used to
predict CL risk in Morocco, integrating machine learning,
feature selection, and CORAL-based domain adaptation from
Iran to Morocco.

5.1. Data Preprocessing

Before model training, extensive preprocessing was conducted to
ensure the quality, consistency, and analytical readiness of the
epidemiological, environmental, and climatic datasets. Given the
spatial heterogeneity of the input variables, the preprocessing
workflow focused on spatial alignment, normalization, and
multicollinearity reduction to enhance model performance and
interpretability.

5.1.1. Source Domain (Iran): Epidemiological data and ten
environmental variables; including temperature, precipitation,
NDVI, altitude, slope, and frost days; were collected for Isfahan
Province from 2011 to 2018. These variables were selected based
on known ecological relevance to CL and used extensively in
prior spatial modeling efforts (Shabanpour et al., 2022).
Preprocessing included reprojection to WGS 84, resampling to 1
km? resolution, NDVI compositing, and terrain feature extraction
from DEMs. Noise and missing values were addressed using
inverse distance weighting (IDW) and zonal smoothing filters.

5.1.2. Target Domain (Morocco): Environmental and climatic
variables for Beni Mellal-Khenifra were processed using the
same protocols to ensure compatibility with the source domain.
Harmonized raster stacks were generated and clipped to
administrative boundaries. These datasets served as the basis for
model testing and adaptation.

5.2. Feature Selection (Correlation, VIF, KDE)
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5.2.1. Feature Selection (Iran): To minimize multicollinearity
and enhance interpretability, three statistical tools were
employed:

e Pearson correlation (threshold [r| > 0.85)

e  Variance Inflation Factor (VIF < 10)

e  Kernel Density Estimation (KDE) to identify feature
distributions around case hotspots

This process yielded an optimal set of predictors: spring NDVI,
mean temperature, frost days, slope, and humidity.

5.2.2. Covariance Estimation (Morocco): For CORAL-based
domain adaptation, the covariance matrix of Moroccan feature
distributions was computed. This matrix represented the
statistical target to which source domain features were aligned.

5.3. Machine Learning Models (SVR, RF, XGBoost)

To predict the spatial risk of cutaneous leishmaniasis in Beni
Mellal-Khenifra, three supervised machine learning models were
employed: Support Vector Regression (SVR), Random Forest
(RF), and Extreme Gradient Boosting (XGBoost). These
algorithms were selected based on their proven effectiveness in
handling high-dimensional, nonlinear environmental data and
their strong performance in disease mapping and geospatial
prediction tasks (Guma et al., 2023; Shabanpour et al., 2022; J.
Sun et al., 2023).

5.3.1. Support Vector Regression (SVR): SVR is a regression-
based extension of Support Vector Machines (SVM), designed to
fit a function within a defined error margin (g-insensitive loss
function). Its objective is to find a hyperplane that best
appronkoximates the relationship between independent variables
x and a continuous dependent variable y, while minimizing the
model’s complexity. The SVR loss function is defined as:

min (Wl + € Ty G+ 6) M

Subject to:

yi— wlx; —b<e + & and wix;+b—y; < e+ &
where C is the regularization parameter, € defines the margin of
tolerance, and ¢&;, & are slack variables. SVR has been
successfully applied to spatial disease modeling due to its
generalization ability even with limited data (Shabanpour et al.,
2022).

5.3.2. Random Forest (RF): RF is an ensemble learning
algorithm that constructs multiple decision trees during training
and outputs the average prediction of the individual trees. It is
robust to overfitting, handles noisy data, and performs internal
feature selection via its random sampling mechanism. The RF
model learns from bagged subsets of the data and introduces
randomness in feature selection at each tree node, improving
generalization:

far(x) = =XE_1Ty(x) @)

where T, (x) is the prediction from the b" decision tree. In
geospatial applications, RF is particularly valuable due to its
interpretability through feature importance scores and its ability
to capture complex nonlinear patterns (J. Sun et al., 2023).

