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Abstract 

 

Solar energy has become a major contributor to global renewable energy strategies, offering a sustainable alternative to fossil fuels. 

Photovoltaic (PV) systems, which convert sunlight into electricity, play a central role in this transition. As the demand for large-scale 

solar energy projects grows, Geographic Information Systems (GIS) and advanced deep learning models have become critical for 

accurately detecting and mapping PV installations, particularly from satellite imagery. However, challenges remain, especially in 

regions with suboptimal satellite data quality. This study focuses on the Marrakesh-Safi region of Morocco, where the potential for 

solar energy is high but hindered by limitations in available satellite imagery. We employ advanced transformer-based models, 

including Mask2Former, SegFormer, and DeepLabV3+, to enhance the semantic segmentation of PV systems from high-resolution 

satellite images. By integrating GIS with these deep learning models, we aim to improve the accuracy and scalability of PV detection, 

even in complex and diverse geographical settings. Our methodology involves training and testing these models on annotated satellite 

imagery, with performance evaluated using key metrics such as Intersection over Union (IoU), precision, recall, and F1 score. 

Mask2Former achieved notable results with a recall of 0.95 and an F1 score of 0.936, excelling in the detection of smaller and more 

complex PV layouts. DeepLabV3+ demonstrated strong overall performance, with an IoU of 0.89 and precision of 0.93, while also 

being the most computationally efficient model, processing 28 samples per second. This research highlights the effectiveness of 

integrating GIS with deep learning, particularly transformer-based architectures, for the accurate detection and mapping of PV systems. 

The results contribute to the broader efforts in renewable energy optimization, supporting more efficient solar energy deployment, 

especially in regions like Morocco where data quality poses significant challenges. 

 

 

1. Introduction 

The transition to renewable energy sources is now more urgent 

than ever, driven by the need to reduce carbon emissions and 

combat the environmental impacts of fossil fuels (Kleebauer et 

al., 2023). Renewable energy, particularly solar, has become a 

leading solution due to advancements in photovoltaic technology 

and its ability to harness abundant solar resources. Accurate 

segmentation and detection of photovoltaic systems from aerial 

and satellite imagery are critical for optimizing solar energy 

deployment and planning (García et al., 2024). Photovoltaic 

systems, which directly convert sunlight into electricity, have 

emerged as pivotal components in global strategies to accelerate 

the adoption of clean energy technologies (Kleebauer et al., 

2023). 

Geographic Information Systems (GIS) and deep learning have 

become crucial tools in optimizing green energy systems. GIS 

provides essential spatial data for identifying optimal sites for 

solar panel installation by analyzing environmental factors like 

land use, topography, and solar irradiance (Verso et al., 2015). 

Deep learning enhances this process by automating the detection 

and classification of land areas suitable for solar energy through 

advanced image recognition, thus improving the precision and 

scalability of site assessments (Zhu et al., 2023). Together, GIS 

and deep learning form a powerful synergy that accelerates the 

integration of solar energy, reducing time and cost for large-scale 

PV deployment across different regions. 

In Morocco, the high potential for solar energy is often hindered 

by significant challenges related to the quality and resolution of 

satellite imagery available for photovoltaic (PV) detection. 

Despite its vast solar irradiance, making it an ideal candidate for 

large-scale solar energy projects, the limitations of the available 

satellite imagery create difficulties in accurately identifying and 

segmenting PV installations. This issue is particularly 

pronounced for smaller systems or those that are integrated into 

complex urban and rural landscapes, where shadows, building 

structures, and vegetation can obscure solar panels, leading to 

misclassification or omission of PV systems (Zefri et al., 2018). 

Moreover, the country's reliance on older, low-resolution satellite 

data complicates large-scale PV mapping efforts, as this imagery 

lacks the necessary detail to distinguish between PV panels and 

other reflective surfaces, such as metal rooftops or light-colored 

terrain. 

These challenges can, however, be addressed through the 

application of advanced GIS and deep learning techniques, which 

are capable of extracting more accurate and detailed information 

from satellite images, even with varying spatial resolutions. GIS 

offers a robust platform for integrating various data layers, such 

as elevation, land use, and solar irradiance, which are critical for 

optimizing the siting of PV systems. When combined with deep 

learning, particularly convolutional neural networks (CNNs) and 

transformers, these systems can significantly enhance image 

interpretation by automatically detecting and classifying objects 

within satellite imagery. Deep learning models trained on large 

datasets can learn to differentiate between solar panels and other 

objects, even under challenging conditions (J. Wang et al., 2022). 
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Specifically, semantic segmentation techniques, which assign a 

class label to each pixel in an image, are particularly effective in 

compensating for the low quality of input data. By using these 

techniques, researchers can create detailed maps that highlight 

the presence of PV systems across wide geographical areas, even 

when the original satellite data is of low resolution. Furthermore, 

advanced methods such as multi-scale image analysis can 

enhance the resolution of certain regions in the imagery, 

providing more accurate and reliable information for PV 

detection. These technologies not only improve the precision of 

solar panel identification but also support more efficient and 

strategic deployment of solar energy infrastructure in Morocco, 

where the potential for solar energy remains largely untapped due 

to current technical limitations (Verso et al., 2015). 

Recent advances in deep learning, particularly in computer 

vision, have further enhanced the accuracy of PV detection from 

satellite imagery. Traditionally, convolutional neural networks 

(CNNs) were used for tasks like segmentation, but they are 

limited by their inability to capture long-range dependencies and 

global context effectively (Dosovitskiy et al., 2021). 

Transformer-based models have proven to be more effective than 

traditional models by using attention mechanisms to capture 

global context across entire images. This makes transformers 

particularly suitable for complex tasks like photovoltaic (PV) 

panel segmentation, where subtle differences between solar 

panels and surrounding surfaces must be accurately detected. The 

attention mechanism allows these models to focus on relevant 

parts of the image, significantly enhancing segmentation 

precision and overall performance (Cheng et al., 2022; 

Dosovitskiy et al., 2021). 

