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Abstract

Power distribution networks are critical infrastructure, yet their effective management is limited by the lack of standardized, topo-
logically coherent equipment representations. Existing research focuses on isolated tasks such as load profiling or failure detection
without offering integrated frameworks for automated network structuring. This work introduces GeoTopo-Net, a novel multi-
stage pipeline that automatically groups power distribution equipment into topologically meaningful components. The pipeline
employs three key stages: Data Standardization converts diverse raw equipment into consistent geographic formats, distinguishing
between linear network components and discrete devices; Al-Assisted Spatial Sampling uses density-based clustering to identify
switch groups and generates localized analysis regions with accompanying spatial data, separating simple from complex equipment
configurations; and Heuristic Grouping applies specialized algorithms tailored to equipment complexity. For simple busbar arrange-
ments, the algorithm uses network traversal and geometric proximity to identify main sections and their connectors. For complex
multi-switch configurations, a refined multi-phase approach systematically segments equipment at critical boundaries, builds con-
nectivity relationships, and applies classification rules based on connection patterns. Simultaneously, a dedicated algorithm pro-
cesses network’s transmission lines by merging continuous segments while respecting critical equipment locations and identifying
logical connection points. The framework transforms raw, heterogeneous network data into fully organized, spatially-referenced
datasets—optimally structured for network optimization, outage simulation, and asset monitoring—while enabling topological cor-
rectness checks of network equipment, with particular focus on busbar architectures, to support integration with real-time SCADA
systems. By systematically addressing power network topology complexities through automated analysis, GeoTopo-Net advances
beyond existing approaches, providing a comprehensive foundation for intelligent grid management with modular design facilitating
integration with existing geographic information systems.

1. Introduction The ability to automatically and accurately group power dis-
tribution equipment into topologically meaningful components
is very important for several reasons: forms the foundation for
robust network modeling for simulation and optimization, fa-
cilitates efficient outage management, and enhances the capab-
ilities of asset health monitoring systems. Traditional manual
methods for topology identification are labor-intensive, prone
to errors, and struggle to keep pace with the dynamic nature
and increasing complexity of modern grids. Recent efforts have

Power distribution networks represent the backbone of mod-
ern electrical infrastructure, connecting generation sources to
end consumers through complex arrangements of transmission
lines, transformers, switches, and busbar systems. As these
networks evolve to accommodate renewable energy integration,
smart grid technologies, and increasing urbanization demands,
the need for accurate, automated topology recognition and equip-

ment grouping has become essential. However, current network
management practices are hindered by the lack of standardized,
topologically coherent equipment representations that can ef-
fectively integrate with real-time operational systems such as
SCADA.

Previous research in power systems has largely concentrated on
isolated aspects of network management. For instance, machine
learning algorithms have been extensively explored for tasks
such as equipment failure detection and diagnosis (Doostan &
Chowdhury, 2017; Wang et al., 2021; Jiang et al., 2024), while
clustering techniques have been applied to consumer classific-
ation and load profiling (Grigoras et al., 2023). Furthermore,
advancements in image processing and deep learning have en-
abled intelligent identification and classification of power sys-
tem devices from various data sources, including geospatial im-
agery and multi-modal data fusion (Wang & Meng, 2019; Su et
al., 2021; Wang et al., 2021; Wang et al., 2023). These studies,
while critical to their specific domains, often do not provide a
comprehensive, integrated framework for automating the fun-
damental process of network topology recognition and equip-
ment grouping in a GIS-centric environment.

started to bridge this gap by integrating GIS data with elec-
trical measurements (Huang et al., 2022) and leveraging know-
ledge graphs combined with Graph Neural Networks (GNNs)
for fault-tolerant topology identification (Wang et al., 2021).
The emergence of graph databases also shows promise for im-
proving real-time topology data governance in substations (Li
et al., 2023). Despite these advances, a comprehensive, multi-
stage pipeline that systematically addresses the challenges of
data heterogeneity, spatial complexity, and diverse equipment
configurations remains a critical need.