5.3.3. Extreme Gradient Boosting (XGBoost): XGBoost is an
advanced implementation of gradient boosting decision trees
(GBDT), designed to optimize computational efficiency and
predictive accuracy. Unlike RF, which builds trees in parallel,
XGBoost constructs trees sequentially, where each tree aims to
correct the errors of the previous one. The objective function
includes a regularization term to penalize complexity and avoid
overfitting:

Obj = Tii 1 90 + Zi=12(fi) 3)
With:

Q(f) =T +3Allwl)? )

where [ is the loss function (e.g., squared error), T is the number
of leaves, and A is the L2 regularization term. XGBoost supports
missing value handling, early stopping, and parallelized
computation, making it particularly suited for large-scale spatial
risk modeling (Guma et al., 2023).

5.3.4. Model Training and Validation: Each model was trained
on 70% of the dataset and validated on the remaining 30% using
a hold-out strategy. Input features included environmental and
climatic predictors retained after feature selection (Section 5.2).
Hyperparameters were optimized via grid search using cross-
validation to prevent overfitting and ensure generalizability.
These three models form the core of the spatial risk prediction
engine, with results compared in terms of performance metrics
(MSE, MAE, R?) in the Results section.

5.4. Domain Adaptation with CORAL

One of the most critical challenges in geospatial disease
modeling is domain shift; the variation in environmental
distributions between regions, which can compromise a model’s
generalizability when applied outside the training zone. In
Morocco, climatic, topographic, and ecological variables differ
significantly across provinces. As such, models trained in one
region may underperform when deployed in another. To
overcome this limitation, this study integrates CORrelation
ALignment (CORAL); a domain adaptation technique designed
to enhance transferability by aligning the statistical structure of
feature spaces between source and target domains.

5.4.1. Overview of CORrelation ALignment (CORAL)
Technique: CORAL is an unsupervised domain adaptation
method that minimizes domain discrepancy by aligning the
second-order statistics (covariance matrices) of source and
target features. Unlike subspace-based or adversarial methods,
CORAL applies a linear transformation to match the feature
distribution of the source domain to that of the target, without
needing any labeled data from the target domain (B. Sun et al.,
2017). Mathematically, CORAL solves:

MG — ATCrAlR )

where Cg and Cy represent the covariance matrices of the source
and target domains, respectively, and A is the transformation
matrix applied to the source data.

This method has proven robust in various high-dimensional
applications and has been extended to deep architectures in Deep
CORAL, enabling nonlinear transformations via deep neural
networks (Z. Y. Wang & Kang, 2021).

5.4.2. Rationale for Selecting CORAL in Spatial
Epidemiology: Several reasons motivated our selection of
CORAL over alternative domain adaptation strategies:
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1 Simplicity and Efficiency: CORAL is
computationally light and easy to integrate into
classical ML pipelines (e.g., RF, SVR, XGBoost).

2 No Need for Target Labels: In spatial epidemiology,
labeled disease data are often unavailable in target
regions. CORAL operates fully unsupervised.

3 Proven Generalizability: CORAL has demonstrated
high transfer accuracy across domains in ecological,
medical, and geospatial prediction studies (Cheng et
al., 2021).

Implementation of CORAL in the Dual-Domain Framework
In our workflow, models were first trained using environmental
features from a source zone (within Beni Mellal or a neighboring
province with available CL data). CORAL was then applied to
align these features with those of a target zone (e.g., a subregion
with limited historical cases or data gaps). The transformation
involved:

~
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Train Models in
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Figure 5. CORAL Application Workflow

1. Computing the covariance matrix of environmental
features in both source and target zones.

2. Applying CORAL to adjust the source features so
their distribution matches the target domain.

3. Using the adapted features to re-train or fine-tune the
prediction model, which was then deployed to
generate risk maps in the target zone.

In our workflow, the transformed Isfahan data were fed back into
the model to generate Morocco-compatible predictions without
requiring labeled Moroccan case data.

