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Abstract

Solar energy has become a major contributor to global renewable energy strategies, offering a sustainable alternative to fossil fuels.
Photovoltaic (PV) systems, which convert sunlight into electricity, play a central role in this transition. As the demand for large-scale
solar energy projects grows, Geographic Information Systems (GIS) and advanced deep learning models have become critical for
accurately detecting and mapping PV installations, particularly from satellite imagery. However, challenges remain, especially in
regions with suboptimal satellite data quality. This study focuses on the Marrakesh-Safi region of Morocco, where the potential for
solar energy is high but hindered by limitations in available satellite imagery. We employ advanced transformer-based models,
including Mask2Former, SegFormer, and DeepLabV3+, to enhance the semantic segmentation of PV systems from high-resolution
satellite images. By integrating GIS with these deep learning models, we aim to improve the accuracy and scalability of PV detection,
even in complex and diverse geographical settings. Our methodology involves training and testing these models on annotated satellite
imagery, with performance evaluated using key metrics such as Intersection over Union (IoU), precision, recall, and F1 score.
Mask2Former achieved notable results with a recall of 0.95 and an F1 score of 0.936, excelling in the detection of smaller and more
complex PV layouts. DeepLabV3+ demonstrated strong overall performance, with an IoU of 0.89 and precision of 0.93, while also
being the most computationally efficient model, processing 28 samples per second. This research highlights the effectiveness of
integrating GIS with deep learning, particularly transformer-based architectures, for the accurate detection and mapping of PV systems.
The results contribute to the broader efforts in renewable energy optimization, supporting more efficient solar energy deployment,

especially in regions like Morocco where data quality poses significant challenges.

1. Introduction

The transition to renewable energy sources is now more urgent
than ever, driven by the need to reduce carbon emissions and
combat the environmental impacts of fossil fuels (Kleebauer et
al., 2023). Renewable energy, particularly solar, has become a
leading solution due to advancements in photovoltaic technology
and its ability to harness abundant solar resources. Accurate
segmentation and detection of photovoltaic systems from aerial
and satellite imagery are critical for optimizing solar energy
deployment and planning (Garcia et al., 2024). Photovoltaic
systems, which directly convert sunlight into electricity, have
emerged as pivotal components in global strategies to accelerate
the adoption of clean energy technologies (Kleebauer et al.,
2023).

Geographic Information Systems (GIS) and deep learning have
become crucial tools in optimizing green energy systems. GIS
provides essential spatial data for identifying optimal sites for
solar panel installation by analyzing environmental factors like
land use, topography, and solar irradiance (Verso et al., 2015).
Deep learning enhances this process by automating the detection
and classification of land areas suitable for solar energy through
advanced image recognition, thus improving the precision and
scalability of site assessments (Zhu et al., 2023). Together, GIS
and deep learning form a powerful synergy that accelerates the
integration of solar energy, reducing time and cost for large-scale
PV deployment across different regions.

In Morocco, the high potential for solar energy is often hindered
by significant challenges related to the quality and resolution of

satellite imagery available for photovoltaic (PV) detection.
Despite its vast solar irradiance, making it an ideal candidate for
large-scale solar energy projects, the limitations of the available
satellite imagery create difficulties in accurately identifying and
segmenting PV installations. This issue is particularly
pronounced for smaller systems or those that are integrated into
complex urban and rural landscapes, where shadows, building
structures, and vegetation can obscure solar panels, leading to
misclassification or omission of PV systems (Zefti et al., 2018).
Moreover, the country's reliance on older, low-resolution satellite
data complicates large-scale PV mapping efforts, as this imagery
lacks the necessary detail to distinguish between PV panels and
other reflective surfaces, such as metal rooftops or light-colored
terrain.

These challenges can, however, be addressed through the
application of advanced GIS and deep learning techniques, which
are capable of extracting more accurate and detailed information
from satellite images, even with varying spatial resolutions. GIS
offers a robust platform for integrating various data layers, such
as elevation, land use, and solar irradiance, which are critical for
optimizing the siting of PV systems. When combined with deep
learning, particularly convolutional neural networks (CNNs) and
transformers, these systems can significantly enhance image
interpretation by automatically detecting and classifying objects
within satellite imagery. Deep learning models trained on large
datasets can learn to differentiate between solar panels and other
objects, even under challenging conditions (J. Wang et al., 2022).

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-431-2026 | © Author(s) 2026. CC BY 4.0 License. 431


https://orcid.org/0009-0006-7551-2360
https://orcid.org/0000-0003-3526-2070
https://orcid.org/0000-0002-5955-8231
mailto:farah.saad.cedoc@ehtp.ac.ma
mailto:h.lechgar@gmail.com
mailto:a.rghioui@ehtp.ac.ma
mailto:saadaoui@greenenergypark.ma
mailto:smouni@greenenergypark.ma
mailto:mehdi.maanan@gmail.com
mailto:h.rhinane@gmail.com
mailto:Mohamed.Maanan@univ-nantes.fr
mailto:farah.saad.cedoc@ehtp.ac.ma

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 — 10th International Conference on Geolnformation Advances, 29-30 May 2025, Marrakech, Morocco

Specifically, semantic segmentation techniques, which assign a
class label to each pixel in an image, are particularly effective in
compensating for the low quality of input data. By using these
techniques, researchers can create detailed maps that highlight
the presence of PV systems across wide geographical areas, even
when the original satellite data is of low resolution. Furthermore,
advanced methods such as multi-scale image analysis can
enhance the resolution of certain regions in the imagery,
providing more accurate and reliable information for PV
detection. These technologies not only improve the precision of
solar panel identification but also support more efficient and
strategic deployment of solar energy infrastructure in Morocco,
where the potential for solar energy remains largely untapped due
to current technical limitations (Verso et al., 2015).