We introduce GeoTopo-Net, a novel multi-stage pipeline de-
signed to automatically group power distribution equipment into
topologically coherent components. Our framework goes bey-
ond existing clustering and machine learning approaches by
offering an integrated GIS-based solution for automated net-
work structuring. We address the core challenge of transform-
ing raw, often inconsistent, equipment data into a standardized,
analyzable format. The pipeline’s innovative features include
Al-assisted spatial sampling for localized analysis of complex
busbar regions—a technique inspired by object detection and
clustering methods like DBSCAN (Ester et al., 1996)—and the
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application of specialized heuristic algorithms tailored to the
unique geometric and topological characteristics of different
equipment types. This systematic approach ensures that both
simple and intricate busbar configurations, as well as extens-
ive linear network components, are accurately identified and
grouped.

By delivering a completely grouped and geo-referenced dataset,
GeoTopo-Net establishes a structured foundation for a wide ar-
ray of analytical and operational tasks, supporting scalable ana-
lyses and improved decision-making across GIS-based environ-
ments. Furthermore, it enables crucial topological correctness
checks of network equipment, particularly for complex busbar
architectures, enabling integration with real-time SCADA sys-
tems. As highlighted by recent reviews, there is a recognized
gap in integrated frameworks combining spatial analysis with
network optimization (Markovi¢ et al., 2023). GeoTopo-Net
directly addresses this by systematically resolving power net-
work topology complexities through automated analysis, thus
advancing beyond current isolated solutions and providing a
comprehensive foundation for intelligent grid management.

2. Methodology

Our GeoTopo-Net framework addresses the complex challenge
of automated power distribution equipment grouping through
a systematic multi-stage pipeline designed to transform hetero-
geneous network data into topologically coherent representa-
tions. The methodology integrates spatial analysis techniques
with graph-theoretic algorithms, leveraging the complement-
ary strengths of geometric proximity analysis and network con-
nectivity reasoning. Each stage of the pipeline is detailed be-
low, from initial data harmonization to the final integration of
grouped components.

The proposed methodology operates on the principle that power
distribution networks exhibit hierarchical spatial organization,

where local equipment configurations (particularly around switch-

ing stations and busbar arrangements) require specialized ana-
lysis approaches distinct from global network connectivity pat-
terns. The pipeline architecture reflects this insight through its
modular design, enabling targeted processing strategies for dif-
ferent equipment types and complexity levels. Complete work-
flow consists of five interconnected stages: (1) Data Standardiz-
ation transforms diverse input formats into consistent geomet-
ric representations; (2) Al-Assisted Busbar Sampling identifies
and isolates localized analysis regions using density-based clus-
tering; (3) Heuristic Busbar Grouping applies specialized al-
gorithms tailored to junction complexity; (4) Additional Line
Grouping processes network transmission components while
respecting critical equipment boundaries; and (5) Integration
and Output synthesizes results into unified, topology-aware data-
sets. Each stage incorporates validation mechanisms to ensure
topological consistency and geometric accuracy throughout the
processing chain.

2.1 Data Standardization

The foundational stage of the pipeline addresses the critical
challenge of data heterogeneity inherent in raw GIS exports
from utility databases. Raw data often lacks a consistent schema,
with equipment represented using a variety of geometric types
and attribute conventions. The primary objective of this stage is
to homogenize this diverse input into a predictable and reliable
format for all subsequent analyses.

2.1.1 Geometric Alignment Process: The pipeline begins
by converting diverse power network datasets—from utility as-
set management systems, GIS, or field surveys—into a consist-
ent GeoJSON framework, with all geometry information stored
in WKT format (Herring et al., 2011). Mixed geometry types
and inconsistent attribute schemas are unified through targeted
conversions: linear elements such as transmission lines, feed-
ers and busbars are rendered as precise LineString features
(with multipart segments preserved), while discrete devices like
switches, transformers and regulators become Point features
positioned at their true electrical connection nodes rather than
geometric centroids.