5.5. Model Testing in Target Domain

The CORAL-adapted models were tested using Beni Mellal-
Khenifra’s environmental data. Hold-out validation (30%)
measured model performance using MSE, MAE, and R2.
Comparative analysis confirmed that CORAL significantly
improved prediction accuracy by mitigating ecological feature
discrepancies.

5.5.1. Mean Squared Error (MSE): The Mean Squared Error
quantifies the average of the squared differences between
observed and predicted values. It is particularly sensitive to large
deviations, thus penalizing outliers more severely.

1 ~
MSE = ~¥i (v — 9)* (6)

where y; and J; represent the observed and predicted values
respectively, and n is the number of spatial units. A lower MSE
denotes a higher degree of predictive accuracy and model
stability.

5.5.2. Mean Absolute Error (MAE): The Mean Absolute Error
measures the average magnitude of errors without considering

their direction, offering a direct interpretation in the unit of the
dependent variable (e.g., leishmaniasis incidence per unit area).

MAE = 2

~ Xisalyi = 3il (7
Unlike MSE, MAE treats all errors equally, making it especially
suitable in contexts where moderate deviations are expected due
to ecological variability.

5.5.3. Coefficient of Determination (R?): The Coefficient of
Determination, or R?, indicates the proportion of variance in the
dependent variable that is explained by the model. It provides a
normalized measure of model goodness-of-fit:

iz i=9i)
RZ =1 i=1 8
E[:](yi ¥) ( )

where 7 is the mean of the observed values. Higher R? values
suggest better explanatory power and greater spatial consistency
between the model predictions and observed incidence patterns.

5.5.4 Evaluation Strategy and Spatial Considerations: All
three metrics were computed for each model using a hold-out
validation strategy (70% training, 30% testing), and were further
stratified by geographic zones to assess regional differences in
prediction accuracy. This evaluation was conducted both before
and after domain adaptation using CORAL, enabling a direct
comparison of generalization performance across ecologically
distinct areas.

Together, MSE, MAE, and R? provide a comprehensive and
complementary set of indicators, capturing prediction accuracy
(MSE), error magnitude (MAE), and explanatory power (R?).
Their use is essential in spatial disease modeling, where
heterogeneous terrain, climate, and land use can differentially
affect model behavior. Moreover, these metrics facilitate direct
interpretation of risk map reliability, thereby supporting targeted
decision-making in disease surveillance and control.

5.6. Final Validation and Risk Mapping

The best-performing model (XGBoost post-CORAL) was
selected to generate high-resolution spatial risk maps for CL
across Beni Mellal-Khenifra (2011-2025). Predicted hotspots
were cross-referenced with historical case distributions to ensure
epidemiological plausibility and inform public health
interventions.

5.7. Hyperparameter Optimization

To ensure the reproducibility, efficiency, and robustness of our
machine learning models, we implemented a systematic
hyperparameter tuning process using grid search with five-fold
cross-validation. This approach allowed us to identify optimal
parameter configurations that balance model complexity,
generalization, and computational efficiency.

The final hyperparameter settings for each model are summarized
in the table below:

Model Parameter Value
Kernel function RBF
Regularization (C) 10

SVR

Kernel coefficient (y) 0.1

Epsilon (g) 0.1
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Number of estimators 100
Max tree depth Unlimited
Min samples per split 2
RF :
Feature selection v (number of features)
Splitting criterion Mean Squared Error
(MSE)
Learning rate (1)) 0.1
Number of estimators 100
Max tree depth 3
XGBoost  Subsample ratio 0.8
Colsample by tree 0.8

L2 regularization () 1

Objective function reg:squarederror

Table 1. Hyperparameter optimization and Model configuration

These configurations were informed by prior empirical studies in
environmental modeling and validated through performance
benchmarking. XGBoost's hyperparameters were particularly
optimized to minimize overfitting and improve generalization
under domain adaptation using CORAL.

