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Abstract 

 

Wildfires are among the most devastating natural hazards, increasingly intensified by climate change and anthropogenic pressures. 

Accurate susceptibility mapping is essential for disaster preparedness, risk mitigation, and sustainable land management. This study 

investigates the performance of five boosting-based machine learning algorithms—Gradient Boosting Machine (GBM), Adaptive 

Boosting (AdaBoost), Light Gradient Boosting Machine (LightGBM), Categorical Boosting (CatBoost), and Extreme Gradient 

Boosting (XGBoost)—in wildfire susceptibility assessment. Thirteen conditioning factors representing topographic, vegetational, 

climatic, and anthropogenic drivers were integrated into the models after preprocessing and multicollinearity checks. 

The results show that XGBoost, CatBoost, and LightGBM significantly outperformed GBM and AdaBoost, with XGBoost achieving 

the highest predictive accuracy (94.5%), AUC (0.939), and Kappa index (0.890). Feature importance analysis revealed that land cover, 

NDVI and temperature were the most significant factors, followed by slope, wind speed and proximity to human settlements. The 

susceptibility maps produced by the best-performing models provided spatially consistent and interpretable patterns, successfully 

delineating high-risk areas. 

This research confirms the effectiveness of advanced ensemble learning techniques, particularly XGBoost, in improving the accuracy 

and interpretability of wildfire susceptibility mapping. The findings provide actionable insights for forest management, land-use 

planning, and the development of early warning systems, contributing to more resilient strategies against escalating wildfire threats in 

a changing climate. 

 

1. Introduction 

Wildfires represent one of the most destructive natural hazards, 

with profound ecological, economic, and social impacts. Their 

frequency and severity have been increasing in recent years due 

to climate change, land-use pressures, and anthropogenic 

activities. These dynamics underline the urgent need for accurate 

wildfire susceptibility assessment to support disaster 

preparedness, risk mitigation, and sustainable land management. 

 

Conventional approaches to wildfire risk analysis—based largely 

on field surveys and statistical methods—often suffer from 

limited spatial resolution and predictive power. With the 

advancement of geospatial technologies and machine learning, it 

has become possible to integrate diverse datasets such as 

topography, vegetation, climate, and human activities into more 

robust predictive frameworks. Nevertheless, challenges remain 

regarding the optimal selection of variables, model accuracy, and 

practical applicability in real-world decision-making. 

 

This study proposes a systematic framework for wildfire 

susceptibility mapping by employing geospatial datasets and 

machine learning algorithms. The primary objectives are to 

identify key environmental and anthropogenic drivers of wildfire 

occurrence, develop predictive models with high reliability, and 

produce high-resolution susceptibility maps. The outcomes are 

expected to provide actionable insights for policymakers and 

emergency management authorities in prioritizing monitoring 

efforts and implementing effective prevention strategies. 

2. Related Work 

Wildfire susceptibility mapping has garnered increased attention 

with the integration of machine learning algorithms, particularly 

boosting methods such as XGBoost, AdaBoost, LightGBM, and 

Gradient Boosting Machine (GBM). These algorithms are 

particularly well-suited for synthesizing diverse datasets 

encompassing topographic, vegetation, climatic, and 

anthropogenic factors, thus enhancing the predictive accuracy of 

wildfire risk assessments. 

 

Yue et al. provide a comprehensive analysis of wildfire 

susceptibility in Guilin, China, employing XGBoost to combine 

multiple data sources and factor inputs. Their study reports an 

area under the curve (AUC) of 0.927, underscoring the model's 

effectiveness when compared to traditional methods. This 

exemplifies the capability of boosting algorithms to manage 

complex variables and interactions that influence wildfire 

occurrence(Yue et al., 2023). 

 

He et al. extend this discussion by highlighting ensemble 

methods that include boosting techniques like GBM and 

AdaBoost. Their research assesses wildfire susceptibility in 

Southeast Asia and emphasizes the improved performance of 

boosting algorithms in modeling wildfire risks compared to 

traditional approaches(He, Jiang, Wang, & Liu, 2021). 

