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Abstract

This paper introduces an automated building extraction method combining CNN segmentation with multi-stage regularization.
We address urban mapping challenges including boundary inaccuracies and topological errors through: (1) neighborhood matrix
processing for local refinement, (2) spectral graph optimization (SBO) for global consistency, and (3) curvature-adaptive contour
refinement (ACR) to preserve geometric features. The pipeline converts initial segmentations into precise polygons through hier-
archical processing. Experiments show performance matching state-of-the-art methods like PolyWorld, with superior handling
of complex geometries. Key innovations include integrated local-global artifact removal and topology-preserving regularization.
The curvature-adaptive approach maintains critical architectural features while eliminating noise. Particularly effective for high-
resolution imagery, our solution improves geometric fidelity in urban mapping applications. The framework demonstrates robust
performance for 3D city modeling and GIS tasks, overcoming common segmentation limitations. Results confirm accurate building
outline extraction from satellite/aerial data, advancing automated urban feature mapping.

1. Introduction

Cutting-edge research in remote sensing focuses on creating
automated algorithms capable of matching the accuracy of
manual methods for delineating building footprints. Although
challenges such as imperfect image quality, diverse architec-
tural styles, and cluttered backgrounds persist, advancing these
algorithms is essential for applications like urban monitoring,
3D city reconstruction, disaster response, and population ana-
lysis.

For decades, aerial imagery has served as a fundamental tool
for building identification and facilitating vector map produc-
tion (Paparoditis et al., 1998, Persson et al., 2005, Yang et al.,
2018). The field has witnessed significant progress in build-
ing detection accuracy through modern remote sensing innova-
tions (Li et al., 2019, Chen et al., 2020, Sanca et al., 2023),
driven primarily by the adoption of deep learning architec-
tures like convolutional neural networks (CNNs) (LeCun et al.,
1989) and fully convolutional networks (FCNs) (Long et al.,
2014), combined with enhanced datasets and computing power.
However, fully automated generation of precise building vector
maps from aerial photos remains unachievable in most urban
environments. This limitation stems partly from inherent con-
straints in current deep learning approaches, which face diffi-
culties with obscured roof structures (e.g., under vegetation or
shadows) (Chen et al., 2019) and lack robust generalization
across diverse geographical contexts (Maggiori et al., 2017).
Another often-overlooked issue involves minor detection errors
along building edges, where even small omissions or false pos-
itives can lead to distorted polygonal shapes during vectoriza-
tion. The core difficulty lies in precisely reconstructing building
polygons to create accurate vector representations suitable for
various applications.

This paper presents an algorithm that automatically extracts
building outlines through a combination of binary semantic seg-
mentation, regularization, and vectorization techniques. The
framework’s key contribution involves augmenting conven-

Figure 1. Example of extracting a building boundary.

tional regularization approaches - including the established
neighborhood matrix technique and Spectral Boundary Optim-
ization (SBO) - with our newly developed Adaptive Contour
Refinement (ACR) algorithm. This synergistic combination
addresses distinct aspects of boundary refinement: the neigh-
borhood matrix ensures local spatial consistency, SBO main-
tains global topological coherence, ACR preserves geometric-
ally significant features. The complete regularization pipeline
produces a refined segmentation mask that subsequently un-
dergoes polygonal vectorization, generating accurate geospatial
representations of building outlines suitable for GIS applica-
tions and urban planning. In summary, the main contributions
of this paper are as follows:

e We investigate how the developed regularization methods
can improve the quality and accuracy of binary segmenta-
tion.
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Figure 2. The structure of the proposed algorithm, integrating neighborhood matrix regularization, Spectral Boundary Optimization,
and Adaptive Contour Refinement.

e We employ the CrowdAl dataset (Mohanty et al., 2020),
a prevalent benchmark in building vectorization studies,
to evaluate results and conduct comparative analysis with
existing boundary extraction methods.