6. Results

This study provides a comprehensive evaluation of the predictive
performance of three supervised machine learning algorithms;
Support Vector Regression (SVR), Random Forest (RF), and
Extreme Gradient Boosting (XGBoost); for estimating the spatial
risk of cutaneous leishmaniasis (CL) in the Beni Mellal and
Khenifra regions of Morocco. Models were trained on historical
epidemiological data (2011-2018) alongside environmental
predictors and validated using R?, Mean Squared Error (MSE)
and Mean Absolute Error (MAE) metrics. The integration of the
CORrelation ALignment (CORAL) technique further enhanced
model generalization across ecologically distinct subregions.

6.1. Performance of Machine Learning Models

The predictive accuracy of each model was evaluated using
standard regression metrics. As illustrated in Figure 3, XGBoost
achieved the highest accuracy, with an R? value of 0.91, MSE
of 0.1229 and MAE of 0.2587. This model’s gradient-boosted
architecture effectively captured complex non-linear interactions
between environmental variables and disease incidence.

SVR demonstrated the second-best performance, with an R? of
0.89, MSE of 0.1434 and MAE of 0.2765, benefiting from its
robustness to overfitting and ability to model non-linear data via
the RBF kernel. Random Forest, while generally strong, showed
relatively lower predictive power (R? = 0.85, MSE = 0.1925 and
MAE = 0.3120), likely due to its reduced sensitivity to subtle
interactions in high-dimensional spatial data.

These results highlight the varying ability of each algorithm to
model spatial and environmental complexity associated with CL
risk.

Mean Squared Error (MSE) of Models Mean Absolute Error (MAE) of Modeis

Figure 6. Predictive accuracy of SVR, RF, and XGBoost
models using R?, MSE and MAE evaluation metrics.

6.2. Impact of Domain Adaptation with CORAL

The implementation of CORrelation ALignment (CORAL)
significantly enhanced the spatial transferability and
generalization capacity of all evaluated machine learning models;
Support Vector Regression (SVR), Random Forest (RF), and
Extreme Gradient Boosting (XGBoost); when applied from the
source domain (Isfahan, Iran) to the target domain (Beni Mellal-
Khenifra, Morocco). In the absence of domain adaptation, each
model exhibited performance degradation, primarily due to
domain shift; systematic differences in the statistical properties
of environmental predictors across regions.

As shown in Table 2, the XGBoost model, when trained on
Iranian data and tested directly on Moroccan inputs, yielded
limited generalization capacity (R>=0.710; MSE =0.2397; MAE
= 0.3132). After applying CORAL, which aligns second-order
statistics (covariance structures) of the feature spaces,
performance improved markedly: R? increased to 0.911, MSE
decreased to 0.1229, and MAE was reduced to 0.2587. These
improvements underscore the model’s enhanced ability to
reconcile feature distribution mismatches between source and
target domains.

Similar trends were observed across SVR and RF. SVR improved
from R? = 0.843, MSE = 0.1622, and MAE = 0.3726 (pre-
CORAL) to R?=0.896, MSE =0.1434, and MAE = 0.2765 (post-
CORAL). RF showed a transition from R? = 0.805, MSE =
0.2035, and MAE = 0.2933 to R? = 0.856, MSE = 0.1925, and
MAE = 0.3120 after adaptation.

These consistent gains across models validate CORAL as a
robust and scalable domain adaptation strategy, capable of
mitigating statistical divergence without the need for labeled data
in the target region. For spatial epidemiology applications in
resource-limited settings, such methods offer a powerful solution
for transferring predictive intelligence across ecological and
administrative boundaries.

Model R? MSE MAE Interpretation

Variant Score

SVR (No 0.843  0.1622 03726  Moderate fit, slight

CORAL) over-smoothing

SVR (With  0.896 0.1434 0.2765 Smoother adaptation

CORAL) with more coherent
zones

RF (No 0.805 0.2035 0.2933  Overfitting risk due to

CORAL) noise sensitivity

RF (With 0.856  0.1925 0.3120  Stable improvement,

CORAL) better generalization

XGBoost 0.710  0.2397 0.3132  Weaker transfer due to

(No domain shift

CORAL)

XGBoost 0911 0.1229 0.2587  Best overall

(With performance and

CORAL) alignment

Table 2. Performance comparison of ML models before and
after CORAL domain adaptation.