Recent advances in deep learning, particularly in computer
vision, have further enhanced the accuracy of PV detection from
satellite imagery. Traditionally, convolutional neural networks
(CNNs) were used for tasks like segmentation, but they are
limited by their inability to capture long-range dependencies and
global context effectively (Dosovitskiy et al., 2021).
Transformer-based models have proven to be more effective than
traditional models by using attention mechanisms to capture
global context across entire images. This makes transformers
particularly suitable for complex tasks like photovoltaic (PV)
panel segmentation, where subtle differences between solar
panels and surrounding surfaces must be accurately detected. The
attention mechanism allows these models to focus on relevant
parts of the image, significantly enhancing segmentation
precision and overall performance (Cheng et al, 2022;
Dosovitskiy et al., 2021).

Among the most promising transformer-based models are
Mask2Former, Segformer, and DeepLabv3+, which have shown
superior performance in semantic segmentation tasks.
Mask2Former excels in its ability to generalize across various
segmentation tasks, while Segformer combines the strengths of
transformers with high accuracy in dense prediction tasks (Cheng
et al., 2022; Xie et al., 2021). DeepLabv3+, although originally
based on CNNs, has incorporated attention mechanisms to
improve its segmentation capabilities (Chen et al., 2018). By
upgrading from CNNs to transformer-based models, our research
aims to improve the accuracy and robustness of PV detection
from satellite images, addressing the inherent challenges of low-
quality imagery in regions like Morocco.

So, integrating GIS, deep learning, and transformer-based
models offers a robust framework for improving the
identification and mapping of photovoltaic systems from satellite
images, even in regions where data quality is suboptimal (Verso
et al,, 2015; J. Wang et al., 2022). This study pushes the
boundaries of current methodologies by leveraging advanced
transformer architectures to enhance semantic segmentation for
PV panel detection, contributing to the broader field of green
energy optimization (Cheng et al., 2022; Dosovitskiy et al., 2021;
Xie et al., 2021). By addressing the challenges of low-resolution
satellite imagery, especially in regions like Morocco, this
approach improves the accuracy and scalability of PV detection,
paving the way for more efficient and sustainable solar energy
deployment worldwide (Zefti et al., 2018).

2. Related works

The detection and mapping of photovoltaic (PV) systems using
satellite imagery has garnered significant attention in recent
years, particularly with the rise of high-resolution satellite data
and advanced deep-learning techniques. In this section, we
review the key studies and methodologies that have influenced
the field, focusing on Geographic Information Systems (GIS),
deep learning, semantic segmentation, and the role of
convolutional neural networks (CNNs) and transformer-based
models in solar panel detection.

2.1. GIS and Remote Sensing for Renewable Energy
Geographic Information Systems (GIS) and remote sensing have
long played a central role in the planning and deployment of
renewable energy systems. Researchers such as (Serensen, 2001)
demonstrated the use of GIS for optimizing the siting of solar
panels by integrating spatial data on solar irradiance, land use,
and environmental constraints. By providing detailed spatial
data, GIS allows for efficient solar energy planning, especially in
large-scale projects where geographic factors heavily influence
energy potential. Moreover, (Gassar & Cha, 2021) expanded on
the integration of GIS with remote sensing for regional
assessments of solar potential, indicating that combining spatial
data with machine learning could further improve decision-
making processes.

2.2. Deep Learning in PV Detection

Deep learning has become an essential tool for automating the
detection and classification of photovoltaic systems from satellite
imagery. Convolutional neural networks (CNNs) have been
widely used for object detection tasks due to their powerful
feature extraction capabilities. For instance, (loannou &
Myronidis, 2021) applied CNNs to automatically detect solar
panels from satellite images, demonstrating high levels of
accuracy. Similarly, (Vlaminck et al., 2022) used CNN-based
models to analyze satellite images and segment regions
containing PV systems. These early studies showed the
effectiveness of CNNs in handling high-resolution images and in
classifying various land cover types, including PV installations.

2.3. Semantic Segmentation for Photovoltaic Systems
Semantic segmentation techniques have further advanced the
precision of PV detection, allowing for pixel-level classification
of satellite imagery. One of the most widely used models in this
domain is DeepLabv3+, which has been applied to a range of
remote sensing tasks, including solar panel detection. (Chen et
al., 2018) introduced DeepLabv3+, enhancing the feature
extraction process through atrous convolution, which captures
fine-grained details essential for segmenting objects like solar
panels. The ability of DeepLabv3+ to detect small and dispersed
solar panels in complex landscapes has been confirmed by
studies such as (Costa et al., 2021), which demonstrated its
effectiveness in various urban and rural settings. Moreover, by
incorporating multi-scale image analysis, DeepLabv3+ can
handle high-resolution satellite images, enabling more accurate
mapping of PV installations.

2.4. Transformer-Based Models in Remote Sensing
While CNNs have traditionally dominated image segmentation
tasks, transformer-based models have recently emerged as
powerful alternatives due to their ability to capture long-range
dependencies and global context. (Dosovitskiy et al., 2021)
introduced Vision Transformers (ViTs), which apply self-
attention mechanisms across the entire image, significantly
improving the accuracy of segmentation tasks compared to
CNN:s. In the context of PV detection, transformers allow models
to focus on specific features of solar panels across various spatial
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resolutions, making them highly effective for large-scale satellite
image analysis.

Several transformer-based architectures, such as Mask2Former
and Segformer, have been proposed for semantic segmentation.
(Cheng et al., 2022) introduced Mask2Former, which generalizes
across various segmentation tasks, offering high flexibility and
performance. Meanwhile, (Xie et al., 2021) presented Segformer,
a hybrid model that combines the simplicity of transformers with
the robustness of dense prediction tasks, making it well-suited for
complex satellite imagery analysis. These models provide state-
of-the-art performance in solar panel detection, particularly when
dealing with high-resolution images where subtle differences
between solar panels and other reflective surfaces need to be
captured.