2. Related work

Contemporary building extraction methodologies primarily em-
ploy two dominant techniques: semantic segmentation (Wei et
al., 2019, Chen et al., 2020, Sanca et al., 2023) and instance seg-
mentation (Zhao et al., 2020, Emelyanov et al., 2024). While
these approaches operate at a fine-grained pixel level, they face
inherent limitations. Insufficient global context can lead to pre-
diction gaps in building footprints, while inadequate local detail
resolution may cause smaller structures to be overlooked.

To address these challenges, researchers have developed several
innovative solutions. (Wei etal., 2019) introduced a multi-scale
aggregation FCN architecture that integrates building features
across different scales to enhance prediction accuracy. Another
comprehensive framework (ganca et al., 2023) combines bin-
ary semantic segmentation with subsequent regularization and
vectorization processes, demonstrating its effectiveness through
application to a novel building dataset and introducing an ori-
ginal vectorization methodology. (Knyaz et al., 2020) proposed
an advanced masking technique specifically designed for seg-
menting repetitive architectural elements, achieving an 11%
performance improvement in segmentation tasks.

Recent advances in building extraction have introduced innov-
ative instance segmentation approaches. (Zhao et al., 2020)
developed a multi-stage instance segmentation model that spe-
cifically examines how detection quality affects mask preser-
vation. Their framework combines object detection with seg-
mentation refinement to improve both boundary precision and
geometric accuracy of building footprints. In a related de-
velopment, (Emelyanov et al., 2024) presented an automated
pipeline for building outline extraction that integrates instance
segmentation with subsequent regularization and vectorization.
This approach distinguishes itself through a novel regulariza-
tion technique that employs principles of linear connectivity

and point set convexity, offering improved results compared to
conventional methods.

Recent research has explored instance segmentation through
contour regression approaches (Huang et al., 2021, Liu et al.,
2021), where the task involves predicting polygon vertex co-
ordinates (essentially locating a shape’s corner points). Tradi-
tional techniques employ active contour models (Kass et al.,
1988, Chan and Vese, 2001) that derive object boundaries by
optimizing hand-crafted energy functions. Modern approaches
have improved robustness by integrating CNNs with active con-
tour models (Marcos et al., 2018, Hatamizadeh et al., 2019).

Current methodologies increasingly adopt unified deep learning
frameworks for contour extraction. Some studies (Liu et al.,
2022, Li et al., 2019) have implemented recurrent neural net-
works (RNNs) (Yu et al., 2019) to sequentially predict build-
ing roof corners in clockwise order, though these methods often
struggle with vertex disappearance and irregular point distribu-
tions.

Among contemporary edge-based solutions, CNN architectures
dominate the field. Notable examples include PolarMask (Xie
et al., 2020), PolarMask++ (Xie et al., 2021), and LSNet (Duan
et al., 2021) - efficient single-stage systems that leverage deep
features from instance centers. While computationally effect-
ive, these methods typically produce only approximate object
contours.

Current approaches face significant post-processing challenges:
semantic segmentation cannot distinguish between adjacent
buildings, while instance segmentation may produce bound-
ing boxes that incorrectly include portions of nearby structures,
complicating mask generation. To address these limitations,
(Zorzi et al., 2022) proposed PolyWorld - an innovative neural
network that directly predicts building vertices from imagery
and constructs precise polygons by establishing connections
between them. The framework employs a graph neural network
to estimate connection probabilities between vertex pairs, with
final assignments determined through a differentiable optimal
transport formulation. Furthermore, vertex positions are refined
by jointly optimizing segmentation accuracy and polygon angle
consistency.
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3. Method

This study introduces an optimized pipeline for automated
building footprint extraction, focusing on precision enhance-
ment through innovative boundary regularization strategies.
Our methodology implements a multi-stage processing chain
that sequentially executes: (1) binary semantic segmentation
using a deep convolutional neural network, (2) comprehens-
ive boundary refinement through integrated regularization tech-
niques, and (3) geometric vectorization of the refined outputs.
The algorithm’s structure, integrating these regularization tech-
niques, is illustrated in Figure 2.