 

Additionally, Masoudvaziri et al. demonstrate that XGBoost 

outperformed other machine learning models in identifying key 

factors related to wildfire size, integrating geophysical and 

anthropogenic features. This research indicates that well-
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parameterized machine learning models can improve risk 

assessment by considering both topographic and socio-economic 

influences(Masoudvaziri, Ganguly, Mukherjee, Sun, & 

Assessment, 2022). 

 

Kouassi et al. examine the impact of accessibility to urban 

markets and other anthropogenic factors on wildfire occurrence 

in Côte d'Ivoire. Their work identifies a significant correlation 

between these factors and wildfire frequency, showcasing the 

importance of integrating human variables alongside 

environmental data in susceptibility modeling(Kouassi, Wandan, 

& Mbow, 2022). 

 

Moreover, Yang et al. employ Maxent and GIS for wildfire risk 

assessment in Hunan Province, China, integrating multiple 

environmental variables to create a risk zoning model. Their 

findings highlight the successful combination of machine 

learning algorithms with geographic information systems (GIS) 

to enhance understanding and forecasting of wildfire risks across 

varied landscapes(Yang, Jin, & Zhou, 2021). 

 

Research by Ghorbanzadeh et al. emphasizes the role of AI and 

machine learning in spatial prediction of wildfire susceptibility. 

They advocate for methodologies that leverage field survey data 

to inform predictive models, reiterating the promise of 

incorporating decision trees and ensemble methods inherent in 

boosting algorithms to refine predictions(Ghorbanzadeh et al., 

2019). 

 

In summary, boosting algorithms such as XGBoost and 

AdaBoost play a crucial role in wildfire susceptibility mapping 

by effectively integrating topographic, vegetation, climatic, and 

anthropogenic factors. Studies showcasing their success 

underscore the essential role of data integration and advanced 

modeling techniques in developing robust wildfire risk 

predictions. 

 

3. Methodology 

3.1 Data Collection and Preprocessing 

To construct a comprehensive wildfire susceptibility model, 

thirteen conditioning factors were selected based on their 

relevance in previous wildfire susceptibility and hazard studies. 

These variables were grouped into four categories: topographic, 

vegetation, climatic, and anthropogenic factors. 

 

All variables were standardized to a 30 m spatial resolution and 

normalized using min–max scaling to ensure comparability. The 

Variance Inflation Factor (VIF) was applied to detect and 

eliminate multicollinearity among predictors before model 

training. 

 

3.1.1 Topographic Factors: Elevation, higher altitudes 

influence microclimatic conditions and vegetation type, which 

directly affect fire occurrence(Chuvieco, Giglio, & Justice, 

2008). Slope, steeper slopes accelerate fire spread by preheating 

upslope fuels(Jaiswal, Mukherjee, Raju, Saxena, & 

geoinformation, 2002). Aspect, South-facing slopes (in the 

Northern Hemisphere) receive more solar radiation, resulting in 

drier fuels(Vigna, Besana, Comino, & Pezzoli, 2021). 

 

3.1.2 Vegetatin Factors: Land Use/Land Cover (LULC), 

different land cover classes (forest, agricultural land, grassland) 

exhibit varying levels of fire susceptibility(Oliveira, Pereira, San-

Miguel-Ayanz, & Lourenço, 2014). Normalized Difference 

Vegetation Index (NDVI): NDVI indicates vegetation density 

and health; lower NDVI values often correspond to higher fire 

risk due to fuel scarcity or degradation(Chuvieco & Congalton, 

1989). Fuel Type / Fuel Load, the type and amount of 

combustible material are critical determinants of fire ignition and 

spread(Chuvieco & Kasischke, 2007). 

 

3.1.3 Climatic Factors: Precipitation, reduced rainfall lowers 

soil and vegetation moisture, increasing fire 

susceptibility(Flannigan, Stocks, Turetsky, & Wotton, 2009). 

Temperature, higher mean annual temperatures are strongly 

correlated with reduced fuel moisture and increased fire 

activity(Moriondo et al., 2006). Relative Humidity, lower 

humidity accelerates fuel drying and promotes 

ignition(Rovithakis et al., 2022). 