2.5. Hybrid Approaches Combining CNNs and
Transformers

Recent research has explored hybrid approaches that integrate
both CNNs and transformers to take advantage of the strengths
of both architectures. For instance, (Ziyabari et al., 2022) They
proposed a hybrid method for solar irradiance forecasting,
leveraging CNNss for local feature extraction and transformers to
capture long-term dependencies, which can be adapted for solar
panel detection tasks. (Liang et al., 2023) developed a hybrid
CNN-transformer model for remote sensing, where CNNss handle
feature extraction and transformers capture the global context,
improving segmentation performance in complex urban
environments. Similarly, (L. Wang et al., 2021) demonstrated
that combining CNNs and transformers helps improve the
segmentation of urban scenes with varying resolutions, an
approach applicable to satellite imagery used for PV detection.
Hybrid models like these are increasingly being employed to
manage varying spatial scales in satellite images, enhancing the
accuracy of photovoltaic panel detection in diverse and
challenging environments.

2.6. Photovoltaic Detection in the Moroccan Context

In the specific context of Morocco, studies have highlighted the
unique challenges associated with using satellite imagery for PV
detection. (Zefri et al., 2018) emphasized the need for high-
resolution UAV-based thermal and visual data to overcome the
limitations of traditional satellite imagery. This method provides
more accurate inspections, especially in environments like
Morocco, where older satellite data may lack the resolution
necessary to detect smaller, distributed solar panels. The
integration of UAV technology, Geographic Information
Systems (GIS), and advanced image processing techniques, such
as deep learning models including CNNs and transformers, has
been identified as a promising solution for overcoming these
challenges. These approaches enable more detailed and precise
mapping and detection of PV installations, particularly in regions
with suboptimal data quality, further improving the accuracy of
photovoltaic detection.

3. Study Area: Marrakesh-Safi Region
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+
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The Marrakesh-Safi region, situated in central Morocco, is
renowned for its high solar irradiance, making it an ideal area for
solar energy projects. Spanning approximately 41.404 km?
(Etude Sur Le Tissu Entrepreneurial Région de Marrakech-Safi,
2024), the region is diverse, featuring plains, coastal areas, and
mountainous terrains that present both opportunities and
challenges for photovoltaic (PV) deployment (HCP, 2014). Its
semi-arid climate, with solar radiation levels between 5 and 6
kWh/m? per day, offers an optimal environment for year-round
solar energy generation (Ouchani et al., 2021). Key urban centers
such as Marrakesh are surrounded by a mixture of rural and urban
landscapes, providing varied sites for both large-scale solar farms
and distributed PV systems. However, the region's topographical
diversity, particularly in the High Atlas Mountains, complicates
PV deployment due to infrastructure limitations and challenging
terrain (Ouchani et al., 2021).

Within this region, the city of Ben Guerir stands out as a
significant player in Morocco's solar energy landscape. Located
roughly 70 km north of Marrakesh, Ben Guerir is home to the
Mohammed VI Green City and the Green Energy Park, one of
Morocco’s most advanced research centers for renewable energy.
The Green Energy Park, part of the Mohammed VI Polytechnic
University, plays a crucial role in research and development
related to solar energy technologies, including the testing and
deployment of PV systems (Oufadel et al., 2022). This city has
become a focal point for Morocco’s efforts to develop a
sustainable energy sector and a center for innovation in solar
energy, contributing to the national goal of increasing the share
of renewable energy to 52% by 2030 (Moroccan Ministry of
Energy, 2019).

Ben Guerir's flat terrain and expansive open spaces make it an
ideal location for large-scale PV projects. However, as in the
broader Marrakesh-Safi region, challenges remain in accurately
detecting and mapping photovoltaic installations from satellite
imagery. The combination of urban and rural landscapes, along
with varying spatial resolutions in available satellite data,
complicates the accurate identification of PV systems. (Faouzi et
al., 2023) addressed these challenges using high-resolution
satellite imagery and advanced deep-learning models, comparing
different photovoltaic systems across multiple Moroccan sites.
Their research demonstrates the use of advanced tools like
PVsyst to enhance accuracy in detecting and assessing PV
installations.

3.2. Solar Irradiance Patterns in the Study Region
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Figure 2. Solar Irradiance Map (GHI)

The Solar Irradiance Map (GHI) illustrates the distribution of
solar energy across a 41.404 km? region using Global Horizontal
Irradiance (GHI) data sourced from the Global Solar Atlas.
Derived from long-term averages spanning 1994 to 2018, the
map highlights the total solar radiation received on a horizontal
surface, expressed in kWh/m?/year. GHI values in the region
range from 769.95 to 2789.41 kWh/m?/year, indicating
significant spatial variation influenced by factors such as
geography, altitude, and atmospheric conditions. This variation
is critical for identifying zones with high solar potential. The
primary objective of the map is to support the planning and
implementation of renewable energy projects, especially solar-
powered irrigation systems, by providing a visual representation
of solar energy availability. As such, it serves as a key decision-
making tool for policymakers, engineers, and agricultural
planners aiming to promote sustainable and efficient solar energy
utilization in the region.

The Marrakech-Safi region was chosen as the study area due to
its high solar energy potential, geographic diversity, and national
relevance in Morocco’s renewable energy strategy. These
characteristics make it an ideal environment for testing and
optimizing advanced photovoltaic detection techniques using
high-resolution satellite imagery, GIS, and deep learning models
such as DeepLabv3+ and Transformer-based architectures.