Among the most promising transformer-based models are 

Mask2Former, Segformer, and DeepLabv3+, which have shown 

superior performance in semantic segmentation tasks. 

Mask2Former excels in its ability to generalize across various 

segmentation tasks, while Segformer combines the strengths of 

transformers with high accuracy in dense prediction tasks (Cheng 

et al., 2022; Xie et al., 2021). DeepLabv3+, although originally 

based on CNNs, has incorporated attention mechanisms to 

improve its segmentation capabilities (Chen et al., 2018). By 

upgrading from CNNs to transformer-based models, our research 

aims to improve the accuracy and robustness of PV detection 

from satellite images, addressing the inherent challenges of low-

quality imagery in regions like Morocco. 

So, integrating GIS, deep learning, and transformer-based 

models offers a robust framework for improving the 

identification and mapping of photovoltaic systems from satellite 

images, even in regions where data quality is suboptimal (Verso 

et al., 2015; J. Wang et al., 2022). This study pushes the 

boundaries of current methodologies by leveraging advanced 

transformer architectures to enhance semantic segmentation for 

PV panel detection, contributing to the broader field of green 

energy optimization (Cheng et al., 2022; Dosovitskiy et al., 2021; 

Xie et al., 2021). By addressing the challenges of low-resolution 

satellite imagery, especially in regions like Morocco, this 

approach improves the accuracy and scalability of PV detection, 

paving the way for more efficient and sustainable solar energy 

deployment worldwide (Zefri et al., 2018). 

2. Related works 

The detection and mapping of photovoltaic (PV) systems using 

satellite imagery has garnered significant attention in recent 

years, particularly with the rise of high-resolution satellite data 

and advanced deep-learning techniques. In this section, we 

review the key studies and methodologies that have influenced 

the field, focusing on Geographic Information Systems (GIS), 

deep learning, semantic segmentation, and the role of 

convolutional neural networks (CNNs) and transformer-based 

models in solar panel detection. 

 

2.1. GIS and Remote Sensing for Renewable Energy 

Geographic Information Systems (GIS) and remote sensing have 

long played a central role in the planning and deployment of 

renewable energy systems. Researchers such as (Sørensen, 2001) 

demonstrated the use of GIS for optimizing the siting of solar 

panels by integrating spatial data on solar irradiance, land use, 

and environmental constraints. By providing detailed spatial 

data, GIS allows for efficient solar energy planning, especially in 

large-scale projects where geographic factors heavily influence 

energy potential. Moreover, (Gassar & Cha, 2021) expanded on 

the integration of GIS with remote sensing for regional 

assessments of solar potential, indicating that combining spatial 

data with machine learning could further improve decision-

making processes. 

 

2.2. Deep Learning in PV Detection 

Deep learning has become an essential tool for automating the 

detection and classification of photovoltaic systems from satellite 

imagery. Convolutional neural networks (CNNs) have been 

widely used for object detection tasks due to their powerful 

feature extraction capabilities. For instance, (Ioannou & 

Myronidis, 2021) applied CNNs to automatically detect solar 

panels from satellite images, demonstrating high levels of 

accuracy. Similarly, (Vlaminck et al., 2022) used CNN-based 

models to analyze satellite images and segment regions 

containing PV systems. These early studies showed the 

effectiveness of CNNs in handling high-resolution images and in 

classifying various land cover types, including PV installations. 

 

2.3. Semantic Segmentation for Photovoltaic Systems 

Semantic segmentation techniques have further advanced the 

precision of PV detection, allowing for pixel-level classification 

of satellite imagery. One of the most widely used models in this 

domain is DeepLabv3+, which has been applied to a range of 

remote sensing tasks, including solar panel detection. (Chen et 

al., 2018) introduced DeepLabv3+, enhancing the feature 

extraction process through atrous convolution, which captures 

fine-grained details essential for segmenting objects like solar 

panels. The ability of DeepLabv3+ to detect small and dispersed 

solar panels in complex landscapes has been confirmed by 

studies such as (Costa et al., 2021), which demonstrated its 

effectiveness in various urban and rural settings. Moreover, by 

incorporating multi-scale image analysis, DeepLabv3+ can 

handle high-resolution satellite images, enabling more accurate 

mapping of PV installations. 

 

2.4. Transformer-Based Models in Remote Sensing 

While CNNs have traditionally dominated image segmentation 

tasks, transformer-based models have recently emerged as 

powerful alternatives due to their ability to capture long-range 

dependencies and global context. (Dosovitskiy et al., 2021) 

introduced Vision Transformers (ViTs), which apply self-

attention mechanisms across the entire image, significantly 

improving the accuracy of segmentation tasks compared to 

CNNs. In the context of PV detection, transformers allow models 

to focus on specific features of solar panels across various spatial 
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resolutions, making them highly effective for large-scale satellite 

image analysis. 

Several transformer-based architectures, such as Mask2Former 

and Segformer, have been proposed for semantic segmentation. 

(Cheng et al., 2022) introduced Mask2Former, which generalizes 

across various segmentation tasks, offering high flexibility and 

performance. Meanwhile, (Xie et al., 2021) presented Segformer, 

a hybrid model that combines the simplicity of transformers with 

the robustness of dense prediction tasks, making it well-suited for 

complex satellite imagery analysis. These models provide state-

of-the-art performance in solar panel detection, particularly when 

dealing with high-resolution images where subtle differences 

between solar panels and other reflective surfaces need to be 

captured. 

 

2.5. Hybrid Approaches Combining CNNs and 

Transformers 

Recent research has explored hybrid approaches that integrate 

both CNNs and transformers to take advantage of the strengths 

of both architectures. For instance, (Ziyabari et al., 2022) They 

proposed a hybrid method for solar irradiance forecasting, 

leveraging CNNs for local feature extraction and transformers to 

capture long-term dependencies, which can be adapted for solar 

panel detection tasks. (Liang et al., 2023) developed a hybrid 

CNN-transformer model for remote sensing, where CNNs handle 

feature extraction and transformers capture the global context, 

improving segmentation performance in complex urban 

environments. Similarly, (L. Wang et al., 2021) demonstrated 

that combining CNNs and transformers helps improve the 

segmentation of urban scenes with varying resolutions, an 

approach applicable to satellite imagery used for PV detection. 