6.3. Leishmaniasis Risk Prediction Maps Across Models
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To assess the spatial accuracy of the CORAL-adapted machine
learning models, risk prediction maps were generated using
Random Forest (RF), Support Vector Regression (SVR), and
Extreme Gradient Boosting (XGBoost) for the Beni Mellal-
Khenifra region from 2011 to 2025. Each map visualizes spatial
patterns of predicted CL incidence and reflects the model’s
behavior in translating environmental signals into
epidemiological risk.

6.3.1. Random Forest Risk Prediction: The RF-based map
(Figure 7a) reveals a broad high-risk zone covering much of Beni
Mellal and the southern Khenifra area. While the model
successfully captures core endemic regions, it also exhibits
spatial noise with diffuse prediction zones extending beyond
historically validated hotspots. This is likely due to RF’s
ensemble nature, where decision trees trained on random subsets
can amplify minor spatial variance.
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Figure 7a. Spatial prediction of CL risk (2011-2025) using the
Random Forest model after CORAL adaptation.

6.3.2. Support Vector Regression Risk Prediction: As shown
in Figure 7b, SVR produced a smoother spatial risk surface, with
major hotspots localized in areas such as Beni Mellal, Azilal, and
northern Khenifra. While SVR captures regional trends well, it
tends to underestimate localized surges in case density, a known
limitation of margin-based regression models. The map exhibits
moderate epidemiological coherence, favoring gradual risk

transitions over abrupt cluster detection.
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Figure 7b. Support Vector Regression prediction map of CL
risk (2011-2025).

6.3.3. XGBoost Risk Prediction: The XGBoost model
delivered the most epidemiologically aligned map (Figure 7c¢). It

sharply delineates high-risk pockets in southern Azilal, central
Fquih Ben Salah, and northern Khouribga, which correspond
with sandfly-favorable ecotones; moderate altitude, vegetated
landscapes, and consistent humidity. XGBoost’s ability to model
complex, nonlinear interactions makes it particularly suitable for
capturing these niche ecological relationships.
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Figure 7c. XGBoost-predicted CL risk map.

7. Discussion

This study examined the integration of machine learning (ML),
Geographic Information Systems (GIS), and domain adaptation
to model the spatial distribution of cutaneous leishmaniasis (CL)
in the Beni Mellal-Khenifra region of Morocco. By leveraging
epidemiological data from a source domain (Isfahan, Iran) and
transferring model knowledge to a target domain (Morocco)
using CORrelation ALignment (CORAL), we established a
robust and transferable pipeline for disease risk prediction under
ecological variability.

7.1. Comparative Model Performance Analysis

While all three models; SVR, RF, and XGBoost; demonstrated
baseline capacity for spatial prediction, their performance
diverged sharply in response to ecological heterogeneity.
Notably, XGBoost's consistent superiority across both source and
adapted domains underscores a key methodological insight:
model architecture matters more than just tuning when
generalization is a priority. Its additive boosting mechanism,
regularization terms, and fine-grained error correction
collectively contributed to its resilience in handling complex,
nonlinear feature interactions inherent in ecological systems.

A secondary yet important distinction lies in how each model
handled noise and environmental variance. RF, despite its
interpretability and ensemble robustness, showed susceptibility
to overfitting localized noise, likely due to unfiltered spatial
microclimates. SVR, while maintaining relatively stable margins,
occasionally underfit dense clusters, reflecting a trade-off
between bias control and spatial fidelity. These nuances highlight
the importance of choosing models not only based on statistical
performance but also based on ecological interpretability and
spatial coherence.

7.2. Role of Each Environmental Factor

Environmental predictors such as temperature, NDVI, and
precipitation consistently emerged as top contributors across all
models, echoing well-established ecological knowledge:
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7.2.1 Temperature regulates sandfly vector activity and
accelerates the Leishmania parasite’s maturation cycle within the
insect gut.