4. Methodology
In this workflow, we present a methodology for the semantic
segmentation of photovoltaic (PV) panels from satellite images
using advanced deep-learning models.
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4.1. Data preparation
The data preparation phase starts with downloading high-
resolution satellite imagery from Google Earth using QGIS, with
a resolution set to 0.5 meters per pixel. These large images are
then divided into smaller patches to make them more manageable

for further processing. The image format is converted from TIFF,
commonly used in geographic data, to JPEG, a compressed
format more compatible with many machine learning workflows.
After conversion, the images undergo annotation using a tool like
Roboflow, where specific objects of interest (such as solar
panels) are labeled. These labeled datasets are then exported in
the COCO format, which includes both the images and their
corresponding annotation files in JSON format, making them
suitable for supervised learning tasks. Following this, labels are
converted into segmentation masks using pycocotools, enabling
the model to understand where objects are located in the image.
Finally, the dataset is uploaded to the Hugging Face platform for
model training and validation.

4.2. Preprocessing

Once the dataset is uploaded, the preprocessing phase begins with
importing the data from Hugging Face. The dataset is split
randomly into training, validation, and test sets to ensure proper
model training and evaluation. The next step involves loading
model configurations and pre-trained weights, leveraging
transfer learning to reduce training time and improve
performance by starting from a model already trained on a similar
task. Hyperparameters such as learning rate, batch size, and
number of epochs are defined, alongside the logging
configuration to track the training progress. To enhance the
robustness of the model, data augmentation techniques, such as
rotating and flipping the images, are applied, increasing the
variety of training examples. Dataloaders are also configured to
efficiently feed the data into the model during the training
process.

4.3. Training &Validation
The training and validation phase leverages three advanced

model architectures: Mask2Former, DeepLabV3+, and
SegFormer.
4.3.1. Mask2Former:
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Figure 4. Tllustration of Mask2Former Architecture

Firstly, we introduce the Masked-attention Mask Transformer
(Mask2Former), which serves as the first model for comparison.
The Mask2Former architecture, a variation of the Mask
Transformer, is designed for segmentation tasks such as
identifying solar panels in satellite images. The process begins
with the image being passed through a backbone network, such
as ResNet or a Vision Transformer (ViT), which extracts
hierarchical feature maps at different scales (Dosovitskiy et al.,
2021). These features are then processed through a pixel decoder,
which aggregates multi-scale information to create a feature
pyramid, capturing both small and large object features in the
image (Cheng et al., 2022). The core of the architecture is the
Transformer Decoder, which utilizes self-attention and cross-
attention mechanisms to compute relationships between different
parts of the image and between learned query features. A critical
component of this architecture is masked attention, which
enables the model to focus selectively on relevant image regions

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-431-2026 | © Author(s) 2026. CC BY 4.0 License. 434



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 — 10th International Conference on Geolnformation Advances, 29-30 May 2025, Marrakech, Morocco

by applying masks to ignore irrelevant parts. This mechanism
significantly improves the segmentation process, as it helps to
localize objects more precisely and efficiently by guiding the
model to attend only to the regions containing potential objects
of interest (Cheng et al., 2022). The decoder contains multiple
layers that include normalization, feed-forward networks, and
masked attention, allowing the model to progressively refine
segmentation results. The final output is a set of object masks that
classify pixels into categories such as solar panel and non-solar
panel regions, producing a detailed solar panel mask. Optimized
through a loss function that refines class distinctions, this
architecture excels in handling multi-scale features and using
attention mechanisms to deliver precise segmentation outputs,
particularly for challenging tasks like solar panel identification in
remote sensing imagery.

In this study, we utilized three different backbones Swin Tiny,
Swin Small, and Swin Base within the Mask2Former model to
evaluate their impact on the semantic segmentation of
photovoltaic panels. These Swin Transformer-based backbones
provide varying levels of complexity, with Swin Tiny offering a
lightweight configuration, Swin Small delivering a balance
between performance and efficiency, and Swin Base
incorporating a larger model capacity for enhanced feature
extraction.

4.3.2. DeepLabV3+:
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Figure 5. Illustration of DeepLabv3+ Architecture

Decoder

The second model for comparison used in this study is the
DeeplabV3+, The DeepLabv3+ architecture is a highly effective
model for semantic segmentation that leverages the strengths of
atrous convolutions and an encoder-decoder structure. In the
encoder phase, it uses a deep convolutional neural network
(DCNN) backbone, often Xception, to extract multi-scale
features from the input image. Atrous (dilated) convolutions,
applied at different rates (6, 12, 18), allow the model to capture
contextual information at multiple scales without reducing the
resolution, thus maintaining the spatial precision of the feature
maps (Chen et al., 2018). In addition, global image pooling is
performed to capture the global context of the entire scene,
ensuring that the model has a comprehensive understanding of
larger structures. After aggregating these multi-scale features, a
1x1 convolution is used to fuse them into a compact
representation. The decoder then integrates the fine details from
earlier layers of the network with the high-level semantic features
from the encoder by concatenating them. A 3x3 convolution is
applied to refine the merged features, followed by an upsampling
operation to restore the output to the original resolution. This
combination of multi-scale feature extraction and refinement
allows DeepLabv3+ to generate accurate, high-resolution
segmentation maps with well-defined object boundaries, making
it highly effective for various semantic segmentation tasks (Chen
etal., 2018).

In our experiments with DeepLabV3+, we employed the Se
ResNeXt50 32x4d backbone, a powerful architecture known for

its ability to capture rich feature representations through its use
of group convolutions and channel-wise attention. This backbone
is particularly effective in handling complex image segmentation
tasks due to its enhanced capacity for extracting spatial and
contextual information. By integrating Se ResNeXt50 32x4d
with DeepLabV3+, we leveraged its strengths in segmenting
photovoltaic panels from satellite imagery, ensuring high
accuracy and efficient processing, especially in detecting larger
and well-defined objects.