Hybrid models like these are increasingly being employed to 

manage varying spatial scales in satellite images, enhancing the 

accuracy of photovoltaic panel detection in diverse and 

challenging environments. 

 

 

2.6. Photovoltaic Detection in the Moroccan Context 

In the specific context of Morocco, studies have highlighted the 

unique challenges associated with using satellite imagery for PV 

detection. (Zefri et al., 2018) emphasized the need for high-

resolution UAV-based thermal and visual data to overcome the 

limitations of traditional satellite imagery. This method provides 

more accurate inspections, especially in environments like 

Morocco, where older satellite data may lack the resolution 

necessary to detect smaller, distributed solar panels. The 

integration of UAV technology, Geographic Information 

Systems (GIS), and advanced image processing techniques, such 

as deep learning models including CNNs and transformers, has 

been identified as a promising solution for overcoming these 

challenges. These approaches enable more detailed and precise 

mapping and detection of PV installations, particularly in regions 

with suboptimal data quality, further improving the accuracy of 

photovoltaic detection. 

 

3. Study Area: Marrakesh-Safi Region 

3.1. General Characteristics of the Region 

 
Figure 1. Study area. Marrakesh-Safi Region 

 

The Marrakesh-Safi region, situated in central Morocco, is 

renowned for its high solar irradiance, making it an ideal area for 

solar energy projects. Spanning approximately 41.404 km² 

(Étude Sur Le Tissu Entrepreneurial Région de Marrakech-Safi, 

2024), the region is diverse, featuring plains, coastal areas, and 

mountainous terrains that present both opportunities and 

challenges for photovoltaic (PV) deployment (HCP, 2014). Its 

semi-arid climate, with solar radiation levels between 5 and 6 

kWh/m² per day, offers an optimal environment for year-round 

solar energy generation (Ouchani et al., 2021). Key urban centers 

such as Marrakesh are surrounded by a mixture of rural and urban 

landscapes, providing varied sites for both large-scale solar farms 

and distributed PV systems. However, the region's topographical 

diversity, particularly in the High Atlas Mountains, complicates 

PV deployment due to infrastructure limitations and challenging 

terrain (Ouchani et al., 2021). 

Within this region, the city of Ben Guerir stands out as a 

significant player in Morocco's solar energy landscape. Located 

roughly 70 km north of Marrakesh, Ben Guerir is home to the 

Mohammed VI Green City and the Green Energy Park, one of 

Morocco’s most advanced research centers for renewable energy. 

The Green Energy Park, part of the Mohammed VI Polytechnic 

University, plays a crucial role in research and development 

related to solar energy technologies, including the testing and 

deployment of PV systems (Oufadel et al., 2022). This city has 

become a focal point for Morocco’s efforts to develop a 

sustainable energy sector and a center for innovation in solar 

energy, contributing to the national goal of increasing the share 

of renewable energy to 52% by 2030 (Moroccan Ministry of 

Energy, 2019). 

Ben Guerir's flat terrain and expansive open spaces make it an 

ideal location for large-scale PV projects. However, as in the 

broader Marrakesh-Safi region, challenges remain in accurately 

detecting and mapping photovoltaic installations from satellite 

imagery. The combination of urban and rural landscapes, along 

with varying spatial resolutions in available satellite data, 

complicates the accurate identification of PV systems. (Faouzi et 

al., 2023) addressed these challenges using high-resolution 

satellite imagery and advanced deep-learning models, comparing 

different photovoltaic systems across multiple Moroccan sites. 

Their research demonstrates the use of advanced tools like 

PVsyst to enhance accuracy in detecting and assessing PV 

installations. 

 

3.2. Solar Irradiance Patterns in the Study Region 
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Figure 2. Solar Irradiance Map (GHI) 

 

The Solar Irradiance Map (GHI) illustrates the distribution of 

solar energy across a 41.404 km² region using Global Horizontal 

Irradiance (GHI) data sourced from the Global Solar Atlas. 

Derived from long-term averages spanning 1994 to 2018, the 

map highlights the total solar radiation received on a horizontal 

surface, expressed in kWh/m²/year. GHI values in the region 

range from 769.95 to 2789.41 kWh/m²/year, indicating 

significant spatial variation influenced by factors such as 

geography, altitude, and atmospheric conditions. This variation 

is critical for identifying zones with high solar potential. The 

primary objective of the map is to support the planning and 

implementation of renewable energy projects, especially solar-

powered irrigation systems, by providing a visual representation 

of solar energy availability. As such, it serves as a key decision-

making tool for policymakers, engineers, and agricultural 

planners aiming to promote sustainable and efficient solar energy 

utilization in the region. 

The Marrakech-Safi region was chosen as the study area due to 

its high solar energy potential, geographic diversity, and national 

relevance in Morocco’s renewable energy strategy. These 

characteristics make it an ideal environment for testing and 

optimizing advanced photovoltaic detection techniques using 

high-resolution satellite imagery, GIS, and deep learning models 

such as DeepLabv3+ and Transformer-based architectures. 
 

 

4. Methodology 

In this workflow, we present a methodology for the semantic 

segmentation of photovoltaic (PV) panels from satellite images 

using advanced deep-learning models. 

 

 
Figure 3. General framework for the segmentation of 

photovoltaic panels 

 

4.1. Data preparation 

The data preparation phase starts with downloading high-

resolution satellite imagery from Google Earth using QGIS, with 

a resolution set to 0.5 meters per pixel. These large images are 

then divided into smaller patches to make them more manageable 

for further processing. The image format is converted from TIFF, 

commonly used in geographic data, to JPEG, a compressed 

format more compatible with many machine learning workflows. 