3.1 Semantic segmentation with U-NetFormer

Our methodology employs a sophisticated deep learning ap-
proach for building footprint detection from remote sensing im-
agery, beginning with binary segmentation using the enhanced
UNetFormer architecture. This advanced neural network ex-
tends the capabilities of conventional U-Net frameworks by
integrating powerful transformer-based attention mechanisms,
enabling more comprehensive analysis of spatial relationships
across multiple scales.

The UNetFormer (U-Transformer) (Petit et al., 2021) architec-
ture fundamentally enhances the original U-Net design (Ron-
neberger et al., 2015) through its innovative attention modules,
which operate in complementary fashion. The Multi-Head Self-
Attention (MHSA) mechanism provides global contextual un-
derstanding by establishing long-range dependencies across the
entire feature map, effectively connecting each pixel to all oth-
ers in the image. This creates a fully comprehensive receptive
field that allows segmentation decisions at any location to incor-
porate relevant information from distant regions of the input.

Working in concert with MHSA, the Multi-Head Cross-
Attention (MHCA) module performs intelligent feature selec-
tion, dynamically filtering out irrelevant or noisy information
in skip connections while precisely highlighting the most sali-
ent regions for building detection. This dual-attention system
generates optimized feature representations through two dis-
tinct but complementary pathways: MHSA handles intrinsic
feature relationships within the data, while MHCA strategic-
ally incorporates higher-level contextual information to focus
processing on the most diagnostically valuable image regions.

The model was optimized using the Adam algorithm with Bin-
ary Cross-Entropy with Logits (BCEWithLogitsLoss) as the ob-
jective function. This loss metric quantifies the discrepancy
between the network’s predictions and the ground truth annota-
tions through the following formulation:

L= =y D loslos(o(u) + (1 = 2 logl1 o] ()

where N represents the batch size, z; denotes the ground truth
binary mask for the i-th sample, y; corresponds to the model’s
raw output logits for sample i, o indicates the sigmoid activation
function.

The sigmoid function, characterized by its distinctive S-shaped
curve, transforms the logit values into probabilistic outputs.

Specifically, we employ the standard logistic function defined
as:

1

@)= e

@

This activation function maps the unbounded logit outputs
to the [0, 1] range, enabling probabilistic interpretation of
the model’s predictions while maintaining differentiability for
backpropagation.

3.2 Application of the developed regularization method

3.2.1 Neighborhood Matrix-Based Initial Regularization
The first stage of our regularization pipeline employs a local
spatial consistency approach to correct pixel-level classifica-
tion errors. For each pixel p; ; classified as “building” (class
label 1), we construct a 3x3 neighborhood matrix N (p; ;) en-
compassing the central pixel and its eight immediate neighbors.
This matrix serves as a local context window, allowing us to:

e Detect misclassified pixels: A pixel is flagged as poten-
tially misclassified if its label contradicts the majority of
its neighbors (e.g., an isolated “building” pixel surrounded
by “non-building” pixels).

e Apply probabilistic correction: The final label of p; ;
is reassigned based on a weighted vote of its neighbors,
where weights are inversely proportional to their Euc-
lidean distance from p; ;. This step effectively removes
salt-and-pepper noise while preserving legitimate small-
scale structures.

3.2.2 Spectral Boundary Optimization (SBO) for Global
Consistency To enforce topological coherence across build-
ing segments, we model the segmentation output as an undir-
ected graph G = (V, E), where Nodes V' correspond to pixels
labeled as building”, Edges E connect spatially adjacent pixels
(8-neighborhood), with weights w;; defined by a Gaussian af-
finity kernel:

pi —pils L= L3
W;j = exp (— 120‘2; - l20%] ) 3)

where o4 and o control the sensitivity to spatial distance and
intensity variation, respectively.

The graph Laplacian L = D — W (where D is the degree mat-
rix and W the weighted adjacency matrix) encodes the global
structure of building regions. We solve the spectral optimiza-
tion problem:

min (fTLf+>\|f—y|2), )

where f is the regularized label field, y the initial segmentation,
and A a trade-off parameter. This step eliminates fragmented re-
gions and smooths irregular boundaries while respecting image
edges.

