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Abstract

This study investigates the potential of multi-temporal Sentinel-2 imagery combined with machine learning techniques for tree species
classification in the Aladag Forests of Bolu province, Tiirkiye. Five dominant species—Black Pine, Scots Pine, Nordmann Fir, Beech,
and Sessile Oak—were classified using a comprehensive feature set comprising spectral bands, spectral band indices, topographic
attributes, and seasonal indicators. Sentinel-2 images acquired in April, August, and November were employed to capture phenological
variations influencing classification accuracy. Field data from 112 sample plots supported the training and validation of four machine
learning models: Random Forest (RF), Support Vector Machines (SVM), Artificial Neural Networks (ANN) and Ensemble Learning
(EL). On the independent test dataset, the overall classification accuracies were 99.22% for SVM with polynomial kernel, 99.03% for
SVM with Radial Basis Function (RBF) kernel, 98.61% for RF, 97.91% for EL, and 96.66% for ANN, respectively. Seasonal analysis
showed that August imagery provided the best classification performance, benefiting from peak canopy contrast, while accuracy
decreased in November, particularly for deciduous species. The results underline the effectiveness of RF and emphasize the importance

of integrating multi-seasonal satellite observations with machine learning for improved forest species mapping.

1. Introduction

Forests are among the most vital natural resources, possessing both
exhaustible and renewable characteristics. With the increasing
environmental challenges of today, the importance of forests has
become more evident than ever before. In particular, global
warming and climate change have brought forest ecosystems to the
focus of research and conservation efforts. Forests play a critical
role not only in preserving biodiversity but also in regulating the
climate as carbon sinks. They also provide essential ecosystem
services such as managing the water cycle, preventing soil erosion,
and offering habitats for various species (Marta et al., 2021).

In recent years, remote sensing technologies have been widely used
to support the sustainable management and monitoring of forest
resources. Traditional forest inventory methods are often costly,
time-consuming, and limited to small areas, making these new
technologies increasingly valuable. With the advancements in
satellite systems and data processing algorithms, it has become
possible to monitor large, forested areas both spatially and
temporally. Sentinel-2 satellites, developed by the European Space
Agency (ESA), are commonly used in remote sensing studies due
to their medium- to-high spatial resolution, wide spectral range,
and free accessibility (Drusch et al., 2012). Sentinel-2 data play an
important role in vegetation analysis as well as in the assessment of
soil moisture, water bodies, and other environmental indicators.

These developments in remote sensing have also required the
advancement of data processing and interpretation methods. In this
context, machine learning algorithms have shown significant
success, particularly in classification and modelling tasks. Recent
studies have demonstrated that machine learning algorithms such
as RF, SVM, EL methods, and ANN provide high classification
accuracy in forest mapping (Freudenberg et al., 2025; Hoscito and
Lewandowska, 2019; Liu et al., 2024; Wessel et al., 2018). These
algorithms can handle high-dimensional and multivariate datasets
and offer strong modelling capabilities beyond classical statistical
methods. As a result, classical classification approaches such as
Minimum Distance Classifier (MDC) and Maximum Likelihood

Classification (MLC) are increasingly being replaced by these
advanced machine learning techniques.

Improving classification accuracy in forest studies depends not only
on the choice of algorithm but also on the quality and timing of the
variables used. Seasonal variability, especially in deciduous tree
species, can directly affect spectral reflectance characteristics and
thus influence classification performance (Liu et al., 2024).
Therefore, comparing data collected in different periods of the year
is an important step to improve model performance.

The main objective of this study is to classify five different tree
species located in the Bolu, Aladag Forest Management Directorate
using Sentinel-2 satellite data. Initially, a large set of vegetation,
water, soil indices, and topographic variables was generated from
the remote sensing data.

During data analysis and classification, machine learning
algorithms including Random Forest (RF), Support Vector
Machines (SVM), Artificial Neural Networks (ANN) and Ensemble
Learning (EL) were applied. The performance of each algorithm
was evaluated using different parameter combinations, and the
results were analysed based on accuracy metrics derived from the
associated error matrices. In addition, the effect of seasonal
variation on classification performance was tested, and the highest
accuracy was obtained during the summer months.

