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Abstract

Morocco’s High Atlas and Anti-Atlas mountains have faced escalating drought severity in recent years, jeopardizing water security
and rural livelihoods. Conventional drought monitoring often underperforms in these regions due to sparse meteorological stations
and rugged terrain. This study develops a hybrid deep learning framework for operational SPI drought prediction at 5 km resol-
ution, synthesizing remote sensing and climate variables (SPI, NDVI, soil moisture, precipitation, temperature) from 1990-2024.
128 engineered features—rolling statistics, seasonality, lag dependencies, and cross-variable interactions—enhance learning. We
benchmark three recurrent neural network types (LSTM, Bi-LSTM, GRU), validated with held-out data (2021-2024). The GRU
model achieved the highest predictive skill, reaching 91.89% accuracy within a +0.2 SPI threshold and outperforming baselines
(Random Forest, ARIMA). Our results demonstrate the value of advanced feature engineering and deep sequence learning for

month-ahead drought early warning in semi-arid North Africa.

1. Introduction

Drought is one of the most pervasive natural hazards affecting
over two billion people globally every decade (Wilhite, 2007
Wilhite (2007); IPCC, 2022 IPCC (2022)). Characterized by
sustained periods of anomalously low precipitation relative to
historical norms, drought causes severe disruptions to ecosys-
tems, agriculture, and water management systems. The fre-
quency, duration, and intensity of droughts are increasing, par-
ticularly in semi-arid and arid regions due to climate variabil-
ity and anthropogenic climate change (Trenberth et al., 2014
Trenberth et al. (2014); Liu et al., 2020 Liu et al. (2020)).

Morocco, located in the northwestern edge of the MENA re-

gion, is particularly vulnerable to hydrometeorological extremes.

The southern part of the country—including the Anti-Atlas
and High Atlas mountain ranges—is exposed to frequent met-
eorological and agricultural droughts. According to the Mo-
roccan National Drought Plan (Morocco Ministry of Agricul-
ture, 2020 of Agriculture (2020)), the country has experienced
more than 15 major drought events since 1980, with direct im-
pacts on cereal yields, food security, and groundwater deple-
tion. The Anti-Atlas region, with annual precipitation often
below 250 mm and evapotranspiration rates above 1200 mm
(Bouras et al., 2020 Bouras et al. (2020)), is ecologically fra-
gile and socioeconomically dependent on rainfed agriculture,
making it particularly sensitive to precipitation anomalies.

Moreover, groundwater levels in certain basins (e.g., Draa Val-
ley) have declined by over 2—4 meters in recent decades due
to prolonged droughts and over-extraction (Bouras et al., 2020
Bouras et al. (2020)). These climate pressures underline the
urgent need for accurate drought forecasting systems tailored
to this region’s unique hydrological and ecological character-
istics.

Recent studies in Morocco have explored drought dynamics

using remote sensing and machine learning approaches (Zel-
lou et al., 2023 Zellou et al. (2023); Hadri et al., 2025 Hadri
et al. (2025)). For example, Zellou et al. (2023 Zellou et al.
(2023)) developed an LSTM-based model combining NDVI
and precipitation data for drought classification in arid provinces.
Hadri et al. (2025 Hadri et al. (2025)) evaluated deep learning
models using SMAP soil moisture and MODIS data in semi-
arid agricultural zones. Elgoumi et al. (2025 Elgoumi et al.
(2025)) demonstrated the value of NDVI anomalies in assess-
ing drought conditions in oasis regions. However, these ef-
forts typically relied on limited feature sets, shorter temporal
windows, or focused solely on classification tasks. Few stud-
ies have implemented extensive temporal feature engineering
or sequential regression models for SPI forecasting over long
time spans and at high spatial resolution, particularly in the
Anti-Atlas and High Atlas regions.