This approach not only ensures spatial accuracy and topolo-
gical integrity for all downstream connectivity analyses, but
also automates adaptability to new or unforeseen equipment
types: any future device class—whether an additional trans-
former subtype or an entirely novel asset like capacitors—will
be classified automatically as a Point feature (or LineString if
its geometry is linear), allowing users to extend the network
model without altering the core algorithm.

2.1.2 Attribute Schema Normalization: Concurrent with
geometric standardization, the framework implements attrib-
ute schema normalization to establish consistent data access
patterns for downstream processing stages. Equipment iden-
tifiers are validated and standardized according to utility nam-
ing conventions, while equipment types are mapped to a con-
trolled vocabulary that enables reliable algorithmic classific-
ation. Voltage levels, operational states, and connectivity in-
formation are parsed and validated to ensure data quality through-
out the pipeline. This preprocessing step reduces computational
complexity in subsequent stages by consolidating clearly re-
lated components while preserving individual feature geometry
for detailed analysis.

2.2 Al-Assisted Busbar Sampling

Busbar systems, particularly within substations, represent the
most topologically complex regions of a power network. They
are characterized by a high density of interconnected equipment
in a small geographic area. To manage this complexity, we em-
ploy a spatial sampling strategy that isolates these dense regions
for focused analysis, a technique analogous to region proposal
networks in computer vision. Figure 1 shows the raw QGIS
representation of an example substation’s busbar layout.

Figure 1. An example of a substation busbar layout in QGIS
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The process is initiated by applying the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm
to the standardized point data. The clustering is performed
specifically on switches that are not located directly on main
transmission lines, as these are strong indicators of complex
junctions or busbar configurations. DBSCAN is chosen for its
ability to identify arbitrarily shaped clusters without requiring a
predefined number of clusters, making it ideal for the irregular
layouts of power equipment.

2.2.1 Clustering-Based Region Identification: The busbar
sampling stage localizes analysis through systematic identific-
ation of switching equipment clusters that correspond to indi-
vidual busbar regions. The process operates on switch loca-
tions extracted from the standardized point equipment dataset,
applying DBSCAN clustering with parameters

e=—

2 and min_samples = 1, €8

where d represents the default grid size in coordinate units. The
clustering algorithm processes switch coordinates

S = {(zs,ys) Fica ?

to identify coherent groupings that represent individual switch-
ing stations or busbar configurations. Each resulting cluster C;
defines a local analysis region characterized by its centroid c;
and spatial extent.

2.2.2 Adaptive Tile Generation: For each identified cluster
Cj, the framework generates a localized analysis window via
adaptive tile extraction:
BOX(EZJ‘ + %7 Cy,j + g)7 ‘le =1,
Tile(C;) = 3)
BOX(Em,j:l:S,Ey’j:t%), ‘CJ| > 1,

where
s = max(width(Cj), height(C}), d) +0.1d 4)

is the side length of the square tile (the larger of the cluster’s
bounding-box dimensions or the default grid size d, plus a 10%
margin).

The tile extraction process then produces both PNG visualiz-
ations and corresponding GeoJSON vector data for each re-
gion. All equipment—switches, transformers, and line seg-
ments—whose geometries intersect the tile boundaries are re-
trieved via spatial indexing for further analysis.

2.2.3 Automated Sample Classification: The framework im-
plements automated classification to route tiles to appropriate
processing pipelines based on the complexity of switching lay-
outs. A tile is classified as a multi-switch busbar if

| Stite| > 1, &)
as a single-switch busbar sample if:
|Siel] =1 and 31 € Ly : layer(l) = busbar, (6)

and as a vitual node (cnode) operation window if:

|Site] = 1,

[{l € Lae : 1N s # 0, layer(l) # busbar}| @

> 2.