After conversion, the images undergo annotation using a tool like 

Roboflow, where specific objects of interest (such as solar 

panels) are labeled. These labeled datasets are then exported in 

the COCO format, which includes both the images and their 

corresponding annotation files in JSON format, making them 

suitable for supervised learning tasks. Following this, labels are 

converted into segmentation masks using pycocotools, enabling 

the model to understand where objects are located in the image. 

Finally, the dataset is uploaded to the Hugging Face platform for 

model training and validation. 

 

4.2. Preprocessing 

Once the dataset is uploaded, the preprocessing phase begins with 

importing the data from Hugging Face. The dataset is split 

randomly into training, validation, and test sets to ensure proper 

model training and evaluation. The next step involves loading 

model configurations and pre-trained weights, leveraging 

transfer learning to reduce training time and improve 

performance by starting from a model already trained on a similar 

task. Hyperparameters such as learning rate, batch size, and 

number of epochs are defined, alongside the logging 

configuration to track the training progress. To enhance the 

robustness of the model, data augmentation techniques, such as 

rotating and flipping the images, are applied, increasing the 

variety of training examples. Dataloaders are also configured to 

efficiently feed the data into the model during the training 

process. 

 

4.3. Training &Validation 

The training and validation phase leverages three advanced 

model architectures: Mask2Former, DeepLabV3+, and 

SegFormer. 

 

4.3.1. Mask2Former: 

 
Figure 4. Illustration of Mask2Former Architecture 

 

Firstly, we introduce the Masked-attention Mask Transformer 

(Mask2Former), which serves as the first model for comparison. 

The Mask2Former architecture, a variation of the Mask 

Transformer, is designed for segmentation tasks such as 

identifying solar panels in satellite images. The process begins 

with the image being passed through a backbone network, such 

as ResNet or a Vision Transformer (ViT), which extracts 

hierarchical feature maps at different scales (Dosovitskiy et al., 

2021). These features are then processed through a pixel decoder, 

which aggregates multi-scale information to create a feature 

pyramid, capturing both small and large object features in the 

image (Cheng et al., 2022). The core of the architecture is the 

Transformer Decoder, which utilizes self-attention and cross-

attention mechanisms to compute relationships between different 

parts of the image and between learned query features. A critical 

component of this architecture is masked attention, which 

enables the model to focus selectively on relevant image regions 
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by applying masks to ignore irrelevant parts. This mechanism 

significantly improves the segmentation process, as it helps to 

localize objects more precisely and efficiently by guiding the 

model to attend only to the regions containing potential objects 

of interest (Cheng et al., 2022). The decoder contains multiple 

layers that include normalization, feed-forward networks, and 

masked attention, allowing the model to progressively refine 

segmentation results. The final output is a set of object masks that 

classify pixels into categories such as solar panel and non-solar 

panel regions, producing a detailed solar panel mask. Optimized 

through a loss function that refines class distinctions, this 

architecture excels in handling multi-scale features and using 

attention mechanisms to deliver precise segmentation outputs, 

particularly for challenging tasks like solar panel identification in 

remote sensing imagery. 

In this study, we utilized three different backbones Swin Tiny, 

Swin Small, and Swin Base within the Mask2Former model to 

evaluate their impact on the semantic segmentation of 

photovoltaic panels. These Swin Transformer-based backbones 

provide varying levels of complexity, with Swin Tiny offering a 

lightweight configuration, Swin Small delivering a balance 

between performance and efficiency, and Swin Base 

incorporating a larger model capacity for enhanced feature 

extraction. 

 

4.3.2. DeepLabV3+: 

 

 
Figure 5. Illustration of DeepLabv3+ Architecture 

 

The second model for comparison used in this study is the 

DeeplabV3+, The DeepLabv3+ architecture is a highly effective 

model for semantic segmentation that leverages the strengths of 

atrous convolutions and an encoder-decoder structure. In the 

encoder phase, it uses a deep convolutional neural network 

(DCNN) backbone, often Xception, to extract multi-scale 

features from the input image. Atrous (dilated) convolutions, 

applied at different rates (6, 12, 18), allow the model to capture 

contextual information at multiple scales without reducing the 

resolution, thus maintaining the spatial precision of the feature 

maps (Chen et al., 2018). In addition, global image pooling is 

performed to capture the global context of the entire scene, 

ensuring that the model has a comprehensive understanding of 

larger structures. After aggregating these multi-scale features, a 

1x1 convolution is used to fuse them into a compact 

representation. The decoder then integrates the fine details from 

earlier layers of the network with the high-level semantic features 

from the encoder by concatenating them. A 3x3 convolution is 

applied to refine the merged features, followed by an upsampling 

operation to restore the output to the original resolution. This 

combination of multi-scale feature extraction and refinement 

allows DeepLabv3+ to generate accurate, high-resolution 

segmentation maps with well-defined object boundaries, making 

it highly effective for various semantic segmentation tasks (Chen 

et al., 2018). 

In our experiments with DeepLabV3+, we employed the Se 

ResNeXt50 32x4d backbone, a powerful architecture known for 

its ability to capture rich feature representations through its use 

of group convolutions and channel-wise attention. This backbone 

is particularly effective in handling complex image segmentation 

tasks due to its enhanced capacity for extracting spatial and 

contextual information. By integrating Se ResNeXt50 32x4d 

with DeepLabV3+, we leveraged its strengths in segmenting 

photovoltaic panels from satellite imagery, ensuring high 

accuracy and efficient processing, especially in detecting larger 

and well-defined objects. 

 

4.3.3. SegFormer:  

 

 
Figure 6. Illustration of SegFormer Architecture 

 

Lastly, we incorporate the SegFormer as the third model used in 

this study. The SegFormer architecture is a transformer-based 

model designed for semantic segmentation that achieves 

efficiency and high performance by simplifying the segmentation 

process through a lightweight yet powerful structure. The model 

begins by dividing the input image into overlapping patches, 

which helps retain important boundary information. These 

patches are projected into feature embeddings using 

convolutional layers and are passed through several Transformer 

Blocks that operate at different resolutions. Each block contains 

an Efficient Self-Attention mechanism, which captures long-

range dependencies, and a Mix-Feedforward Network (Mix-

FFN) that combines depth-wise separable convolutions with fully 

connected layers to efficiently capture both local and global 

features (Xie et al., 2021). As the resolution decreases in each 

transformer block, Overlap Patch Merging occurs, preserving 

important features while maintaining computational efficiency. 

