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Abstract

The United Arab Emirates (UAE) experienced an extreme rainfall event between April 15 and 17, 2024, and that resulted in severe
flooding in its coastal regions. Dubai was among the most affected regions. This study applies a hierarchical deep learning model on
PlanetScope imagery to detect flood inundation, quantify flood extent by land cover, and examine short-term recovery dynamics.
While earlier work detailed the methodological development of a hierarchical U-Net model (Hong et al., in press), here we emphasize
its application for monitoring resilience trajectories in an arid urban environment. Results show that approximately 22 km? of land was
flooded, with bare ground and built area most affected, while vegetation demonstrated greater resilience. Recovery dynamics reveal
that vegetation and built area recovered rapidly within the first week, whereas bare ground recovered more slowly but continued to
improve through the ten-day monitoring period. These findings highlight the importance of integrating fine-resolution satellite
monitoring with deep learning approaches to better understand disaster recovery and inform urban resilience planning in desert cities.

1. Introduction

The intense rainfall that swept across the United Arab Emirates
(UAE) from April 15 to 17, 2024, resulted in widespread urban
flooding and significant disruption in coastal cities, and Dubai
was among the most severely impacted regions(Alawlaqi, 2024;
Oxford Analytica, 2024; Rannard, 2024; UAEGOV
[@UAEmediaoffice], 2024). The scale of the event marked the
need for a comprehensive assessment of its environmental
consequences, particularly in terms of how different land use and
land cover (LULC) classes responded to the inundation. This
study focuses developing a hierarchical U-Net deep learning
architecture for LULC classification in arid, desert environments,
and applying this architecture for evaluating the spatial and
temporal dynamics of LULC changes in Dubai triggered by this
extreme weather event.

This study extends the earlier work of Hong (2025), which used
the U-Net backbone model for LULC classification in the
aftermath of the April 2024 Dubai floods. While that study
showed the feasibility of deep learning for flood impact
assessment, it revealed limitations in distinguishing spectrally
similar classes, especially vegetation. To address these
challenges, the present study proposes a hierarchical U-Net
framework—hereafter referred to as Hierarchical U-Net with
Class-Specific Refinement, which incorporates class-specific
expert models and Bayesian smoothing to improve spatial
coherence. This approach enhances classification accuracy and
boundary delineation. The main objectives of this study are: (1)
to develop an enhanced hierarchical U-Net model to classify pre-
and post-rainfall LULC patterns using high-resolution satellite
imagery, and (2) to monitor the recovery trajectories of various
landscape features.

The presented hierarchical U-Net deep learning model was
trained on annotated LULC data derived from Sentinel-2 imagery
(10 m resolution) and cross-validated against high-resolution
PlanetScope imagery (3 m resolution) to ensure alignment with
real-world conditions. PlanetScope imagery captured from a pre-
rainfall date (April 14) and a series of post-rainfall dates (April
18, 20, 25, 26, and 27) was classified using the trained model.
Through this approach, we assessed the extent of flooding and

the degree of recovery across key LULC categories—water,
vegetation, built areas, and bare ground. The results offer
valuable insights for environmental monitoring and post-disaster
planning in rapidly developing arid regions.

2. Methods
2.1 Study Area and Datasets

The study area Dubai City along the southeastern coast of the
Persian Gulf was outlined using the boundary shapefile provided
by ESRI (2024) and modified to incorporate additional coastal
water regions and islands. This area covers around 1,534 km?
(Figure 1).

The study utilized PlanetScope imagery (Planet Labs PBC, 2024)
to create LULC classification data. This imagery includes eight
multispectral bands at a resolution of 3 meters and was captured
on a pre-rainfall date of April 14, as well as on post-rainfall dates
of April 18, 20, 25, 26, and 27, 2024. The open-access Sentinel-
2 LULC classification data from 2023 at a resolution of 10 meters
(Karra et al., 2021) was used in the training sample annotation
process. Four LULC classes were defined: water, vegetation,
built area, and bare ground.

The annotated sample dataset was made from the 2023 Sentinel-
2 LULC classification data and manually corrected by cross-
referencing the April 14 PlanetScope scene. The resulting sample
dataset is composed of four LULC categories: water, vegetation,
built-up areas, and bare ground. In total, 1,188 annotated image
slices were created, each with dimensions of 256 x 256 pixels
and a stride of 128 x 128 pixels, to be used in training the U-Net
model.