2. Materials and Methods
2.1 The Study Area

The study area covers 88,717.05 hectares (approximately 887 km?)
and is located within the Bolu, Aladag Forest Management
Directorate (cf. Figure 1). The dominant tree species include the
conifers Black Pine (Pinus nigra), Scots Pine (Pinus sylvestris),
and Nordmann Fir (Abies nordmanniana ssp.), as well as the
broadleaf species Beech (Fagus spp.) and Sessile Oak (Quercus
petraea). The total area consists of 54,165.7 hectares of coniferous
stands and 2,840.2 hectares of broadleaf stands, resulting in a
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combined total of 57,005.9 hectares of forested land (OGM, 2018)
(cf. Table 1). The region has a humid continental climate,
characterized by cold, snowy winters and warm summers. Annual
precipitation is relatively high, supporting dense forest cover, while
seasonal variability influences vegetation dynamics and
phenological stages, which are important for remote sensing-based
forest monitoring (Kantarci, 1980).

Tree Species Area (ha)
Black Pine 10,052.4
Scots Pine 24,577.8
Nordmann Fir 19,535.5
Beech 997.2
Sessile Oak 1,843.0
Total 57,005.9

Table 1. Summary of the main tree species composition in the
study area.
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Figure 1. Study area and the locations of Sentinel-2 tiles.

2.2 Sentinel-2 Image Dataset

Sentinel-2 is a multispectral optical satellite mission developed by
the European Space Agency (ESA) within the Copernicus
Programme. The mission consists of two identical satellites
(Sentinel-2A and Sentinel-2B) operating in a sun-synchronous
orbit, providing global coverage with a revisit time of 5 days at the
equator (Drusch et al., 2012). Sentinel-2 delivers imagery across
13 spectral bands ranging from visible to shortwave infrared (443—
2190 nm), with spatial resolutions of 10 m, 20 m, and 60 m
depending on the band. Its wide swath width of 290 km enables
systematic monitoring of terrestrial ecosystems, vegetation, land
cover, and forest dynamics. The high temporal, spectral, and
spatial resolution of Sentinel-2 makes it particularly well-suited for
forest classification, phenological analysis, and environmental
monitoring applications. In this study, Sentinel-2 imagery was
utilized as the primary remote sensing data source to support multi-
temporal forest species classification.

The study area overlaps with three Sentinel-2 tiles (T36TUL,
T36TUK, and T36TVL) (cf. Figure 1). A total of 17 Sentinel-2
scenes acquired in 2018 were downloaded from the Copernicus
Open Access Hub (https://www.copernicus.eu/). To capture key
phenological stages, images from April (leaf onset), August (peak
canopy development), and November (leaf senescence) were
selected, following the approach of Liu et al. (2023). The Sentinel-
2 Level-1C images, with a spatial resolution of 20 meters, were
atmospherically corrected using the Sen2Cor processor to generate
Level-2A surface reflectance products. This preprocessing step
minimized atmospheric distortions and ensured radiometric

consistency across the selected dates, providing reliable input data
for the classification analysis.

In this study, a field survey was conducted between 2-10
September 2023 to collect reference data for model training and
accuracy assessment. The sampling design considered factors
influencing classification performance, including tree species
composition, canopy structure, and species mixture ratios. A 500-
meter buffer zone (250 meters on each side) was generated along
the existing road network to optimize field accessibility. A
systematic grid was established at 500-meter intervals, generating
1120 candidate sampling points. From these, 162 points were
randomly selected based on the areal distribution of tree species
and canopy closure conditions.

Due to the close proximity of some points within homogeneous
stand types and limited road access in certain locations, final field
measurements were successfully collected at 112 sampling points.
From these 112 sampling points, 75 were identified as pure stands
and 37 as mixed stands. Based on the field plot records and random
selection, sample sites were assigned for each tree species: 11 plots
for Black Pine, 20 for Scots Pine, 10 for Nordmann Fir, 1 for
Beech, and 2 for Sessile Oak. Considering factors such as data
homogeneity, class purity, and accurate spatial matching, a subset
of 44 plots representing the five tree species was selected from the
initial 112 plots for model training (cf. Figure 2).
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Figure 2. The locations of 112 random sampling plots.