The model’s decoder consists of simple MLP layers that 

aggregate and upsample the multi-scale feature maps generated 

by the encoder, restoring the spatial resolution of the output to 

match the input. This structure enables SegFormer to generate 

accurate segmentation masks while avoiding the need for 

complex decoder mechanisms seen in other models. By 

integrating global and local contexts using transformers and 

efficient design principles, SegFormer achieves state-of-the-art 

performance in semantic segmentation tasks with minimal 

computational overhead, making it ideal for real-time 

applications (Xie et al., 2021). 

In this study, we employed the SegFormer model with three 

different MiT (Mix Transformer) backbones MiT-B0, MiT-B1, 

and MiT-B2 to assess their performance in the semantic 

segmentation of photovoltaic panels. These backbones offer 

varying levels of complexity, with MiT-B0 being the smallest 

and most lightweight, while MiT-B1 and MiT-B2 progressively 

increase in model capacity and feature extraction capabilities. 

The MiT architecture is designed to efficiently balance 

performance and computational cost, making it suitable for a 

wide range of segmentation tasks. By testing SegFormer with 

these backbones, we aimed to evaluate how different 

configurations impact both the accuracy and ability of the model 

to generalize across unseen satellite imagery. 
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4.4. Testing 

After training, the models are tested using a separate test set to 

evaluate their performance on unseen data. The models make 

predictions based on the test images, and their outputs are 

compared to the ground truth labels. Performance metrics (Table 

1), such as Accuracy, Precision, Recall, F1 score, and 

Intersection over Union (IoU), are used to determine how well 

each model performs. Based on these evaluations, the best model 

is selected for future use, ensuring that only the highest-

performing model proceeds to the next phase. This testing phase 

is crucial as it demonstrates the model's ability to generalize to 

new, unseen examples, which is essential for real-world 

applications. 

 

 
Table 1. Evaluation of Models Performance Using Various 

Metrics 

 

4.4.1 Precision: Precision assesses the model’s ability to make 

accurate positive predictions. It quantifies the ratio of true 

positive predictions to the total positive predictions made by the 

model. 

4.4.2 Recall: Recall, also known as sensitivity or true positive 

rate, evaluates the model’s capacity to identify all relevant 

instances. It calculates the ratio of true positive predictions to the 

total actual positive instances in the dataset. 

4.4.3 F1-Score: The F1-Score is a balanced metric that considers 

both precision and recall. It offers a harmonized measure of the 

model’s accuracy in capturing positive instances while 

minimizing false positives and false negatives. 

4.4.4 Intersection-over-Union (IoU): Notable, IoU holds 

particular importance in evaluating the performance of semantic 

segmentation models due to its ability to address the class 

imbalance issue. IoU quantifies the similarity between the 

predicted area and the corresponding ground-truth region for an 

object. 

4.5. Post-Processing 

In the post-processing phase, the best-performing model is used 

to generate predictions on entirely new, unseen data. This phase 

involves applying the trained model to real-world scenarios 

where the model is expected to identify and segment objects of 

interest, such as solar panels, from satellite imagery. The results 

are visualized by comparing the model's predictions with the 

original imagery, showing how well the model generalizes 

beyond the test data. This final phase is critical for deploying the 

model in real-world applications, ensuring that it can be reliably 

used for tasks such as monitoring solar panel installations or other 

environmental features in satellite images. 

 

 

5. Experimental results and discussion 

5.1. Comparison of the plots 

5.1.1. Mask2Former: 

 

 
Figure 7. Comparison of IoU and Precision Metrics Across 

Mask2Former Variants over Epochs 

 

5.1.1.1 IoU vs Epoch: The left plot illustrates the Intersection 

over Union (IoU) as a function of the number of epochs for three 

variations of Mask2Former, using different Swin Transformer 

backbones: Swin Base, Swin Small, and Swin Tiny. Initially, all 

models exhibit a rapid increase in IoU, particularly during the 

first 5 epochs, indicating that the models quickly learn to capture 

the relevant features for semantic segmentation. The Swin Base 

and Swin Small backbones show a slightly more stable 

improvement compared to Swin Tiny, which experiences more 

fluctuations, especially between epochs 5 and 15. By epoch 20, 

all models stabilize, with Swin Small achieving the highest final 

IoU of around 0.88, followed closely by Swin Base at 

approximately 0.87. Swin Tiny slightly lags behind but still 

performs robustly around 0.86. 

 

5.1.1.2 Precision vs Epoch: The right plot shows the precision 

of each Mask2Former variant across 40 epochs. Similar to the 

IoU plot, there is a sharp increase in precision within the first 5 

epochs, with all models reaching a precision greater than 0.85. 

The Swin Base and Swin Small models demonstrate slightly 

more stable precision improvements, while Swin Tiny shows 

minor instability during the initial epochs but converges after 

epoch 10. After epoch 15, all models maintain a high level of 

precision, with Swin Small marginally outperforming the other 

variants with a final precision of approximately 0.925. Swin Base 

and Swin Tiny achieve slightly lower but impressive precision 

scores around 0.92. 

Overall, the results show that all three variations of Mask2Former 

perform well, with Swin Small slightly outperforming the others 

in both IoU and precision. The consistent performance after 

epoch 20 suggests that the models have fully converged by this 

point, with little improvement thereafter. 