4.3.3. SegFormer:
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Figure 6. Illustration of SegFormer Architecture

Lastly, we incorporate the SegFormer as the third model used in
this study. The SegFormer architecture is a transformer-based
model designed for semantic segmentation that achieves
efficiency and high performance by simplifying the segmentation
process through a lightweight yet powerful structure. The model
begins by dividing the input image into overlapping patches,
which helps retain important boundary information. These
patches are projected into feature embeddings using
convolutional layers and are passed through several Transformer
Blocks that operate at different resolutions. Each block contains
an Efficient Self-Attention mechanism, which captures long-
range dependencies, and a Mix-Feedforward Network (Mix-
FFN) that combines depth-wise separable convolutions with fully
connected layers to efficiently capture both local and global
features (Xie et al., 2021). As the resolution decreases in each
transformer block, Overlap Patch Merging occurs, preserving
important features while maintaining computational efficiency.
The model’s decoder consists of simple MLP layers that
aggregate and upsample the multi-scale feature maps generated
by the encoder, restoring the spatial resolution of the output to
match the input. This structure enables SegFormer to generate
accurate segmentation masks while avoiding the need for
complex decoder mechanisms seen in other models. By
integrating global and local contexts using transformers and
efficient design principles, SegFormer achieves state-of-the-art
performance in semantic segmentation tasks with minimal
computational overhead, making it ideal for real-time
applications (Xie et al., 2021).

In this study, we employed the SegFormer model with three
different MiT (Mix Transformer) backbones MiT-B0, MiT-Bl1,
and MiT-B2 to assess their performance in the semantic
segmentation of photovoltaic panels. These backbones offer
varying levels of complexity, with MiT-BO being the smallest
and most lightweight, while MiT-B1 and MiT-B2 progressively
increase in model capacity and feature extraction capabilities.
The MiT architecture is designed to efficiently balance
performance and computational cost, making it suitable for a
wide range of segmentation tasks. By testing SegFormer with
these backbones, we aimed to evaluate how different
configurations impact both the accuracy and ability of the model
to generalize across unseen satellite imagery.
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4.4. Testing

After training, the models are tested using a separate test set to
evaluate their performance on unseen data. The models make
predictions based on the test images, and their outputs are
compared to the ground truth labels. Performance metrics (Table
1), such as Accuracy, Precision, Recall, F1 score, and
Intersection over Union (IoU), are used to determine how well
each model performs. Based on these evaluations, the best model
is selected for future use, ensuring that only the highest-
performing model proceeds to the next phase. This testing phase
is crucial as it demonstrates the model's ability to generalize to
new, unseen examples, which is essential for real-world
applications.

Evaluation Metrics
True Positive

True Positive + False Positive
True Pasitive

Aceuracy assessment

Precision

Recall
True Positive + False Negative

2 X True Positive

F1s
seore True Positive + 0.5 x (False Positive + False Negative)

Pixel Overla
Intesection over Union (lol) “Pixel Union P
ixel Union

Table 1. Evaluation of Models Performance Using Various
Metrics

4.4.1 Precision: Precision assesses the model’s ability to make
accurate positive predictions. It quantifies the ratio of true
positive predictions to the total positive predictions made by the
model.

4.4.2 Recall: Recall, also known as sensitivity or true positive
rate, evaluates the model’s capacity to identify all relevant
instances. It calculates the ratio of true positive predictions to the
total actual positive instances in the dataset.

4.4.3 F1-Score: The F1-Score is a balanced metric that considers
both precision and recall. It offers a harmonized measure of the
model’s accuracy in capturing positive instances while
minimizing false positives and false negatives.

4.4.4 Intersection-over-Union (IoU): Notable, IoU holds
particular importance in evaluating the performance of semantic
segmentation models due to its ability to address the class
imbalance issue. IoU quantifies the similarity between the
predicted area and the corresponding ground-truth region for an
object.

4.5. Post-Processing

In the post-processing phase, the best-performing model is used
to generate predictions on entirely new, unseen data. This phase
involves applying the trained model to real-world scenarios
where the model is expected to identify and segment objects of
interest, such as solar panels, from satellite imagery. The results
are visualized by comparing the model's predictions with the
original imagery, showing how well the model generalizes
beyond the test data. This final phase is critical for deploying the
model in real-world applications, ensuring that it can be reliably
used for tasks such as monitoring solar panel installations or other
environmental features in satellite images.

5. Experimental results and discussion
5.1. Comparison of the plots
5.1.1.  Mask2Former:

Figure 7. Comparison of IoU and Precision Metrics Across
Mask2Former Variants over Epochs

5.1.1.1 IoU vs Epoch: The left plot illustrates the Intersection
over Union (IoU) as a function of the number of epochs for three
variations of Mask2Former, using different Swin Transformer
backbones: Swin Base, Swin Small, and Swin Tiny. Initially, all
models exhibit a rapid increase in IoU, particularly during the
first 5 epochs, indicating that the models quickly learn to capture
the relevant features for semantic segmentation. The Swin Base
and Swin Small backbones show a slightly more stable
improvement compared to Swin Tiny, which experiences more
fluctuations, especially between epochs 5 and 15. By epoch 20,
all models stabilize, with Swin Small achieving the highest final
IoU of around 0.88, followed closely by Swin Base at
approximately 0.87. Swin Tiny slightly lags behind but still
performs robustly around 0.86.

5.1.1.2 Precision vs Epoch: The right plot shows the precision
of each Mask2Former variant across 40 epochs. Similar to the
IoU plot, there is a sharp increase in precision within the first 5
epochs, with all models reaching a precision greater than 0.85.
The Swin Base and Swin Small models demonstrate slightly
more stable precision improvements, while Swin Tiny shows
minor instability during the initial epochs but converges after
epoch 10. After epoch 15, all models maintain a high level of
precision, with Swin Small marginally outperforming the other
variants with a final precision of approximately 0.925. Swin Base
and Swin Tiny achieve slightly lower but impressive precision
scores around 0.92.

Overall, the results show that all three variations of Mask2Former
perform well, with Swin Small slightly outperforming the others
in both IoU and precision. The consistent performance after
epoch 20 suggests that the models have fully converged by this
point, with little improvement thereafter.