Parallel to advances in Earth observation, deep learning tech-
niques—particularly Recurrent Neural Networks (RNNs) in-
cluding LSTM and GRU—have emerged as powerful tools for
capturing nonlinear and long-term dependencies in multivari-
ate environmental data (Hochreiter and Schmidhuber, 1997
Hochreiter and Schmidhuber (1997); LeCun et al., 2015 LeCun
et al. (2015); Schuster and Paliwal, 1997 Schuster and Pali-
wal (1997)). Hybrid and ensemble approaches incorporating
CNNs and attention mechanisms have shown success in en-
vironmental time series prediction, often outperforming tra-
ditional machine learning and statistical methods (Gupta et
al., 2024 Gupta et al. (2024); Zellou et al., 2023 Zellou et al.
(2023); Li et al., 2024 Li et al. (2024)).

However, relatively few studies have deployed large-scale, multi-
model deep learning frameworks for regional drought predic-
tion in North Africa. Even fewer efforts incorporate extensive
feature engineering strategies such as rolling statistics, sea-
sonal encodings, lag variables, and climate—vegetation inter-
actions tailored to regional dynamics (Jiang et al., 2007 Ji-
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ang et al. (2007); Elmansouri et al., 2019 Elmansouri et al.
(2019)).

To address these gaps, this study presents a comprehensive
hybrid deep learning framework designed to predict SPI-
based drought conditions in Morocco’s Anti-Atlas and High
Atlas regions using remotely sensed and reanalysis inputs
at 5 km resolution over the period 2000-2024.

Key contributions of this work are as follows:

e Region-Specific Targeting: Focus on the Anti-Atlas and
southern High Atlas—two of Morocco’s drought epicen-
ters—characterized by ecological fragility, reliance on
rainfed systems, and limited monitoring infrastructure.

e Extensive Feature Engineering: Construction of over
128 engineered variables integrating multisource features
(NDVI, rainfall, soil moisture, temperature, lagged SPI)
and transformations such as rolling statistics, seasonality
encodings, lags, ratios, volatilities, and differencing.

e Comparison of Multiple Sequence Models: Benchmark-

ing five deep architectures—Attention LSTM, CNN-LSTM,

Super GRU, Super BiLSTM, and Super LSTM—optimized
for long 48-month temporal windows with advanced reg-
ularization.

e Ensemble Learning: Evaluation of weighted and un-
weighted ensemble strategies combining model outputs
to enhance generalization.

o Evaluation With Tolerant Metrics: Use of tolerance-
based accuracy thresholds (0.1 to £0.3) alongside RMSE,
MAE, and R? to provide a robust evaluation scheme for
drought forecasting.

This paper addresses the following research questions:

e Can hybrid sequence deep learning models outperform
baseline predictors in forecasting monthly SPI in data-
sparse, drought-prone regions of Morocco?

e Which environmental indicators contribute most to SPI
prediction?

e What spatial and temporal drought trends emerge from
model predictions, and how can these inform early warn-
ing strategies?

2. Materials and Methods

This section details the study area, data sources, preprocessing
steps, feature creation, model development, and evaluation
framework used for drought prediction.

2.1 Study Area

The High Atlas and Anti-Atlas mountain ranges represent Mo-
rocco’s main hydrological reservoirs, often referred to as its
“water towers.” These regions play a vital role in regulating
streamflow, groundwater recharge, and upstream-downstream
water availability. The High Atlas extends above 4,000 meters
and receives relatively high precipitation (including seasonal
snowfall), contributing significantly to spring and early sum-
mer river discharge.

In contrast, the Anti-Atlas—a semi-arid and arid region in
southern Morocco—is a fragile ecoclimatic zone experiencing
frequent droughts, high temperatures, and erratic rainfall pat-
terns. Spanning approximately 250,000 km?, it receives less
than 200 mm annual rainfall and is typified by rugged terrain
and limited vegetation coverage (Bouras et al., 2020; Elman-
souri et al., 2019). Climatically, it is influenced by Mediter-
ranean, Atlantic, and Saharan conditions, making it one of
Morocco’s most hydroclimatically complex regions (Cherka-
oui et al., 2019). Historical droughts have caused groundwater
table declines of over 2—4 meters and a 40% reduction in river
flow since the 1980s.