 

 

5.1.2. SegFormer: 

 

 
Figure 8. Performance Evaluation of SegFormer Variants using 

IoU and Precision Metrics Across Epochs 

 

5.1.2.1 IoU vs Epoch: The left plot illustrates the IoU 

(Intersection over Union) as a function of the number of epochs 

for three variations of SegFormer using different MiT backbones: 

MiT-B0, MiT-B1, and MiT-B2. All three models show a sharp 

improvement in IoU during the initial 5 epochs, reaching above 

0.80. After this rapid increase, the IoU continues to rise more 

gradually, with the models stabilizing around epoch 10. The 

MiT-B1 and MiT-B2 backbones perform similarly, converging 
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at an IoU of approximately 0.86 by epoch 40, with MiT-B1 

showing a slightly higher IoU at times. The MiT-B0 backbone 

lags slightly behind, converging at around 0.85. Overall, all 

models demonstrate good convergence, with MiT-B1 and MiT-

B2 providing slightly better IoU performance than MiT-B0. 

 

5.1.2.2 Precision vs Epoch: The right plot shows the evolution 

of precision across 40 epochs for the three SegFormer variants. 

All models exhibit a significant improvement in precision within 

the first 5 epochs, quickly exceeding 0.90. Similar to the IoU plot, 

the models converge relatively early, around epoch 10, and 

maintain high precision throughout the remaining epochs. The 

MiT-B1 and MiT-B2 backbones demonstrate slightly better 

precision, maintaining values just above 0.91, while MiT-B0 

stabilizes at around 0.90. While all models show some minor 

fluctuations in precision, especially during the early epochs, they 

generally remain highly stable after epoch 10. 

The results indicate that all three SegFormer variations achieve 

strong and stable performance in both IoU and precision. MiT-

B1 and MiT-B2 exhibit similar behavior, both outperforming 

MiT-B0 in terms of IoU and precision. The models converge 

early, within the first 10 epochs, and maintain high levels of 

segmentation accuracy throughout the rest of the training 

process, with precision exceeding 0.90 and IoU reaching 0.86 for 

the top-performing backbones. These results suggest that 

SegFormer with larger backbones (MiT-B1 and MiT-B2) 

provides a slight edge in performance for this task. 

 

5.1.3. DeepLabV3+: 

 

Figure 9. IoU and Precision Metrics Over Epochs for 

DeepLabv3+ Model Performance Evaluation 

 

5.1.3.1 IoU vs Epoch: The left plot shows the evolution of the 

Intersection over Union (IoU) score over 35 epochs for the 

DeepLabV3+ model. The IoU begins at a relatively low value of 

around 0.80, rapidly improving in the first 5 epochs, where it 

reaches over 0.90. After this sharp increase, the IoU fluctuates 

slightly but continues to improve gradually throughout training, 

showing consistent values between 0.91 and 0.93 after epoch 10. 

Occasional dips in performance are observed, especially around 

epochs 25 and 30, but the model generally maintains high IoU 

values. The overall trend is positive, with the model stabilizing 

around an IoU of 0.92–0.93 in the later epochs, indicating that 

DeepLabV3+ effectively segments photovoltaic panels by the 

end of training. 

 

5.1.3.2 Precision vs Epoch: The right plot illustrates the 

precision across 40 epochs for DeepLabV3+. Like the IoU curve, 

the precision initially starts at around 0.82 and quickly rises to 

exceed 0.90 by the 5th epoch. The plot reveals notable variability 

in precision between epochs 5 and 15, where it fluctuates 

between 0.88 and 0.94. However, after epoch 15, the precision 

stabilizes, oscillating between 0.92 and 0.94 with periodic dips. 

The fluctuations become less pronounced in the later epochs, 

suggesting the model achieves high precision in its predictions 

but exhibits some instability across epochs. The final precision 

consistently remains in the 0.92–0.94 range, reflecting the 

model's strong ability to make accurate positive identifications of 

photovoltaic panels in the images. 

Overall, DeepLabV3+ demonstrates strong segmentation 

capabilities, with both IoU and precision stabilizing at high 

values after the initial training period. Despite some variability 

during the mid-epochs, the model achieves consistent 

performance, with IoU around 0.92–0.93 and precision in the 

0.92–0.94 range, indicating reliable segmentation of the target 

objects. The occasional dips in both metrics suggest some 

sensitivity to specific batches or conditions, but the model 

performs well overall by the end of training. 

 

 
Figure 10:  Effect of Threshold Values on IoU and Precision for 

DeepLabv3+ Model 

 

5.1.3.3 Threshold vs IoU: The left plot depicts the relationship 

between the threshold value and Intersection over Union (IoU) for 

the DeepLabV3+ model. The IoU generally increases as the 

threshold is raised from 0.1 to 0.5. The model reaches its peak IoU 

value of approximately 0.889 when the threshold is around 0.6. After 

this point, the IoU starts to decrease, showing a downward trend as 

the threshold continues to increase up to 0.9. This indicates that, for 

this model, setting the threshold too high can negatively impact its 

performance, as the model becomes more conservative in its 

predictions, leading to a decrease in IoU. The optimal threshold for 

maximizing IoU appears to be around 0.6, suggesting a balance 

between identifying true positives and avoiding false positives. 

 

5.1.3.4 Threshold vs Precision: The right plot shows the precision 

as a function of the threshold for DeepLabV3+. As expected, the 

precision increases consistently with higher thresholds, ranging from 

about 0.922 at a threshold of 0.1 to 0.937 at a threshold of 0.9. This 

trend indicates that as the threshold increases, the model becomes 

more confident in its positive predictions, reducing the number of 

false positives and, consequently, improving precision. However, 

this increase in precision may come at the cost of recall, as higher 

thresholds generally lead to fewer positive predictions overall, 

potentially missing some true positives. 

These plots highlight the trade-off between IoU and precision with 

varying thresholds. While precision improves as the threshold 

increases, the IoU follows a more complex pattern, peaking at around 

a threshold of 0.6 before declining. This suggests that a threshold in 

the range of 0.5 – 0.6 provides a good balance between precision and 

IoU, ensuring strong segmentation performance while maintaining 

high confidence in the model’s predictions. 