5.1.2.  SegFormer:

Figure 8. Performance Evaluation of SegFormer Variants using
IoU and Precision Metrics Across Epochs

5.1.2.1 IoU vs Epoch: The left plot illustrates the IoU
(Intersection over Union) as a function of the number of epochs
for three variations of SegFormer using different MiT backbones:
MiT-B0, MiT-B1, and MiT-B2. All three models show a sharp
improvement in IoU during the initial 5 epochs, reaching above
0.80. After this rapid increase, the IoU continues to rise more
gradually, with the models stabilizing around epoch 10. The
MiT-B1 and MiT-B2 backbones perform similarly, converging
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at an IoU of approximately 0.86 by epoch 40, with MiT-B1
showing a slightly higher IoU at times. The MiT-B0 backbone
lags slightly behind, converging at around 0.85. Overall, all
models demonstrate good convergence, with MiT-B1 and MiT-
B2 providing slightly better IoU performance than MiT-B0.

5.1.2.2 Precision vs Epoch: The right plot shows the evolution
of precision across 40 epochs for the three SegFormer variants.
All models exhibit a significant improvement in precision within
the first 5 epochs, quickly exceeding 0.90. Similar to the IoU plot,
the models converge relatively early, around epoch 10, and
maintain high precision throughout the remaining epochs. The
MiT-B1 and MiT-B2 backbones demonstrate slightly better
precision, maintaining values just above 0.91, while MiT-B0
stabilizes at around 0.90. While all models show some minor
fluctuations in precision, especially during the early epochs, they
generally remain highly stable after epoch 10.

The results indicate that all three SegFormer variations achieve
strong and stable performance in both IoU and precision. MiT-
B1 and MiT-B2 exhibit similar behavior, both outperforming
MiT-BO in terms of IoU and precision. The models converge
early, within the first 10 epochs, and maintain high levels of
segmentation accuracy throughout the rest of the training
process, with precision exceeding 0.90 and IoU reaching 0.86 for
the top-performing backbones. These results suggest that
SegFormer with larger backbones (MiT-B1 and MiT-B2)
provides a slight edge in performance for this task.

5.1.3. DeepLabV3+:

1ou vs Epach Precision vz Epech

Figure 9. IoU and Precision Metrics Over Epochs for
DeepLabv3+ Model Performance Evaluation

5.1.3.1 IoU vs Epoch: The left plot shows the evolution of the
Intersection over Union (IoU) score over 35 epochs for the
DeepLabV3+ model. The IoU begins at a relatively low value of
around 0.80, rapidly improving in the first 5 epochs, where it
reaches over 0.90. After this sharp increase, the IoU fluctuates
slightly but continues to improve gradually throughout training,
showing consistent values between 0.91 and 0.93 after epoch 10.
Occasional dips in performance are observed, especially around
epochs 25 and 30, but the model generally maintains high IoU
values. The overall trend is positive, with the model stabilizing
around an IoU of 0.92-0.93 in the later epochs, indicating that
DeepLabV3+ effectively segments photovoltaic panels by the
end of training.

5.1.3.2 Precision vs Epoch: The right plot illustrates the
precision across 40 epochs for DeepLabV3+. Like the IoU curve,
the precision initially starts at around 0.82 and quickly rises to
exceed 0.90 by the 5th epoch. The plot reveals notable variability
in precision between epochs 5 and 15, where it fluctuates
between 0.88 and 0.94. However, after epoch 15, the precision
stabilizes, oscillating between 0.92 and 0.94 with periodic dips.
The fluctuations become less pronounced in the later epochs,
suggesting the model achieves high precision in its predictions
but exhibits some instability across epochs. The final precision
consistently remains in the 0.92-0.94 range, reflecting the

model's strong ability to make accurate positive identifications of
photovoltaic panels in the images.

Overall, DeepLabV3+ demonstrates strong segmentation
capabilities, with both IoU and precision stabilizing at high
values after the initial training period. Despite some variability
during the mid-epochs, the model achieves consistent
performance, with IoU around 0.92-0.93 and precision in the
0.92-0.94 range, indicating reliable segmentation of the target
objects. The occasional dips in both metrics suggest some
sensitivity to specific batches or conditions, but the model
performs well overall by the end of training.

/
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Figure 10: Effect of Threshold Values on IoU and Precision for
DeepLabv3+ Model
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5.1.3.3 Threshold vs IoU: The left plot depicts the relationship
between the threshold value and Intersection over Union (IoU) for
the DeepLabV3+ model. The IoU generally increases as the
threshold is raised from 0.1 to 0.5. The model reaches its peak IoU
value of approximately 0.889 when the threshold is around 0.6. After
this point, the loU starts to decrease, showing a downward trend as
the threshold continues to increase up to 0.9. This indicates that, for
this model, setting the threshold too high can negatively impact its
performance, as the model becomes more conservative in its
predictions, leading to a decrease in IoU. The optimal threshold for
maximizing loU appears to be around 0.6, suggesting a balance
between identifying true positives and avoiding false positives.

5.1.3.4 Threshold vs Precision: The right plot shows the precision
as a function of the threshold for DeepLabV3+. As expected, the
precision increases consistently with higher thresholds, ranging from
about 0.922 at a threshold of 0.1 to 0.937 at a threshold of 0.9. This
trend indicates that as the threshold increases, the model becomes
more confident in its positive predictions, reducing the number of
false positives and, consequently, improving precision. However,
this increase in precision may come at the cost of recall, as higher
thresholds generally lead to fewer positive predictions overall,
potentially missing some true positives.

These plots highlight the trade-off between IoU and precision with
varying thresholds. While precision improves as the threshold
increases, the IoU follows a more complex pattern, peaking at around
a threshold of 0.6 before declining. This suggests that a threshold in
the range of 0.5 — 0.6 provides a good balance between precision and
IoU, ensuring strong segmentation performance while maintaining
high confidence in the model’s predictions.