 

3.1.4 Anthropogenic Factors: Distance to Roads, most 

human-induced ignitions occur near road networks(Martínez, 

Vega-Garcia, & Chuvieco, 2009). Distance to Settlements, 

proximity to populated areas increases fire frequency due to 

human activities(Catry, Rego, Bação, & Moreira, 2009). 

Distance to Rivers/Water Bodies, river proximity influences 

vegetation density and fuel moisture, indirectly affecting fire 

risk(Trucchia et al., 2023). Population Density / Human Pressure, 

human presence and land-use intensity increase ignition 

likelihood, particularly in rural–urban interface zones(Syphard et 

al., 2007). 

 

3.2 Machine Learning Algorithms 

In this study, five widely used ensemble learning algorithms 

based on the boosting approach were implemented to model 

wildfire susceptibility: Gradient Boosting Machine (GBM), 

Extreme Gradient Boosting (XGBoost), Light Gradient Boosting 

Machine (LightGBM), Categorical Boosting (CatBoost), and 

Adaptive Boosting (AdaBoost). 

 

3.2.1 Gradient Boosting Machine (GBM): GBM constructs 

predictive models by sequentially training decision trees, where 

each subsequent tree attempts to correct the errors of the previous 

one. This greedy stage-wise optimization minimizes prediction 

residuals and improves performance(Friedman, 2001).  

3.2.2 Extreme Gradient Boosting (XGBoost): XGBoost 

extends GBM by incorporating regularization techniques (L1 and 

L2), which reduce overfitting, and by enabling parallel and 

distributed computing. Its efficiency and scalability have made it 

a benchmark algorithm in machine learning competitions(Chen 

& Guestrin, 2016). 

 

3.2.3 Light Gradient Boosting Machine (LightGBM): 

LightGBM, developed by Microsoft, employs histogram-based 

learning and a leaf-wise growth strategy, which significantly 

reduces computational cost. It is particularly efficient for large-

scale, high-dimensional datasets while maintaining high 

predictive accuracy (Ke et al., 2017). 

 

3.2.4 Categorical Boosting (CatBoost): CatBoost, 

introduced by Yandex, is designed to handle categorical variables 

effectively without the need for extensive preprocessing such as 

one-hot encoding. Its symmetric tree structure provides stable 

and fast training, making it advantageous for heterogeneous 

datasets (Dorogush, Ershov, & Gulin, 2018). 
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3.2.5 Adaptive Boosting (AdaBoost): AdaBoost is one of the 

earliest boosting algorithms, which assigns higher weights to 

misclassified instances at each iteration, thereby focusing the 

model on harder-to-classify samples. It has proven effective in 

binary classification and remains a strong baseline for ensemble 

methods(Freund, Schapire, & sciences, 1997). 

 

4. Results and Discussion 

4.1 Performance Comparison 

The predictive performance of five boosting-based machine 

learning algorithms was evaluated using three performance 

indicators: Overall Accuracy, Area Under the Curve (AUC), and 

Kappa Index on both training and testing datasets (Table 1). 

 

Metric/ 

Model 

XGBoost CatBoost Light 

GBM 

GBM Ada 

Boost 

ACC 

(Train) 

99.5 99.4 99.8 89.2 82.1 

ACC 

(Test) 

94.5 94.5 94.2 89.1 81.0 

AUC 

(Train) 

0.999 0.999 0.999 0.915 0.830 

AUC 

(Test) 

0.939 0.939 0.937 0.889 0.775 

Kappa 

(Train) 

0.990 0.988 0.997 0.784 0.642 

Kappa 

(Test) 

0.890 0.890 0.885 0.782 0.620 

Table 1: Performance comparison of applied machine learning 

models 

 

The results clearly demonstrate that XGBoost, CatBoost, and 

LightGBM outperformed the other models across all evaluation 

metrics. In particular, XGBoost achieved the highest 

generalization ability with a testing accuracy of 94.5%, AUC of 

0.939, and Kappa index of 0.890. LightGBM achieved the 

highest training accuracy (99.8%), but showed slightly lower 

performance on the testing set, indicating a mild tendency toward 

overfitting. CatBoost exhibited a performance profile very 

similar to XGBoost, confirming its robustness in handling 

categorical and heterogeneous data. The Receiver Operating 

Characteristic (ROC) curves provided an additional performance 

comparison among the models (Figure 1). 