 

 

5.1.4. Comparison of All Models: 
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Figure 11. Comparative Analysis of IoU and Precision Metrics 

Across Epochs for Various Segmentation Models 

 

5.1.4.1 IoU vs Epoch: The left plot shows the evolution of IoU 

(Intersection over Union) for all models (Mask2Former, 

SegFormer, and DeepLabV3+) across 40 epochs. DeepLabV3+ 

stands out, achieving the highest IoU values consistently, 

peaking at approximately 0.93 and exhibiting strong stability 

throughout the training. This model consistently outperforms the 

others after epoch 10, with noticeable fluctuations but a 

consistently higher IoU. Among the Mask2Former variants, Swin 

Small shows the best performance, reaching an IoU of around 

0.88 by the end of the training, while Swin Base and Swin Tiny 

slightly lag behind with values around 0.87 and 0.86 respectively. 

For the SegFormer variants, MiT-B1 and MiT-B2 achieve similar 

performance, converging at an IoU of approximately 0.86, while 

MiT-B0 falls slightly behind at 0.85. Overall, DeepLabV3+ 

demonstrates superior IoU performance, followed by 

Mask2Former with the Swin Small backbone, with SegFormer 

and Mask2Former's smaller backbones trailing slightly. 

 

 

5.1.4.2 Precision vs Epoch: The right plot illustrates the 

precision across 40 epochs for all models. Again, DeepLabV3+ 

achieves the highest precision, consistently hovering around 0.94 

after epoch 10, indicating that this model is highly accurate in its 

predictions with few false positives. The Swin Small variant of 

Mask2Former also performs well, reaching precision values of 

approximately 0.93, closely followed by Swin Tiny and Swin 

Base variants, both achieving precision values around 0.92. 

SegFormer, with its MiT-B1 and MiT-B2 backbones, stabilizes 

around 0.91, while MiT-B0 reaches precision of approximately 

0.90. Precision fluctuations are present in all models during the 

early epochs, but they stabilize around epoch 10, with 

DeepLabV3+ maintaining the highest precision across the 

training process. 

DeepLabV3+ clearly stands out in terms of both IoU and 

precision, outperforming the other models by a significant 

margin. It achieves the best balance between high accuracy and 

robust segmentation performance, with values consistently above 

0.92 for both metrics. Mask2Former, particularly with the Swin 

Small backbone, delivers the second-best performance, 

achieving competitive precision and IoU scores, while Swin Base 

and Swin Tiny show slightly lower but still robust results. 

SegFormer, although slightly behind Mask2Former, still offers 

strong performance, with MiT-B1 and MiT-B2 delivering similar 

results, slightly outperforming MiT-B0. The comparison shows a 

clear trade-off between the models, with DeepLabV3+ excelling 

in overall performance, while Mask2Former and SegFormer 

offer viable alternatives depending on the desired balance 

between computational cost and accuracy. 

 

 

5.2. Comparative models 

The following models were trained with 4 batches: 

 

 
Table 2. Performance Metrics and Processing Speed of 

Segmentation Models with Various Backbones 

 

The table 2 presents the performance of the three deep learning 

models Mask2Former, SegFormer, and DeepLabV3+ on the 

semantic segmentation task for photovoltaic panels, evaluated 

using Intersection over Union (IoU), Precision, Recall, F1-score, 

and processing speed (samples per second on GPU). 

Mask2Former, utilizing various Swin Transformer backbones, 

achieved competitive results, with the best performance observed 

with the Swin small backbone, attaining an IoU of 0.88, a recall 

of 0.95, and an F1 score of 0.936. The Swin Tiny variant also 

performed well, with an IoU of 0.87 and an F1 score of 0.93, 

demonstrating the model’s capacity to generalize across different 

backbones. Notably, while the Swin small backbone excelled in 

recall, the processing speed slightly decreased as backbone 

complexity increased, ranging from 11 samples/second (Swin 

Tiny) to 8 samples/second (Swin base). 

SegFormer, evaluated with the MiT-B0, MiT-B1, and MiT-B2 

backbones, showed slightly lower IoU and F1 scores compared 

to Mask2Former. The highest IoU achieved was 0.86 with both 

MiT-B1 and MiT-B2, while the F1 score remained consistently 

at 0.92 to 0.93 across all backbones. However, SegFormer’s 

performance on GPU throughput was notably slower, 

particularly for the larger MiT-B2 backbone, with a throughput 

of only 5 samples/second. 

DeepLabV3+, using the Se resnext50 32x4d backbone, delivered 

the highest IoU of 0.89 and also achieved strong precision (0.93), 

but it had a slightly lower recall (0.92) and F1 score (0.92) 

compared to Mask2Former's best configuration. Despite this, 

DeepLabV3+ was significantly faster in processing, handling 28 

samples/second, making it a more efficient model in terms of 

computational cost, particularly in real-time or large-scale 

applications. 

Overall, while Mask2Former with the Swin small backbone 

delivered the best F1 score, DeepLabV3+ proved superior in 

computational efficiency. These results suggest a trade-off 

between segmentation performance and processing speed 

depending on the model and backbone configuration. 

 

5.3. Visual results 

Model Backbone IoU Precision Recall F1 score 
Samples/Second 

(GPU) 

 

Mask2Former 

Swin Tiny 0.87 0.92 0.95 0.93 11 

Swin Small 0.88 0.92 0.95 0.936 9 

Swin Base 0.87 0.91 0.94 0.92 8 

 

SegFormer 

Mit-B0 0.85 0.89 0.94 0.92 11 

Mit-B1 0.86 0.92 0.93 0.92 8 

Mit-B2 0.86 0.90 0.95 0.93 5 

DeeplabV3+ Se ResNext50 

32x4d 

0.89 0.93 0.92 0.92 28 
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Figure 12. Comparative Visualization of Solar Panel 

Segmentation Using Mask2Former, DeepLabv3+, and 

SegFormer Models 

 

The visual results display predictions from Mask2Former, 

DeepLabV3+, and SegFormer, compared to the ground truth for 

unseen data. Each model successfully detects solar panels in 

various settings. In simpler cases, such as the first row with a 

single solar panel and the fifth row with a large, well-defined 

panel in an agricultural field, all models accurately match the 

ground truth with minimal variation. However, in more complex 

scenarios, such as the third row with smaller solar panels near 

buildings, and the fourth row with scattered panels in a residential 

area, there are slight differences in performance. Mask2Former 

tends to provide more precise segmentation, particularly with 

smaller objects and complex environments. DeepLabV3+ 

generally performs well but sometimes exhibits slight under-

segmentation or less accurate boundary detection for smaller 

objects. SegFormer offers robust results but occasionally misses 

finer details or shows slight under-segmentation in more 

challenging cases. Overall, all three models demonstrate strong 

performance, with Mask2Former excelling in precision and 

handling of smaller, complex objects, while DeepLabV3+ and 

SegFormer provide reliable results, particularly for larger, well-

defined solar panels. 