5.14. Comparison of All Models:
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Figure 11. Comparative Analysis of loU and Precision Metrics
Across Epochs for Various Segmentation Models

5.1.4.1 IoU vs Epoch: The left plot shows the evolution of IoU
(Intersection over Union) for all models (Mask2Former,
SegFormer, and DeepLabV3+) across 40 epochs. DeepLabV3+
stands out, achieving the highest IoU values consistently,
peaking at approximately 0.93 and exhibiting strong stability
throughout the training. This model consistently outperforms the
others after epoch 10, with noticeable fluctuations but a
consistently higher [oU. Among the Mask2Former variants, Swin
Small shows the best performance, reaching an IoU of around
0.88 by the end of the training, while Swin Base and Swin Tiny
slightly lag behind with values around 0.87 and 0.86 respectively.
For the SegFormer variants, MiT-B1 and MiT-B2 achieve similar
performance, converging at an IoU of approximately 0.86, while
MiT-BO falls slightly behind at 0.85. Overall, DeepLabV3+
demonstrates superior IloU performance, followed by
Mask2Former with the Swin Small backbone, with SegFormer
and Mask2Former's smaller backbones trailing slightly.

5.1.4.2 Precision vs Epoch: The right plot illustrates the
precision across 40 epochs for all models. Again, DeepLabV3+
achieves the highest precision, consistently hovering around 0.94
after epoch 10, indicating that this model is highly accurate in its
predictions with few false positives. The Swin Small variant of
Mask2Former also performs well, reaching precision values of
approximately 0.93, closely followed by Swin Tiny and Swin
Base variants, both achieving precision values around 0.92.
SegFormer, with its MiT-B1 and MiT-B2 backbones, stabilizes
around 0.91, while MiT-B0 reaches precision of approximately
0.90. Precision fluctuations are present in all models during the
early epochs, but they stabilize around epoch 10, with
DeepLabV3+ maintaining the highest precision across the
training process.

DeepLabV3+ clearly stands out in terms of both IoU and
precision, outperforming the other models by a significant
margin. It achieves the best balance between high accuracy and
robust segmentation performance, with values consistently above
0.92 for both metrics. Mask2Former, particularly with the Swin
Small backbone, delivers the second-best performance,
achieving competitive precision and IoU scores, while Swin Base
and Swin Tiny show slightly lower but still robust results.
SegFormer, although slightly behind Mask2Former, still offers
strong performance, with MiT-B1 and MiT-B2 delivering similar
results, slightly outperforming MiT-B0. The comparison shows a
clear trade-off between the models, with DeepLabV3+ excelling
in overall performance, while Mask2Former and SegFormer
offer viable alternatives depending on the desired balance
between computational cost and accuracy.

5.2. Comparative models
The following models were trained with 4 batches:

Samples/Second

Model Backbone ToU Precision Recall F1 score (GPU)
Swin Tiny 0.87 0.92 0.95 0.93 11
Mask2Former Swin Small 0.88 0.92 0.95 0.936 9
Swin Base 0.87 0.91 0.94 0.92 8
Mit-B0O 0.85 0.89 0.94 0.92 11
SegFormer Mit-B1 0.86 0.92 0.93 0.92 8
Mit-B2 0.86 0.90 0.95 0.93 5
DeeplabV3+ Se ResNext50 0.89 0.93 0.92 0.92 28

32x4d

Table 2. Performance Metrics and Processing Speed of
Segmentation Models with Various Backbones

The table 2 presents the performance of the three deep learning
models Mask2Former, SegFormer, and DeepLabV3+ on the
semantic segmentation task for photovoltaic panels, evaluated
using Intersection over Union (IoU), Precision, Recall, F1-score,
and processing speed (samples per second on GPU).
Mask2Former, utilizing various Swin Transformer backbones,
achieved competitive results, with the best performance observed
with the Swin small backbone, attaining an IoU of 0.88, a recall
of 0.95, and an F1 score of 0.936. The Swin Tiny variant also
performed well, with an IoU of 0.87 and an F1 score of 0.93,
demonstrating the model’s capacity to generalize across different
backbones. Notably, while the Swin small backbone excelled in
recall, the processing speed slightly decreased as backbone
complexity increased, ranging from 11 samples/second (Swin
Tiny) to 8 samples/second (Swin base).

SegFormer, evaluated with the MiT-B0, MiT-B1, and MiT-B2
backbones, showed slightly lower IoU and F1 scores compared
to Mask2Former. The highest IoU achieved was 0.86 with both
MiT-B1 and MiT-B2, while the F1 score remained consistently
at 0.92 to 0.93 across all backbones. However, SegFormer’s
performance on GPU throughput was notably slower,
particularly for the larger MiT-B2 backbone, with a throughput
of only 5 samples/second.

DeepLabV3+, using the Se resnext50 32x4d backbone, delivered
the highest IoU of 0.89 and also achieved strong precision (0.93),
but it had a slightly lower recall (0.92) and F1 score (0.92)
compared to Mask2Former's best configuration. Despite this,
DeepLabV3+ was significantly faster in processing, handling 28
samples/second, making it a more efficient model in terms of
computational cost, particularly in real-time or large-scale
applications.

Overall, while Mask2Former with the Swin small backbone
delivered the best F1 score, DeepLabV3+ proved superior in
computational efficiency. These results suggest a trade-off
between segmentation performance and processing speed
depending on the model and backbone configuration.