In recent decades, climate projections point to over 30% re-
duction in snowpack duration by 2050 in the High Atlas, which
will aggravate downstream water insecurity. This makes the
region an ideal target for drought prediction initiatives, partic-
ularly those utilizing remote sensing and machine learning.
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Figure 1. Study area covering the Anti-Atlas and High Atlas
regions of Morocco.

2.2 Methodology

The drought prediction workflow, illustrated in Figure 2, in-
tegrates data acquisition, preprocessing, feature engineering,
model development, evaluation, and deployment stages. This
pipeline leverages state-of-the-art techniques in drought fore-
casting (Coskun et al., 2023; Li et al., 2024).

2.2.1 Data Acquisition and Preprocessing Multisource
satellite and meteorological data (SPI, NDVI, precipitation,
temperature, soil moisture) were collected from MODIS, SMAP,
CHIRPS, ERAS, and GPCC datasets (Funk et al., 2015; Hers-
bach et al., 2020; Beck et al., 2018; Didan, 2015). The data-
sets were harmonized to a monthly time resolution and a 5 km
spatial grid using Google Earth Engine and GIS techniques.
Missing values were interpolated using linear and smoothing
approaches (Verrelst et al., 2015). All variables were normal-
ized to the range [0, 1] to ensure compatibility with the models
(Bishop, 2006).

2.2.2 Feature Engineering and Selection A total of 128
features were engineered, including rolling statistics (mean,
standard deviation, minimum, maximum), lagged values, sea-
sonality encodings, interaction terms such as NDVI x soil
moisture, and volatility indicators (Adede et al., 2023; Zhang
et al., 2019; Gupta et al., 2024). Priority was given to SPI,
NDVI, precipitation, temperature, and soil moisture due to
their significant role in drought processes.
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2.2.3 Modeling Framework The modeling approach com-
bined two strategies:

1. Random Forest Classification: This model detected drought

events based on engineered features and SPI labels, achiev-
ing an accuracy of 92.9% and an AUC of 0.987. Feature
importance analysis (Figure 3) identified rainfall, tem-
perature, and soil moisture as the most influential pre-
dictors.

2. Deep Sequence Regression: Advanced recurrent mod-

els (Attention LSTM, CNN-LSTM, Super GRU, Bi-LSTM)

predicted SPI values using rolling 48-month input se-
quences. The Super GRU model performed best with
91.89% accuracy within 40.2 SPI units and an R? of
0.94. Ensemble methods further enhanced prediction ro-
bustness.
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Figure 2. Generalized methodology flowchart illustrating the
pipeline: data acquisition, preprocessing, feature engineering,
hybrid modeling, model training/validation, and operational
deployment.

2.2.4 Training and Validation Models were trained us-
ing the Adam optimizer (learning rate 0.001), batch size of
32, and early stopping with a patience of 10 epochs on a 15%
validation split. Hyperparameters were optimized via grid
search. Rolling-origin cross-validation ensured realistic real-
time forecasting simulation and avoided data leakage.

2.2.5 Evaluation Metrics
ured by:

Model performance was meas-

e Root Mean Square Error (RMSE)
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Figure 3. Random Forest variable importance for drought
classification.

e Mean Absolute Error (MAE)
e Coefficient of Determination (R?)
e Pearson correlation coefficient (r)

Tolerance-based accuracy within £0.2 SPI units

2.2.6 Benchmarking and Deployment Traditional mod-
els (ARIMA, Random Forest regressors) served as benchmarks
(Liaw and Wiener, 2002; Liu et al., 2017). The top deep learn-
ing model was containerized for cloud deployment to enable
automated monthly SPI forecasting and drought alerts. The
entire processing pipeline adheres to FAIR principles and pro-
motes open access.