This classification enables selective application of specialized
grouping algorithms, optimizing computational efficiency while
ensuring appropriate analysis depth for different busbar archi-
tectures, and this modular approach also supports concurrent
processing of different busbar configurations (both single-switch
and multi-switch) alongside transmission line groupings, as each
follows its own dedicated algorithm. Figure 2 shows the gen-
erated version of the busbar from Figure 1, produced by the
Al-assisted sampling stage.

Figure 2. Al-assisted sampling of the busbar tile from Figure 1

In Figure 2, blue points indicate switch locations, the pink square
marks the transformer, red lines represent busbar segments, and

black lines correspond to transmission line segments. This color-
coded visualization helps distinguish equipment types and net-

work layers within the sampled busbar tile.

2.3 Heuristic Busbar Grouping

With busbar regions isolated and categorized by the Al-assisted
sampling process, this stage applies two distinct heuristic al-
gorithms to group the equipment within each sample. To optim-
ize performance for graph-based operations, the GeoJSON data
for each sample is first converted into a tabular CSV format, re-
taining essential attributes: ID, geometric coordinates, type,
and layer.

2.3.1 Single-Switch Busbar Grouping: This algorithm is
designed to process the less complex ”single-switch” samples.
Its logic is based on graph traversal and geometric proximity
to reconstruct the busbar and its associated connectors. As
detailed in Algorithm 1, the process first builds an adjacency
graph from the line segments. It then systematically identifies
the main busbar sections by performing a Depth-First Search
(DFS) (Tarjan et al., 1972) starting from segments that are dir-
ectly connected to main transmission lines (layer = ’line’).

Once the primary busbar groups are established, the algorithm
identifies any remaining busbar segments that are connected to
the single switch but not yet grouped. These are attached to the
nearest main busbar group based on a proximity threshold e. Fi-
nally, any remaining segments that connect only to switches are
grouped together as “connectors”, representing the functional
links within the junction.
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Algorithm 1 Single-Switch Busbar Grouping

Require: L: set of line segments
Require: S: set of switches
Require: e: distance threshold
Ensure: B: busbar groups, C': connector groups
1: Initialize B + 0, C + 0
2: Mark all [ € L as unvisited
3: Build adjacency map from nodes to their incident lines
{Stage 1: Extract contiguous busbar segments}
4: for all | € L unvisited such that layer(/) = busbar and [
adjacent to any non-busbar line do
G+ 0
DFS_Busbarl, G
B+ BU{G}
: end for
{Stage 2: Attach stray segments to nearest busbar group}
9: for all | € L unvisited such that layer(!) = busbar and
one endpoint in S do
10:  if mingep dist(other_pt(l), centroid(G)) < e then

® W

11: Attach [ to nearest G, mark [ visited
12:  end if
13: end for

{Stage 3: Identify connector groups}

14: for all [ € L unvisited such that [ intersects some switch
in S but no non-busbar line do

15 G+ 0

16:  DFS_Connectorl, G

17 C+ CU{G}

18: end for
DFS_Busbarl, G

19: Mark [ visited; add [ to G

20: for all neighboring I’ € L unvisited where layer(l') =
busbar and !’ not touching any switch do

21:  DFS_Busbarl’,G

22: end for
DFS _Connectorl, G

23: Mark [ visited; add [ to G

24: for all neighboring I’ € L unvisited where I’ does not touch
any non-busbar line do

25:  DFS_Connectorl’, G

26: end for

This combined graph-traversal and proximity analysis yields
robust, topology-preserving busbar and connector groupings for
downstream processing, as illustrated in Figure 3.

Classified Subgraphs (Single Switch Busbars)

COMPONENT TYPES
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Figure 3. Example grouped output of a single-switch busbar
grouping algorithm.

After each busbar and connector group is identified, unique IDs
are generated and assigned—busbar IDs, connector IDs, switch
IDs, and transformer IDs—via dedicated ID-generation func-
tions to ensure traceability throughout the pipeline.