2.2 Classification Approach

A hierarchical deep learning framework was used to classify
PlanetScope imagery into the four LULC classes. The model
builds on an earlier U-Net model trained by Hong (2025) and
later improved with the incorporation of incorporates class-
specific refinement and Bayesian smoothing as detailed in Hong
et al. (in press). For this paper, only a brief description is
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provided: (1) an initial multi-class segmentation identifies all
classes; (2) additional expert refinement improves discrimination

Figure 1. The boundagof study area, Dubai city, modified
from Hong (2025).

discrimination between spectrally similar categories; and (3) a
Bayesian smoothing step enhances boundary coherence. Rather
than presenting technical development, this study emphasizes the
application of the framework to track post-rainfall changes. The
trained model was applied to all PlanetScope scenes, and
classification outputs were imported into ArcGIS Pro 3.4 for
further analysis.

2.3 Flood and Recovery Analysis

There were three stages in the flood mapping and recovery
analysis: (1) detecting flood areas through a pre—post
classification comparison, (2) quantifying floods by land cover,
and (3) tracking recovery by land cover across a series of post-
rainfall dates.

The first stage was flood detection. The pre-rainfall PlanetScope
classification (April 14, 2024) was compared with the
immediate post-rainfall classification (April 18, 2024) to
delineate inundated zones. Using the Change Detection Wizard
in ArcGIS Pro 3.4, all pixels that shifted from non-water
categories (vegetation, bare ground, or built-up area) to water
were flagged as flooded. This procedure provided a spatially
explicit flood map at 3 m resolution.

The second stage was flood quantification by land cover. The
flooded areas were overlaid with the original LULC classes to
determine how different landscapes were affected. Changes
were summarized in both absolute area (km?) and relative share
(%) of flooded land within each LULC category. This allowed
identification of the most vulnerable land cover types (e.g., bare
ground vs. vegetation).

The last stage was tracking recovery by land cover. To assess
resilience, the hierarchical U-Net classifications from later dates
(April 20, 25, 26, and 27) were compared against the April 18
flood map. Pixels initially classified as flooded were tracked to
determine when they reverted back to non-water classes.
Cumulative recovery curves were generated for each land cover
class to show the proportion of flooded pixels that had recovered
by each monitoring date.

3. Results

3.1 Flood Detection

The hierarchical U-Net model demonstrated strong performance
across all land cover classes, which produces coherent class
boundaries and reducing noise compared to baseline U-Net
results in Hong (2025). Figure 2 illustrates this by comparing
raw PlanetScope imagery with the corresponding classifications
before and after the rainfall event with a focus on the a part of the
study area. On April 14, bare ground (purple) and built-up areas
(orange) were the dominant land cover types, with patches of
vegetation (green) and permanent water (blue). On April 18, one
day after the storm, extensive new water patches appeared across
both bare ground and urban areas, clearly reflecting flood
inundation. By April 20, three days later, many urban areas had
drained, while low-lying bare ground remained inundated. These
panels demonstrate both the visual accuracy of the model and its
capacity to capture short-term land cover transitions triggered by
flooding.

Building on these classification results, the mapped flood extent
was analyzed at the city scale. The flooded areas, where the
LULC classes changed from non-water on April 14 to water class
on April 18, the day immediately after the rain, were mapped out
and displayed in Figure 3. As we can see, most of the flooded
areas were concentrated in specific low-lying or non-vegetated
zones, such as Ras Al Khor Wildlife Sanctuary along Dubai
Creek, coastal zones such as the World Islands, and industrial
areas in the southern part of the city. The model also detected
small inundate patches within built-up districts, and such
localized surface water accumulation may reflect inadequate
drainage. These spatial patterns highlight how both natural
wetlands and heavily urbanized or industrialized areas became
hotspots of flooding.

3.2 Flood Quantification by Land Cover

The second stage of the analysis quantified the extent of flooding
by land cover type. The quantitative results of the flooded areas
are presented in Figure 4. Overall, approximately 22 km? of the
land was flooded. Among the flooded land, bare ground
accounted for about 14 km? (66% of the total), while built-up
areas were the second most affected at about 7 km? (32%). In
contrast, only 0.4 km? of vegetation was flooded, and that
accounted for 2% of the flooded extent. These results indicate
that vegetation demonstrated greater resilience to flooding,
whereas bare ground and built-up areas were more vulnerable.
The high proportions in bare ground and built area reflect poor
infiltration capacity of exposed soils in arid environments and the
rapid surface runoff and water pooling in urbanized areas.