 
Figure 1: ROC curve comparison of XGBoost, CatBoost, 

LightGBM, GBM, and AdaBoost models 

 

 

On the other hand, GBM and AdaBoost exhibited lower 

predictive capabilities, with test accuracies of 89.1% and 81.0% 

respectively, and significantly lower Kappa indices. These results 

confirm that newer boosting algorithms (XGBoost, LightGBM, 

CatBoost) offer substantial improvements in stability, 

generalization, and handling complex non-linear interactions 

compared to earlier ensemble methods. 

 

4.2 Feature Importance Analysis 

Feature importance derived from the XGBoost model indicated 

that land cover, NDVI, and temperature were the most influential 

variables in wildfire susceptibility prediction (Figure 2). 

Specifically, land cover emerged as the dominant factor, 

accounting for more than 25% of the model’s predictive power. 

Climatic factors such as temperature and wind speed, along with 

vegetation-related indices (NDVI, LST), also played a critical 

role. Topographic features such as slope, aspect, and elevation, 

together with anthropogenic variables (distance to residential 

areas), showed moderate but significant contributions. These 

findings are consistent with previous studies highlighting the 

combined impact of environmental and human-induced factors 

on wildfire occurrence. 

 
Figure 2: Feature importance values of the XGBoost model 

4.3 Susceptibility Mapping 

The spatial distribution of wildfire susceptibility, as predicted by 

the five algorithms, is shown in Figure 3. The maps illustrate that 

XGBoost, CatBoost, and LightGBM provide clearer and more 

spatially consistent susceptibility patterns compared to GBM and 

AdaBoost. In particular, XGBoost produced well-differentiated 

zones with high-risk areas predominantly concentrated in regions 

with dense vegetation cover and proximity to residential and 

water sources. 

 

CatBoost showed nearly identical spatial patterns, while 

LightGBM tended to slightly overestimate susceptibility in 

fragmented land cover areas. In contrast, GBM and AdaBoost 

produced noisier maps with lower discrimination between high 

and low susceptibility zones, reflecting their lower predictive 

performance. 
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Figure 3: Wildfire susceptibility maps generated by XGBoost, 

CatBoost, GBM, AdaBoost, and LightGBM models 

The combination of high predictive performance and spatial 

interpretability confirms that boosting-based machine learning 

approaches are highly effective for wildfire susceptibility 

assessment. Among them, XGBoost stands out as the most 

reliable tool, offering both robust generalization and meaningful 

feature contributions. These results can directly support forest 

management strategies, land-use planning, and early warning 

systems, contributing to the mitigation of wildfire risks in 

vulnerable landscapes. 

 

5. Conclusion 

This study demonstrated the effectiveness of boosting-based 

machine learning algorithms in wildfire susceptibility mapping. 

By incorporating 13 topographic, vegetation, climatic, and 

anthropogenic factors, five ensemble models (GBM, AdaBoost, 

LightGBM, CatBoost, and XGBoost) were trained and evaluated. 

The results clearly revealed that XGBoost, CatBoost, and 

LightGBM outperformed the traditional GBM and AdaBoost 

approaches, with XGBoost emerging as the most reliable 

algorithm, achieving the highest predictive accuracy and robust 

generalization performance. 

 

The feature importance analysis highlighted that land cover, 

NDVI, and temperature were the most influential predictors of 

wildfire susceptibility, supported by secondary contributions 

from wind speed, slope, and anthropogenic proximity factors. 

These findings emphasize the necessity of considering both 

environmental and human-related drivers in wildfire risk 

modeling. 

 

The susceptibility maps generated from the best-performing 

models provided spatially consistent and interpretable patterns, 

identifying high-risk areas that require urgent management 

attention. Such outputs can be directly applied to forest 

management, land-use planning, and the development of early 

warning systems, supporting proactive strategies to mitigate 

wildfire hazards. 

 

In conclusion, the integration of advanced ensemble learning 

methods, particularly XGBoost, into wildfire risk assessment 

frameworks offers a powerful tool for enhancing decision-

making processes and improving resilience against increasing 

wildfire threats under changing climatic conditions. 
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