3.2.3 Adaptive Contour Refinement (ACR) for Geometric
Precision The final stage refines building boundaries by ex-
plicit curvature adaptation. For each extracted boundary con-
tour C:
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Figure 3. The result of the regularization process. First: input image. Middle: segmented image. Last: segmented image after the
regularization process.

e Compute local curvature «; at each point i using a
derivative-based estimator:
o lalyl —ylat )
;=
@2+ y2)

where derivatives are approximated via central finite dif-

ferences (e.g., ' = ZHL_Ei=L ),

e Adjust smoothing strength with a curvature-adaptive
kernel:

2

2
h; = exp (— 202) , 0. = curvature tolerance. (6)
(&

High-curvature regions (e.g., corners with x; > o) un-
dergo weak smoothing, preserving sharp features, while
low-curvature segments (straight edges) are aggressively
regularized.

o Resample the contour using B-spline interpolation to en-
sure uniform point spacing, critical for high-quality vec-
torization. The final contour is reconstructed as:

Creﬁl’ledZZihi'KOCi_C‘)*Cz @)

where K is a Gaussian smoothing kernel.

4. Results
4.1 Evaluation metrics

Following the methodology of (Zorzi et al., 2022), we employ
several standard metrics to assess model performance.

The Intersection-over-Union (IoU), also known as the Jaccard
index, quantifies segmentation accuracy by measuring the over-
lap between predicted and ground truth masks. It is calculated

as:
Intersection TP
ToU — -
oU Union TP+ FP+FN ®

Additionally, we compute precision and recall metrics to derive
Average Precision (AP) and Average Recall (AR) scores:

.. TP
Precision = TPLFP )

TP
Recall = m (10)

where TP (True Positives) represents correctly identified build-
ing pixels, FP (False Positives) indicates non-building pixels
misclassified as buildings, FN (False Negatives) denotes build-
ing pixels missed by the prediction.

4.2 Experiment

Figure 4. Some images from the CrowdAl Mapping Challenge
dataset.

The model was trained using the publicly available CrowdAl
Mapping Challenge dataset (Mohanty et al., 2020), which con-
tains over 280,000 satellite images for training and an additional
60,000 for testing. We adopted an 80-20 split for the training
data, allocating 80% for model training and reserving 20% for
validation purposes. All training procedures were implemen-
ted using CUDA 11.7 on an NVIDIA GeForce RTX 3070 GPU
with 8§GB VRAM.

For performance evaluation, Table 1 presents the quantitative
results of our method alongside comparative benchmarks from
state-of-the-art approaches. This comparative analysis enables
assessment of our algorithm’s relative performance against ex-
isting solutions on comparable data.

5. Conclusion

This study has presented a comprehensive end-to-end work-
flow for automated building footprint extraction, combining
binary semantic segmentation with advanced multi-stage reg-
ularization and vectorization techniques. Our experimental res-
ults demonstrate that the proposed method achieves competitive
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Figure 5. Experiment results.

Method AP AR ToU
Mask R-CNN 41.9 47.6 -
PolyMapper 55.7 62.1 -
PolyWorld 63.3 75.4 91.3
Neigh. Matrix 64.1 75.1 91.2
Our method 69.8 80.3 92.0

Table 1. Results on the CrowdAl test dataset for all the building
extraction and polygonization experiments.

performance with state-of-the-art approaches like PolyWorld
(Zorzi et al., 2022), while offering several distinct advantages
through its novel hierarchical regularization framework.

The key strengths of our methodology include:a multi-scale
regularization approach, topological integrity maintenance
through graph-based processing that prevents over-smoothing
of complex building structures and adaptive geometric handling
that intelligently preserves critical features like sharp corners
while eliminating noise.

The framework has proven effective for processing high-
resolution satellite imagery, where it successfully addresses
common segmentation artifacts (jagged edges, spurious pixels)
that typically degrade the quality of downstream applications
including 3D urban modeling and GIS analysis. The method’s
robustness stems from its balanced integration of local and
global processing, combining the precision of pixel-level op-
erations with the structural awareness of graph-based and
curvature-adaptive techniques.
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