2.3.2 Multi-Switch Busbar Grouping: For the more com-
plex "multi-switch” samples, a more sophisticated, multi-phase
heuristic is required. This algorithm, outlined in Algorithm 2,
is designed to deconstruct and classify the complex web of con-
nections.

Algorithm 2 Multi-Switch Busbar Grouping

Require: E: equipment segments, S,7": switch and trans-
former locations, «: size threshold
Ensure: Groups {H;} labeled {busbar, cnode, connectork,

Point}
Build graph G = (V, E) on segment endpoints; let Cy be the
largest component restricted to layer=busbar
Vy <~ {v eV :vincidenttoany s € SUT}
Split Cy at each v € V,, into subgraphs { H; }
Build intersection graph I on nodes H;, linking H;, H; if
they share any v € V;,
for all H; do

k; < |{switch-endpoints in H;}|

if k; = 2 then

label(H;) + cnode
else
label(H;) + unclassified

end if
end for
for all H; with label=unclassified and k; > 2 do

label(H;) <+ potential busbar
end for
for all H; with label=cnode, deg;(H;) = 2,
and both neighbors are potential busbars do

label(H;) + connectork
end for
for all H; with label=potential busbar do

label(H;)  busbar
end for
m <— mean size of all busbar H;
for all H; with label=cnode and |H;| > am do

label(H;) < busbar
end for
Label any remaining single-segment unclassified H; as
Point

return {H;} with assigned labels

The multi-switch grouping algorithm adopts a multi-phase, graph-
based strategy to segment and classify complex busbar config-
urations. It begins by constructing a graph of all busbar-layer
segments in the analysis region, focusing on the largest con-
nected component to target the primary structure. Segment en-
dpoints and their associations with switches and transformers
are explicitly tracked to support accurate segmentation at these
boundary points. The network is then split at each boundary
vertex, producing subgraphs that potentially represent busbar
sections, connectors, or specialized components.

To analyze interactions between these subgraphs, an intersec-
tion graph is built where nodes correspond to subgraphs and
edges indicate shared boundary equipment. This enables clas-
sification based on connectivity and topological patterns. The
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classification proceeds in multiple phases, first labeling simple
connector nodes (with exactly two switch endpoints), then identi-
fying multi-connected busbar candidates and refining roles us-
ing intersection graph analysis. Size-based rules are applied last
to reclassify large cnodes as busbar segments, reflecting their
operational significance. The result of this multi-phase classi-
fication process is illustrated in Figure 4, showing a grouped
output of the multi-switch busbar algorithm corresponding to
the configuration in Figure 1.

Classified Subgraphs
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Figure 4. Example output of the multi-switch busbar grouping
algorithm, corresponding to the busbar shown in Figure 1.

In cases where multiple distinct busbar structures fall within
the same sampled grid, our connected component—based logic
is capable of accurately distinguishing and grouping them into
separate units. This ensures that each busbar is processed inde-
pendently, preserving topological correctness even in dense or
overlapping configurations. Figure 5 illustrates such a scenario,
where multiple busbars within a single grid cell are successfully
identified and grouped.

Classified Subgraphs
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Figure 5. Grouped output of multiple busbars within a single
grid

2.3.3 Transmission Line Grouping: While previous stages
focus on dense busbar regions, this stage addresses the extens-
ive linear components of the network—the transmission and
distribution lines that were not part of the busbar samples. The
goal is to merge fragmented line segments into continuous, elec-
trically contiguous groups while respecting the topological bound-
aries imposed by network equipment.

The algorithm organizes transmission and distribution segments
outside localized busbar regions by merging geometrically con-
tinuous lines into coherent operational units while respecting
logical boundaries created by network equipment. A central
aspect is identifying “’blocking points”—such as switches or
transformers—where line merging is halted to maintain the net-
work’s operational integrity.