The final dataset was assembled by integrating multiple feature
groups derived from Sentinel-2 imagery and auxiliary data
sources. Specifically, 9 spectral bands, 12 vegetation, water, and
soil indices computed from these bands, and 4 principal
components obtained through Principal Component Analysis
(PCA) were included. In addition, elevation and aspect data
extracted from the digital elevation model were incorporated,
resulting in 27 continuous predictor variables. To account for
seasonal variability, month information (April, August,
November) was added as a categorical variable, increasing the
total number of input features to 28.

The target variable was defined according to tree species classes:
Black Pine ("1"), Scots Pine ("2"), Nordmann Fir ("3"), Beech
("4™), and Sessile Oak ("5"). Thus, the complete dataset
comprised 29 columns combining both predictors and target
classes. The dataset was randomly partitioned into training (70%)
and testing (30%) subsets using MATLAB to facilitate model
calibration and performance assessment.
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2.3 Machine Learning Algorithms

Four machine learning algorithms were employed to perform
tree species classification: RF, SVM, ANN and tree- based EL
methods. The RF algorithm constructs multiple decision trees
using bootstrap sampling and random feature selection at each
node, and aggregates the results through majority voting to
improve classification stability and reduce overfitting (Breiman,
2001). SVM transforms the input data into a higher-dimensional
feature space using kernel functions and identifies the optimal
separating hyperplane that maximizes the margin between classes
(Vapnik et al., 1997). ANN consists of interconnected layers of
neurons with adaptive weights and non-linear activation
functions, enabling the model to capture complex, non-linear
relationships in the data (Basheer and Hajmeer, 2000). The tree-
based EL approach combines multiple decision trees through
boosting or bagging techniques, aggregating the predictions of
multiple weak learners to achieve improved generalization and
predictive accuracy (Zhang and Ma, 2012). All models were
trained and validated on identical training and test datasets to
enable a consistent and fair comparison of their classification
performances.

Following the initial classification, misclassifications and noise
artifacts can negatively affect both the accuracy and the spatial
coherence of the results. To reduce such errors, post- classification
spatial filtering techniques were applied. In this study, all
classification outputs were produced in five classes and
subsequently processed using a 5x5 Majority Filter. This filter
assigns each pixel the most frequently occurring class value within
its defined neighbourhood window, thereby smoothing isolated
misclassified pixels and enhancing spatial consistency.

3. Results and Discussions

In this study, classification performance was assessed in detail for
the RF, SVM, ANN, and EL algorithms using multiple accuracy
metrics and confusion matrices. For each algorithm, standard
evaluation measures such as Overall Accuracy (OA), Producer’s
Accuracy (PA), and User’s Accuracy (UA) were calculated based
on both training and test datasets. The results indicated that all
machine learning algorithms achieved higher overall accuracies on
the training data, while a slight decrease in accuracy was
observed on the test data, reflecting the models’ generalization
capabilities.  Confusion matrix analyses revealed that
misclassifications were more frequent among spectrally similar
species, and the degree of confusion varied depending on the
algorithm applied. Overall, RF demonstrated superior
performance, particularly in cases where species showed distinct
spectral and structural characteristics. These findings emphasize
the importance of selecting an appropriate classification algorithm
that aligns with the specific data structure and class separability
characteristics of the study area. The RF classification results on
the test dataset is given in Table 2.

Reference

B.P.| S.P.| N.F. | B. | S.O.| Total

9 B.P. 1790 | O 14 110 805
= | SP. |7 962 | 4 0 |0 973
ﬁ N.P. | 4 6 705 |0 | O 715
O LB. 0 0 0 62 |0 62
SO. |0 0 0 1 121 | 122
Total | 801 | 968 | 723 | 64 | 121 | 2677

Table 2. RF classification error matrix on test data (B.P.: Black
Pine; S.P.: Scots Pine, N.P.: Nordmann Fir; B.: Beech; S.O.:
Sessile Oak)

The classification performance of the RF model was further
analyzed using detailed accuracy metrics derived from the
independent test dataset. The PA values were 98.63% for Black
Pine (Pinus nigra), 99.38% for Scots Pine (Pinus sylvestris),
97.67% for Nordmann Fir (Abies nordmanniana ssp.), 96.87% for
Beech (Fagus spp.), and 100% for Sessile Oak (Quercus
petraea). Correspondingly, the UA values were 98.25% for Black
Pine, 98.86% for Scots Pine, 98.60% for Nordmann Fir, 100.00%
for Beech and 99.18% for Sessile Oak.