7.2.2 NDVI (Normalized Difference Vegetation Index) is a proxy
for vegetation cover and microhabitat availability, facilitating
vector resting and breeding.

7.2.3 Precipitation enhances soil moisture and vegetation
density, indirectly promoting suitable vector habitats.

Additional variables, including altitude, slope, humidity, wind
speed, and frost days, further enriched model performance. For
instance, high-altitude and frost-prone areas were associated with
reduced vector survival, while mid-elevation zones with
moderate  humidity = emerged as  transmission-prone
environments. This multi-scalar interaction affirms the models’
biological validity and enhances the interpretability of risk maps.

7.3. Effectiveness of CORAL

Beyond its numeric improvements, the core contribution of
CORAL lies in its theoretical alignment with ecological
complexity. Unlike many machine learning models that assume
data stationarity, CORAL explicitly accounts for shifts in the
joint distribution of environmental features; a near-universal
challenge in spatial epidemiology. Its statistical simplicity (linear
covariance alignment) masks a powerful practical outcome: the
ability to transfer predictive insight from a data-rich region
(Isfahan) to a data-scarce but high-risk region (Morocco)
without requiring additional case labels.

What sets CORAL apart in this study is its compatibility with
classical ML models; a major advantage in contexts where
computational resources are limited. Rather than relying on deep
neural architectures, which may be infeasible in low-resource
settings, CORAL operates as a lightweight wrapper. This allows
for scalable, interpretable, and deployable solutions for
national health agencies, especially in the Global South.
Moreover, this study illustrates a rarely emphasized but vital
implication: the importance of aligning not just data, but
ecological logic. CORAL respects the biological plausibility of
vector niches by transforming the statistical structure of source
features in a way that preserves meaningful environmental
signals. As such, it is not just a domain adaptation technique; it
is a biogeographical harmonization method, adaptable to a
wide range of zoonotic and climate-sensitive diseases.

7.4. Strengths and Limitations of the Approach
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High Accuracy Geographical Bias
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Figure 8. Strengths and Limitations of the Approach

Strengths:
1 Novel integration of domain adaptation in a spatial
epidemiology setting.

2 Use of real epidemiological data from multiple
Moroccan provinces.

3 High accuracy and spatial coherence of predictions,
particularly with XGBoost.

4 Clear biological justification for variable selection,
improving model interpretability.

Limitations:
1 Exclusion of socioeconomic variables such as housing
conditions and sanitation due to lack of high-
resolution data.

2 Dependence on static environmental layers; real-time
prediction would require dynamic inputs.

3 Geographical bias: While CORAL mitigated transfer
issues, broader testing across national or continental
scales is still needed.

4 Lack of external validation using independent
outbreak data beyond the target region.

Despite these limitations, this study demonstrates a replicable
pipeline for predictive disease mapping in data-limited contexts.
It also lays the foundation for future studies to incorporate social
determinants of health and temporal disease dynamics.

7.5. Justification for Selecting XGBoost for Final Risk
Mapping
While all three models (SVR, RF, XGBoost) contributed to risk
prediction, XGBoost was selected for final mapping due to its:
1  Best-in-class performance metrics (R> = 00911,
lowest MSE and MAE),
2 Higher spatial coherence, producing well-aligned
hotspots consistent with reported CL patterns,
3 Flexibility in handling missing data, and
4 Superior generalization under domain adaptation
with CORAL.
SVR and RF, although competitive, demonstrated minor
deficiencies: SVR occasionally underpredicted clustered cases,
and RF generated more fragmented and less interpretable spatial
patterns. XGBoost’s regularized gradient boosting framework
offered a robust balance between bias and variance, yielding the
most reliable and policy-relevant results.

7.6. Methodological and Practical Implications

This study introduces a scalable, domain-adapted ML-GIS
framework for spatial disease modeling, demonstrating the
effectiveness of CORAL in mitigating domain shift across
ecological settings. By integrating machine learning with GIS
and unsupervised domain adaptation, the pipeline enables
accurate leishmaniasis risk prediction even in data-scarce
regions.