Our heuristic uses an iterative merging strategy, prioritizing seg-
ments with shared endpoints and compatible attributes, while
preventing merges across blocking points or complex junctions.
Once merging is complete, the system classifies connection points
into two types: CNODEL, which represent intersections in-
volving critical equipment, and CLINE, which represent purely
topological junctions. These virtual nodes ensure a clear and
analyzable representation of both infrastructure and its opera-
tional boundaries. This algorithm is detailed in Algorithm 3.

Algorithm 3 Transmission Line Grouping

Require: L: line segments, B: blocking equipment (e.g.,
switches, transformers), optional flag: allowed_to_merge
Ensure: Grouped lines GG, connection points: CNODEL and
CLINE
Extract blocking coordinates P, from B
Mark all I € L as unmerged
Initialize spatial index on L
G+ 0
// Phase 1: Line Grouping new merges occur
for all /; € L where l; is unmerged do
for all /; sharing an endpoint with /; do
if GIS_ID(l;) = GIS_ID(l;) then
Merge [;,1; into group g; mark merged shared end-
point ¢ P, and degree at point = 2
Merge [;,l; into group g; mark merged
allowed_to_merge and shared endpoint ¢ P,
Merge [;,1; into group g; mark merged
end if
end for
end for
Generate new IDs and add merged groups to G
// Phase 2: Connection Point Identification
for all endpoints p shared by > 2 lines in G do
if p € P, then
Create 2 CNODEL features at p
Connect each intersecting line and blocking equipment
ID to CNODELSs
else
Create 1 CLINE feature at p
Connect each intersecting line to CLINE
end if
end for

return G with associated CNODEL and CLINE features

As the final component of our grouping framework, this mod-
ular approach enables the entire power network to be grouped
systematically by layers and by individually clustered equip-
ment. Such modular grouping facilitates the localization and
diagnosis of potential data errors, improving both the accuracy
and maintainability of the network model.
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2.4 Integration and Output

The GeoTopo-Net pipeline’s final stage integrates all data into a
unified, comprehensive dataset, prioritizing geometric accuracy
and topological coherence. This involves validating grouped
components and cross-referencing connections to accurately rep-
resent the network. The integrated data is then exported as
standardized GeoJSON with detailed attribute schemas, includ-
ing group type and processing metadata. This ensures compat-
ibility and maintains geometric precision for downstream ap-
plications.

Finally, a quality assurance process validates topological con-
sistency, accuracy, and completeness. Automated checks identify
issues, generating reports that document results and aid future
optimization.

3. Results

To evaluate the effectiveness of the GeoTopo-Net pipeline, we
conducted comprehensive testing on three power distribution
networks of varying scales from different countries. Due to
confidentiality requirements, specific geographic locations and
utility details cannot be disclosed; however, all test networks
represent middle-voltage power distribution systems contain-
ing diverse busbar configurations and substation architectures
typical of modern electrical infrastructure.

3.1 Test Datasets

The evaluation encompassed three distinct network scales to as-
sess scalability and robustness across different operational con-
texts. Small network covers 132.6 km? and comprises 1,588
equipment assets, including 1 multi-switch busbar and 81 single-
switch busbars. The medium network spans 1359.251 km? with
93,308 equipment assets, containing 3,280 multi-switch bus-
bars and a corresponding number of single-switch configura-
tions. The large network covers 53732.433 km? and contains
97,967 equipment assets, including 3,209 multi-switch busbars
and 11,923 single-switch busbars. This range of network sizes
enables comprehensive assessment of the pipeline’s perform-
ance across varying infrastructure complexities and geographic
scales.

3.2 Assessment Method

Accuracy measurements rely on systematic rule-based valid-
ation rather than manual inspection, ensuring consistent and
scalable assessment criteria. For single-switch busbars, valid-
ation confirms the presence of required components: busbar
segments, connector elements, and switch components, with
transformers being optional. Additionally, the validation pro-
cess verifies that virtual busbar components are generated with
geometries matching the grouped busbar to ensure proper intra-
busbar connectivity representation.