5.3. Visual results

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-431-2026 | © Author(s) 2026. CC BY 4.0 License. 438



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 — 10th International Conference on Geolnformation Advances, 29-30 May 2025, Marrakech, Morocco

L
RENAN
REEAN

4 e
s | 3 H
e | >

Figure 12. Comparative Visualization of Solar Panel
Segmentation Using Mask2Former, DeepLabv3+, and
SegFormer Models

The visual results display predictions from Mask2Former,
DeepLabV3+, and SegFormer, compared to the ground truth for
unseen data. Each model successfully detects solar panels in
various settings. In simpler cases, such as the first row with a
single solar panel and the fifth row with a large, well-defined
panel in an agricultural field, all models accurately match the
ground truth with minimal variation. However, in more complex
scenarios, such as the third row with smaller solar panels near
buildings, and the fourth row with scattered panels in a residential
area, there are slight differences in performance. Mask2Former
tends to provide more precise segmentation, particularly with
smaller objects and complex environments. DeepLabV3+
generally performs well but sometimes exhibits slight under-
segmentation or less accurate boundary detection for smaller
objects. SegFormer offers robust results but occasionally misses
finer details or shows slight under-segmentation in more
challenging cases. Overall, all three models demonstrate strong
performance, with Mask2Former excelling in precision and
handling of smaller, complex objects, while DeepLabV3+ and
SegFormer provide reliable results, particularly for larger, well-
defined solar panels.

6. Discussion

The results presented in this study underscore the effectiveness
of integrating GIS with deep learning—particularly transformer-
based architectures—for enhancing the detection and semantic
segmentation of photovoltaic (PV) systems from high-resolution
satellite imagery. The comparative evaluation of three advanced
segmentation models—Mask2Former, DeepLabV3+, and
SegFormer—revealed notable trade-offs between segmentation
performance and computational efficiency, which are critical
considerations for real-world applications in regions such as the
Marrakesh-Safi area.

Among the tested models, DeepLabV3+ demonstrated superior
overall performance in terms of Intersection over Union (IoU)
and precision, achieving values of 0.89 and 0.93 respectively. It
also stood out as the most computationally efficient, with a
processing speed of 28 samples per second, making it particularly
suitable for large-scale or time-sensitive PV mapping
applications. However, its recall (0.92) was slightly lower
compared to Mask2Former, suggesting that while DeepLabV3+

is precise, it may occasionally miss smaller or more obscured PV
instances.

Conversely, Mask2Former, especially with the Swin Small
backbone, achieved the highest recall (0.95) and F1 score
(0.936), indicating its strength in accurately detecting a broader
range of PV system variations, including small-scale and
irregularly shaped installations. This aligns with visual
inspection results, where Mask2Former exhibited finer
segmentation boundaries and better performance in cluttered or
complex scenes such as residential rooftops or mixed urban-rural
areas. The architecture’s use of masked attention mechanisms
and multi-scale feature decoding appears particularly
advantageous in handling the inherent variability in PV
appearance across satellite images. However, this accuracy
comes at a computational cost, as processing speed was lower
compared to DeepLabV3+, particularly for the more complex
Swin Base backbone (8 samples/sec).

SegFormer offered a balanced performance, with precision and
IoU values consistently above 0.90 and 0.86 respectively. The
MiT-B1 and MiT-B2 variants performed comparably, suggesting
diminishing returns beyond a certain backbone size. Although it
lagged slightly behind Mask2Former in handling finer details,
SegFormer remains a strong candidate for deployment where
computational resources are limited, or where real-time inference
is less critical.

Importantly, the study demonstrates that model selection should
be context-driven. For example, DeepLabV3+ may be ideal for
rapid mapping over large areas with well-defined installations
(e.g., solar farms), while Mask2Former is better suited to detailed
surveys in heterogeneous environments (e.g., urban
neighborhoods or agricultural zones). In the context of the
Marrakesh-Safi region, with its combination of high solar
potential, urban-rural diversity, and data quality constraints, this
adaptability is crucial.

Another key observation lies in the effect of thresholding
strategies on model performance. As shown with DeepLabV3+,
varying the threshold impacted the balance between IoU and
precision, with an optimal trade-off found around 0.6. This
highlights the importance of post-training calibration for
maximizing real-world utility.

This work also emphasizes the importance of GIS integration, not
only as a supporting tool for site selection but as a strategic
component of the modeling pipeline. By embedding geospatial
context into the data preprocessing and analysis stages, GIS
enables more targeted deployment of deep learning models and
enhances their relevance for policy-making and infrastructure
planning.

Finally, while the results are promising, several challenges
remain. The models’ performance may vary when exposed to
different satellite sources, seasonal conditions, or geographic
contexts. Moreover, despite robust performance on the
Marrakesh-Safi dataset, generalizability to other regions with
different architectural styles or lower-quality data remains to be
fully validated. Future work should consider domain adaptation
strategies, multimodal data fusion (e.g., thermal imagery,
LiDAR), and active learning to reduce annotation costs and
improve scalability.

7. Conclusion
In this study, we explored the use of advanced deep learning
models Mask2Former, DeepLabV3+, and SegFormer for the
semantic segmentation of photovoltaic (PV) panels from satellite
imagery. The results demonstrated that all three models are
highly capable of accurately detecting solar panels, with
Mask2Former excelling in more complex environments and
smaller object detection, while DeepLabV3+ and SegFormer
provided strong performance, particularly with larger and well-
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defined panels. Through a combination of IoU and precision
analysis, as well as visual inspection, we concluded that the
models are robust enough to generalize well on unseen data,
making them suitable for practical applications in solar energy
analysis.

Looking forward, the next step for this research is to scale the
methodology and apply it to satellite imagery across all of
Morocco. By leveraging these segmentation models, we can
accurately identify existing photovoltaic installations and
calculate the potential solar energy generation for the country.
This study can contribute significantly to solar energy mapping,
allowing for the identification of high-potential areas for new
solar projects. Moreover, this work can serve as a foundation for
aiding future photovoltaic installation projects, enabling efficient
planning and deployment of solar infrastructure based on data-
driven insights. By integrating this analysis into broader
renewable energy initiatives, we can support Morocco's
transition toward sustainable energy solutions and contribute to
global efforts in addressing energy challenges.
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