 

 

6. Discussion 

The results presented in this study underscore the effectiveness 

of integrating GIS with deep learning—particularly transformer-

based architectures—for enhancing the detection and semantic 

segmentation of photovoltaic (PV) systems from high-resolution 

satellite imagery. The comparative evaluation of three advanced 

segmentation models—Mask2Former, DeepLabV3+, and 

SegFormer—revealed notable trade-offs between segmentation 

performance and computational efficiency, which are critical 

considerations for real-world applications in regions such as the 

Marrakesh-Safi area. 

Among the tested models, DeepLabV3+ demonstrated superior 

overall performance in terms of Intersection over Union (IoU) 

and precision, achieving values of 0.89 and 0.93 respectively. It 

also stood out as the most computationally efficient, with a 

processing speed of 28 samples per second, making it particularly 

suitable for large-scale or time-sensitive PV mapping 

applications. However, its recall (0.92) was slightly lower 

compared to Mask2Former, suggesting that while DeepLabV3+ 

is precise, it may occasionally miss smaller or more obscured PV 

instances. 

Conversely, Mask2Former, especially with the Swin Small 

backbone, achieved the highest recall (0.95) and F1 score 

(0.936), indicating its strength in accurately detecting a broader 

range of PV system variations, including small-scale and 

irregularly shaped installations. This aligns with visual 

inspection results, where Mask2Former exhibited finer 

segmentation boundaries and better performance in cluttered or 

complex scenes such as residential rooftops or mixed urban-rural 

areas. The architecture’s use of masked attention mechanisms 

and multi-scale feature decoding appears particularly 

advantageous in handling the inherent variability in PV 

appearance across satellite images. However, this accuracy 

comes at a computational cost, as processing speed was lower 

compared to DeepLabV3+, particularly for the more complex 

Swin Base backbone (8 samples/sec). 

SegFormer offered a balanced performance, with precision and 

IoU values consistently above 0.90 and 0.86 respectively. The 

MiT-B1 and MiT-B2 variants performed comparably, suggesting 

diminishing returns beyond a certain backbone size. Although it 

lagged slightly behind Mask2Former in handling finer details, 

SegFormer remains a strong candidate for deployment where 

computational resources are limited, or where real-time inference 

is less critical. 

Importantly, the study demonstrates that model selection should 

be context-driven. For example, DeepLabV3+ may be ideal for 

rapid mapping over large areas with well-defined installations 

(e.g., solar farms), while Mask2Former is better suited to detailed 

surveys in heterogeneous environments (e.g., urban 

neighborhoods or agricultural zones). In the context of the 

Marrakesh-Safi region, with its combination of high solar 

potential, urban-rural diversity, and data quality constraints, this 

adaptability is crucial. 

Another key observation lies in the effect of thresholding 

strategies on model performance. As shown with DeepLabV3+, 

varying the threshold impacted the balance between IoU and 

precision, with an optimal trade-off found around 0.6. This 

highlights the importance of post-training calibration for 

maximizing real-world utility. 

This work also emphasizes the importance of GIS integration, not 

only as a supporting tool for site selection but as a strategic 

component of the modeling pipeline. By embedding geospatial 

context into the data preprocessing and analysis stages, GIS 

enables more targeted deployment of deep learning models and 

enhances their relevance for policy-making and infrastructure 

planning. 

Finally, while the results are promising, several challenges 

remain. The models’ performance may vary when exposed to 

different satellite sources, seasonal conditions, or geographic 

contexts. Moreover, despite robust performance on the 

Marrakesh-Safi dataset, generalizability to other regions with 

different architectural styles or lower-quality data remains to be 

fully validated. Future work should consider domain adaptation 

strategies, multimodal data fusion (e.g., thermal imagery, 

LiDAR), and active learning to reduce annotation costs and 

improve scalability. 

 

7. Conclusion 

In this study, we explored the use of advanced deep learning 

models Mask2Former, DeepLabV3+, and SegFormer for the 

semantic segmentation of photovoltaic (PV) panels from satellite 

imagery. The results demonstrated that all three models are 

highly capable of accurately detecting solar panels, with 

Mask2Former excelling in more complex environments and 

smaller object detection, while DeepLabV3+ and SegFormer 

provided strong performance, particularly with larger and well-
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defined panels. Through a combination of IoU and precision 

analysis, as well as visual inspection, we concluded that the 

models are robust enough to generalize well on unseen data, 

making them suitable for practical applications in solar energy 

analysis. 

Looking forward, the next step for this research is to scale the 

methodology and apply it to satellite imagery across all of 

Morocco. By leveraging these segmentation models, we can 

accurately identify existing photovoltaic installations and 

calculate the potential solar energy generation for the country. 

This study can contribute significantly to solar energy mapping, 

allowing for the identification of high-potential areas for new 

solar projects. Moreover, this work can serve as a foundation for 

aiding future photovoltaic installation projects, enabling efficient 

planning and deployment of solar infrastructure based on data-

driven insights. By integrating this analysis into broader 

renewable energy initiatives, we can support Morocco's 

transition toward sustainable energy solutions and contribute to 

global efforts in addressing energy challenges. 
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