3. Results

This section reports quantitative results and interprets the deep
learning framework’s predictive power for drought forecasting
in southern Morocco.

3.1 Performance Evaluation

The main evaluation metrics for each deep learning model,
calculated on the held-out test set (2021-2024), are summar-
ized in Table 1. Among the compared architectures, Super
GRU achieved the highest accuracy and lowest errors.

Table 1. Test performance of deep learning models
(2021-2024).

Model RMSE MAE R? Accuracy (£0.2)
Super GRU 0.168 0.142 0.94 91.9%
Weighted Ensemble  0.198  0.152  0.92 73.0%
Super BiLSTM 0211  0.164 0.90 70.3%
RF Regressor 0226 0.178 0.89 68.2%
CNN-LSTM 0311 0242 0.79 45.9%

The best Super GRU model forecasted SPI with 91.9% of
test cases within £0.2 tolerance, supporting operational early

warning needs.

3.2 Temporal Prediction Analysis

Figure 5 presents the SPI time series predicted by Super GRU
versus observed values (2021-2024). The method effectively
captures drought episodes and recovery phases with limited
lag, demonstrating robust temporal learning.
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Figure 4. Model accuracy within +0.2 SPI threshold across

selected architectures.

3.3 Feature Sensitivity

Ablation analysis (Table 2) quantified the impact of removing
variables on SPI prediction. SPI lag features and NDVI were
most influential—removal increased RMSE most, confirming
their critical role for drought modeling.

Table 2. Effect of removing key input variables on RMSE
(Super GRU, test set).

Feature Removed RMSE

None 0.162
NDVI 0.198
SPI lags 0.212
Precipitation 0.192
Soil Moisture 0.183
Temperature 0.188

3.4 Comparison with National Indices

Compared to Morocco’s national SPI and VCI monitoring sys-
tems, the Super GRU model enabled monthly SPI forecasting
at Skm resolution, delivering 30-60 days of lead time and
providing sharper spatial insights. The integration of multiple
predictors further enhanced drought signal detection.

3.5 Summary

The hybrid deep learning approach, centered on Super GRU,
outperformed baseline and ensemble methods. NDVI and SPI
lags were the most influential predictors, confirming their im-
portance for drought forecasting. The system supports de-
ployment for operational drought monitoring in Morocco.
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Figure 5. Observed vs. predicted SPI time series (Super GRU,
2021-2024).

4. Discussion

4.1 Interpretation of Key Results

Hybrid deep sequence models, particularly Super GRU, were
most effective in representing the timing and intensity of drought
episodes. The high test accuracy supports their operational
value, consistent with recent advances in recurrent drought
prediction (Gupta et al., 2024; Li et al., 2024).

Spatial analysis showed greater precision across vegetated areas,
while lower accuracy in arid zones (Anti-Atlas) highlights the
impact of input data quality and landscape variability, echoing
findings in semi-arid region studies (Jiang et al., 2007).

4.2 Policy and Practice Implications

Monthly SPI forecasts can be integrated into Morocco’s drought
response plans, providing actionable lead times for water man-
agement agencies and stakeholders. The approach is extens-
ible to similar arid regions globally.

5. Conclusions

This study introduces an advanced hybrid deep learning frame-
work for proactive drought forecasting in Morocco’s Anti-
Atlas region, leveraging Bidirectional Long Short-Term Memory
(Bi-LSTM) and LSTM architectures. By integrating 24 years

of multi-source remote sensing and meteorological data—including

the Standardized Precipitation Index (SPI), NDVI, soil mois-
ture, precipitation, and temperature—the model effectively cap-
tures nonlinear, time-dependent drought dynamics across semi-
arid landscapes.

Our approach significantly enhances early drought warning
capabilities, presenting an accurate, scalable solution that sup-
ports data-driven water management and climate resilience
planning across vulnerable regions in arid North Africa.
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