Connectivity validation forms a critical component of the as-
sessment process, ensuring no interruptions occur in both intra-
busbar connections and busbar-to-transmission line interfaces.
The same validation framework applies to multi-switch busbars,
with accuracy measurements calculated as the average perform-
ance across all identified components and connectivity relation-
ships.

3.3 Performance Metrics and Evaluation

GeoTopo-Net demonstrated high accuracy across all major equip-
ment categories. For single-switch busbar configurations, pipeline
achieved 100 % accuracy in both grouping and component iden-
tification across all test networks. Similarly, transmission line
grouping maintained 100% accuracy for all tested systems,
successfully merging contiguous line segments while respect-
ing topological boundaries imposed by network equipment.

Multi-switch busbar processing achieved greater than 90% ac-
curacy across all test networks, representing robust perform-
ance given the inherent complexity of these configurations. How-
ever, the analysis revealed specific limitations for overcomplic-
ated stations containing more than 3-4 interconnected busbars
with coupling connectors and exceeding 40 switches. Such
configurations, while representing a very small fraction of typ-
ical middle-voltage network infrastructure, occasionally require
manual validation to ensure complete topological correctness.

Network | Area (km?) | Assets | Multi/Single-switch Busbars
Small 132.60 1588 1/81

Medium 1359.25 93308 3280/0

Large 53732.43 97967 3209 /11923

Table 1. Network characteristics of the three test systems

Network | Single/Line grouping ( %) | Multi-switch (%) | Time
Small 100/100 >95 46s

Medium 100/100 >92 253s
Large 100/100 >90 983s

Table 2. Accuracy and runtime of GeoTopo-Net across the three
networks

Our pipeline demonstrates favorable runtime performance, ex-
hibits near-linear scaling, processing the small, medium, and
large networks in 46 seconds, 4 minutes 13 seconds, and 16
minutes 38 seconds, respectively. All tests were conducted on
an Intel Core i5-10310U CPU @ 2.2GHz with 16GB RAM
(Windows 11). As an example of the method’s precision, Fig-
ure 6 shows a multi-switch busbar from the large network that
was grouped with 100% accuracy.
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Figure 6. Example of a randomly chosen multi-switch busbar
from the large network, grouped and identified with 100%
accuracy.
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While GeoTopo-Net performs robustly across varied networks,
rare edge cases—such as highly interconnected multi-switch
stations—can challenge its heuristic grouping and point to op-
portunities for future refinement. Likewise, the rule-based val-
idation ensures consistency but may miss specialized equip-
ment nuances, although such deviations are infrequent in MV
systems. Figure 7 illustrates one overcomplicated multi-switch
busbar from the large network, where sub-optimal grouping
performance is observed.

Classified
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Figure 7. Sub-optimal grouping of an overcomplicated
large-network multi-switch busbar

4. Conclusion

We introduced GeoTopo-Net, a novel multi-stage pipeline that
successfully automates the topological grouping of power dis-
tribution equipment. By systematically integrating data stand-
ardization, Al-assisted spatial sampling, and specialized heur-
istic algorithms, our framework transforms raw, heterogeneous
GIS data into a standardized, analyzable network model. This
automates a critical and traditionally manual task, providing a
foundational data layer for advanced applications like network
optimization, outage simulation, and SCADA integration.

Our evaluation on real-world networks confirmed the frame-
work’s robustness and efficiency. The pipeline achieved 100%
accuracy on transmission lines and single-switch busbars and
over 90% on complex multi-switch configurations, all while
demonstrating scalable performance on large datasets. While
highly effective, we acknowledge that the heuristic could be
refined for a small number of “overcomplicated” busbar sys-
tems. We plan to investigate these edge cases through the in-
corporation of Graph Neural Networks (GNNs), and to extend
the framework to low-voltage networks or real-time data integ-
ration. In summary, GeoTopo-Net represents a significant ad-
vancement in automated power network structuring. It provides
a reliable, scalable, and accurate method for establishing net-
work topology, laying the groundwork for more intelligent, re-
silient, and efficient power systems.
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