The OA achieved by the RF model on the test dataset reached
98.65%, confirming the high classification reliability and
generalization capability of the model across both coniferous and
broadleaf species present in the study area (cf. Figure 3).
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Figure 3. The RF classification on August for the study area
(Note: The mask layer is derived from the forest management
map of the study area and it includes non-forested areas such as
agriculture, built-up, etc.).

Reference

B.P.[ SP.| NF.[B. [ S.0O.[ Total

< [BP. [797 [1 [7 [0 |0 [805
& [ SP. |1 [964]4 |0 |0 [969
2[NP. |2 |2 [712]0 [0 [716
olB__ [0 [0 [o [e3]1 |64
sO. |1 [1 [0 |1 [120]123
Total | 801 | 968 | 723 | 64 | 121 | 2677

Table 3. SVM- Polynomial Kernel classification error matrix on
test data (B.P.: Black Pine; S.P.: Scots Pine, N.P.: Nordmann
Fir; B.: Beech; S.O.: Sessile Oak)

The classification performance of the SVM model with the
polynomial kernel was examined using the test dataset. The PA
values obtained were 99.50% for Black Pine (Pinus nigra),
99.59% for Scots Pine (Pinus sylvestris), 98.48% for Nordmann
Fir (Abies nordmanniana ssp.), 98.44% for Beech (Fagus spp.),
and 99.17% for Sessile Oak (Quercus petraea). The
corresponding UA values were calculated as 99.01% for Black
Pine, 99.48% for Scots Pine, 99.44% for Nordmann Fir, 98.44%
for Beech and 97.56% for Sessile Oak. The SVM model
employing a polynomial kernel achieved an OA of 99.22%.
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Reference

B.P.| SP.| NF.[ B. [ S.O.[ Total

< [BP. [796[1 [8 |0 |0 [805
& [SP. [2 [962[5 [0 [0 [969
@[NP [3 |2 [710]0 [0 [715
G LB. 0 [0 [o [e3]1 |64
sO. |0 [3 [0 [1 |120]124
Total | 801 | 968 | 723 | 64 | 121 | 2677

Table 4. SVM- RBF Kernel classification error matrix on test
data (B.P.: Black Pine; S.P.: Scots Pine, N.P.: Nordmann Fir; B.:
Beech; S.O.: Sessile Oak).

The total number of validation instances used in this evaluation was
slightly similiar from those used in other models. The performance
of the SVM model utilizing an RBF kernel was assessed on the
independent test dataset. The PA values were calculated as 99.38%
for Black Pine (Pinus nigra), 99.38% for Scots Pine (Pinus
sylvestris), 98.20% for Nordmann Fir (Abies nordmanniana ssp.),
98.44% for Beech (Fagus spp.), and 99.17% for Sessile Oak
(Quercus petraea). Correspondingly, the UA values were 98.88%
for Black Pine, 99.28% for Scots Pine, 99.30% for Nordmann
Fir, 98.44% for Beech and 96.77% for Sessile Oak. The OA test
was calculated for SVM- RBF kernel 99.03%.

Reference

B.P.| SP.[ NF.[B.[S.0.] Total

< [BP. [791[0 |14 |0 [0 [805
& [SP. [3 [954[9 |0 |0 [966
2| NP [5 [13 [700 [0 [0 [718
G lB._ 10 [0 o [60[0 |60
SO. |2 [1 [0 [4 [121]128
Total | 801 | 968 | 723 [ 64 | 121 | 2677

Table 5. ANN classification error matrix on test data (B.P.: Black
Pine; S.P.: Scots Pine, N.P.: Nordmann Fir; B.: Beech; S.O.:
Sessile Oak).

The performance of the ANN model was assessed using a test
dataset., and its classification performance was quantified using
class-specific accuracy metrics. The PA was calculated as 98.75%
for Black Pine (Pinus nigra), 98.55% for Scots Pine (Pinus
sylvestris), 96.82% for Nordmann Fir (Abies nordmanniana ssp.),
93.75% for Beech (Fagus spp.) and 100% for Sessile Oak
(Quercus petraea). The UA values were found to be 98.26% for
Black Pine, 98.76% for Scots Pine, 97.49% for Nordmann Fir,
100% for Beech and 94.53% for Sessile Oak. The OA achieved by
the ANN model on the test dataset reached 98.09%.