3.3  Recovery Tracking by Land Cover

The third stage of the analysis examined how quickly different
land cover classes recovered from flooding in the days following
the April 2024 rainfall event. Recovery was defined as the
percentage of pixels that reverted to their original pre-rainfall
class, and was assessed three, eight, and ten days after the storm.
While all classes demonstrated a relatively high recovery level
within the first three days after the rain, which is 85 percent on
average, the pace of recovery varied across land cover types.

The recovery speed by land cover class between successive post-
rainfall dates is summarized in Figure 5. Vegetation showed the
fastest short-term recovery. Between Day 3 and Day 8, recovery
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Figure 2. Visual comparison of raw PlanetScope images and hierarchical U-Net classification results before and after the April
2024 rainfall event. The figure highlights transitions from non-water classes (bare ground, built-up, vegetation) to water
immediately after the flood and the onset of recovery by April 20.
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Figure 3. Spatial distribution of flooded areas detected by the hierarchical U-Net model on April 18, 2024.
Flooding was concentrated in wetlands, coastal reclamation zones, and industrial estates, with additional
localized inundation in urban districts.
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Figure 4. The LULC categorical summary of the flooded areas.
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Flood Recovery Speed by Land Cover Class (Dubai Flood 2024)
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Figure 5. Average recovery speed of different land cover classes between successive post-rainfall dates (Day 3-8

increased by nearly 1.9 percent, which suggests that most
vegetated areas drained rapidly immediately after the rain.
However, this trend reversed as a slight decline occurred between
Day 8 and Day 10. This indicates that while vegetation was
initially resilient, some areas likely experienced lingering
waterlogging or stress that prevented complete stabilization in the
longer term. Built area showed a similar pattern, with recovery
improving by about 1.3 percent between Day 3 and Day 8,
followed by little to no further improvement in the subsequent
two days. This finding reflects the capacity of urban drainage
systems to dissipate water quickly, though it also suggests that
the majority of recovery processes in urban environments are
completed within the first week after flooding.

By contrast, bare ground displayed a slower but more sustained
recovery trajectory. Gains were more modest in the first interval,
with only about 0.6 percent improvement between Day 3 and Day
8. However, recovery continued to progress after Day 8, with a
further 0.4 percent increase by Day 10. This gradual recovery
pattern highlights the susceptibility of exposed soils in arid
environments to prolonged surface pooling, as well as the longer
drainage times required compared to vegetated or urbanized
surfaces.

4. Conclusion

This study presented a Hierarchical U-Net with Class-Specific
Refinement and Bayesian Smoothing to improve LULC
classification and post-flood recovery assessment in arid urban
environments. By combining high-resolution PlanetScope
imagery and deep learning, we were able to detect inundation
zones, quantify flood extent by land cover type, and track short-
term recovery dynamics across multiple post-rainfall dates.

and Day 8-10).

Flood detection showed that inundation was mainly in low-lying
wetlands, coastal reclamation projects, and industrial areas. The
quantification of flood by LULC revealed that bare ground and
built area accounted for nearly all the affected land, while
vegetation was relatively resilient. In terms of the dynamics of
recovery across LULC classes, all land cover types achieved high
recovery levels within ten days, but their trajectories differed.
Vegetation and built area recovered rapidly within the first week,
whereas bare ground recovered more slowly but showed
continued improvement through the ten-day period.

The outcomes from this work emphasize that flood vulnerability
and resilience are not uniform across the urban landscape. Bare
ground was the most susceptible to prolonged flooding probably
due to its exposed nature. Built area experienced localized
inundation and drained quickly. Vegetation showed high short-
term resilience with some longer-term stress effects. By
combining fine-scale satellite observations with an enhanced
deep learning framework, this study provides an effective
approach for mapping floods and monitoring recovery in arid
urban environments. Such insights are critical for improving
urban resilience planning, guiding flood mitigation strategies,
and supporting adaptation to future extreme rainfall events in
rapidly developing desert cities.
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