The approach is notable for its use of purely environmental
variables, cross-country model transferability, and computational
simplicity. These features make it highly applicable for neglected
tropical diseases in low-resource contexts. Practically, the
XGBoost-CORAL  pipeline  supports  spatially targeted
interventions and scalable early warning systems.

Future extensions should incorporate socio-environmental
variables and real-time data to further enhance prediction
precision and public health applicability.

8. Conclusion

This study has demonstrated the potential of combining machine
learning, geographic information systems (GIS), and domain
adaptation techniques to develop a predictive framework for
cutaneous leishmaniasis (CL) risk mapping in Morocco. By
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leveraging a diverse set of environmental, climatic, and
topographic variables, and applying a comparative analysis of
three machine learning models (Support Vector Regression
(SVR), Random Forest (RF), and Extreme Gradient Boosting
(XGBoost)), we successfully developed a spatially explicit
model capable of identifying high-risk zones for CL with high
precision.

The results clearly showed that XGBoost outperformed the other
models in both accuracy and spatial coherence, delivering the
highest R? value and the lowest MSE across both source and
adapted domains. Its performance was further enhanced through
the implementation of the CORrelation ALignment (CORAL)
method, a domain adaptation technique that significantly
improved the model’s generalizability across ecologically
distinct regions. CORAL enabled us to address a critical
challenge in spatial epidemiology: domain shift between
geographically and environmentally divergent regions, by
aligning the statistical structure of input features, thus allowing
for the transfer of predictive models without needing new labels
in the target domain.

The ability to predict disease risk in regions with little to no
historical data represents a significant advancement in public
health planning. The risk maps produced in this study revealed
concentrated hotspots of cutaneous leishmaniasis in central Beni
Mellal and northern Khenifra, regions that correspond with
historically observed patterns and ecological conditions
favorable to sandfly vectors. These maps provide valuable tools
for guiding resource allocation, planning targeted interventions,
and implementing community-level disease surveillance
strategies.

The broader significance of this work lies in its methodological
generalizability and potential for scaling. While the study
focused on Beni Mellal-Khenifra, the integrated framework we
propose is applicable across other provinces in Morocco and can
be extended to neighboring countries in North and Sub-Saharan
Africa, where cutaneous and visceral forms of leishmaniasis
remain endemic. Future efforts will focus on applying this
pipeline at the national level, integrating more regions with
varying ecological and socio-demographic contexts. By
expanding the geographic scope, we aim to develop a national
leishmaniasis risk atlas for Morocco that can be updated in real
time and used by health ministries, NGOs, and epidemiological
researchers.

In the longer term, this study opens the door to continent-wide
applications. Many African countries face similar challenges in
disease surveillance, limited data availability, environmental
diversity, and public health resource constraints. By refining and
adapting the XGBoost-CORAL framework, we envision the
creation of a pan-African platform for predictive modeling of
vector-borne diseases. Such a platform would integrate satellite
data, climate forecasts, mobile health data, and localized
epidemiological records, supporting a more proactive and data-
driven approach to disease control.

While this study offers significant contributions, several
limitations must be addressed in future work. The absence of
socioeconomic data, such as housing quality, population density,
and access to healthcare, limits the social context of the model.
Furthermore, the use of static environmental layers constrains the
model’s temporal resolution; future integration of dynamic data
(e.g., real-time satellite NDVI, daily climate feeds) will enhance
the responsiveness of the risk predictions. Additionally,
exploring deep learning models and more advanced domain
adaptation methods (e.g., adversarial or transfer learning
techniques) may yield further improvements in predictive power
and scalability.

Ultimately, this study represents a foundational step toward
building a flexible, intelligent, and scalable predictive system for

leishmaniasis and other vector-borne diseases. It contributes to a
growing body of research that leverages artificial intelligence and
remote sensing for global health. With further development, the
tools and insights presented here have the potential to support
national and continental efforts to reduce the burden of neglected
tropical diseases through timely, evidence-based decision-
making.
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