Reference

B.P.| SP.| NF.[B. [ S.O.] Total

< [BP. [ 787 ]2 [15 B [0 807
& [SP. [6 [939[13 o [0 958
2 NP [7 127 [695[0 [0 [729
G LB. 0 [0 [o [e0]0 [60
so. |1 o [o [1 J121]123
Total | 801 | 968 | 723 | 64 | 121 | 2677

Table 6. EL classification error matrix on test data (B.P.: Black
Pine; S.P.: Scots Pine, N.P.: Nordmann Fir; B.: Beech; S.O.:
Sessile Oak).

The EL model, which integrates multiple base classifiers to
improve prediction robustness, was evaluated on the independent
test dataset. The classification performance demonstrated high
accuracy across all species. The PA values were 98.25% for Black
Pine (Pinus nigra), 97.00% for Scots Pine (Pinus sylvestris),
96.13% for Nordmann Fir (Abies nordmanniana ssp.), 93.75%
for Beech (Fagus spp.) and 100.00% for Sessile Oak (Quercus
petraea). Similarly, the UA values were 97.52% for Black Pine,

98.02% for Scots Pine, 95.34% for Nordmann Fir 100.00% for
Beech and 98.37% for Sessile Oak. The OA of the EL model was
computed as 97.20%.

The seasonal performance analysis revealed notable variations in
classification accuracy across tree species and phenological
periods. For Black Pine (Pinus nigra), accuracy decreased slightly
from 82.46% in April to 81.00% in August, followed by a modest
increase to 82.37% in November, indicating relatively stable
spectral separability throughout the year. Scots Pine (Pinus
sylvestris) and Nordmann Fir (Abies nordmanniana ssp.) exhibited
more stable classification results, maintaining high accuracy even
in November (92.52%) for Scots Pine and in August (76.98%) for
Nordmann Fir, suggesting that these species are less affected by
phenological changes. Black Pine, Scots Pine, and Nordmann Fir
demonstrated consistent classification performance across all
months, indicating its spectral stability and suitability for year-
round mapping under the conditions of this study. Overall,
coniferous species were minimally affected by phenological
changes.

In the case of Beech (Fagus spp.), accuracy was extremely low in
April (18.29%) but increased substantially to 84.56% in August.
This sharp seasonal contrast suggests that Beech develops more
distinctive spectral characteristics during full leaf development in
summer, while becoming nearly indistinguishable from other
species during leaf-off periods, as reflected by 61.83% accuracy in
November. For Sessile Oak (Quercus petraea), accuracy declined
gradually from 73.73% in April to 70.85% in August, and further
to 66.82% in November, indicating increasing classification
challenges towards the end of the growing season. These patterns
may be associated with changes in leaf coloration, moisture loss,
and declining photosynthetic activity.

Overall, August emerged as the most favourable period for tree
species classification, providing the highest accuracies across all
species due to enhanced spectral separability during peak
vegetation activity. In contrast, November showed a marked
decrease in classification performance for deciduous species,
primarily due to increased spectral similarity and canopy
senescence.

4, Conclusions

This study demonstrated the effective use of Sentinel-2 imagery
combined with machine learning algorithms for tree species
classification in the Bolu, Aladag Forest Management Directorate.
Four classification models RF, SVM, ANN, and EL were applied
and systematically compared. Among the models tested, RF
exhibited superior performance with an OA of 98.65% on the test
data. This result slightly surpasses the 96% accuracy reported by
Hemmerling et al. (2021) and is also higher than the 92.38%
achieved by Grabska et al. (2019) in classifying nine tree species
using Sentinel-2 imagery. This difference may be due to the use of
multi-seasonal imagery and a more diverse set of vegetation
indices in the current study. While both studies used Sentinel-2
time-series data and RF algorithms, the higher accuracy in this
study may be attributed to the inclusion of a broader set of
vegetation indices and careful sample balancing strategies.
Seasonal analysis further highlighted the influence of phenological
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variability on classification accuracy, with August emerging as the
optimal period for species discrimination due to enhanced spectral
separability during peak vegetation activity.

The results emphasize the importance of integrating multi-
temporal remote sensing data with robust classification algorithms
to improve species-level forest mapping. The proposed approach
provides a reliable framework for operational forest monitoring
and management in support of sustainable forestry practices.
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