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Abstract

This study develops a transparent, weighted framework for assessing road condition and prioritizing maintenance at the segment
level. Traffic data (AADT/ESAL) are fused with climate and terrain layers extracted via Google Earth Engine (GEE) into a national
spatial database. A Final Road Condition Index (FRCI; 0-100) is derived from eight weighted criteria (CTDI, slope, vegetation,
surface water, topographic wetness, precipitation, snow, erosion), updated periodically to reflect changing conditions. The
framework was applied to Tiirkiye’s national road network managed by the General Directorate of Highways (KGM). Environmental
rasters were sampled every 5 km along road centerlines, traffic was converted to ESAL and normalized to CTDI, and the FRCI was
computed as a weighted sum. An interactive Streamlit dashboard with a MySQL/PostgreSQL backend enables visualization,
sensitivity testing, and Al-driven treatment recommendations, benchmarked against KGM’s current inspection-based system. Results
show that incorporating GEE layers improved prioritization compared to AADT-only baselines, increased decision consistency,
reduced time-to-decision, and yielded higher benefit under fixed budgets. The suggestion engine provided more consistent, better-
justified recommendations. The study recommends adopting the FRCI framework nationally, institutionalizing periodic GEE
updates, formal governance of weights and criteria, and embedding the dashboard and suggestion engine into KGM’s annual
planning cycle for more efficient, evidence-based maintenance.

1. Introduction heterogeneous data to generate explainable, segment-level

recommendations tied to verifiable documentary evidence.

1.1 Background and Motivation

1.3 Main Research Question
Tiirkiye’s 68,000 km highway network links industrial hubs,
ports, and rural communities. Pavement distress rutting,
cracking, potholes intensifies where heavy traffic loads coincide
with harsh climatic and topographic conditions. Agency
practices centered on visual surveys and ad-hoc traffic counts
capture only snapshots of a multifactor problem, often leading
to reactive rather than preventive planning.

How can a weighted framework with systematically assigned
feature weights provide an integrated, auditable workflow that
continuously updates segment-level risk indices (FRCI),
translates them into transparent and cost-effective maintenance
treatments, and grounds each recommendation in current agency
standards and historical records?

1.2 Problem Statement 1.4 Sub-questions

1. To what extent does using GEE to derive risk indices
from traffic, climate, and terrain improve maintenance
prioritization compared with current KGM practices?

2. How can Al-driven maintenance suggestion engines
enhance decision consistency and cost-effectiveness

KGM allocates maintenance funds largely from periodic visual
inspections and annual traffic volumes. These inputs under-
represent spatial/temporal variability (e.g., freeze thaw in the
Black Sea, extreme heat on the Mediterranean, steep grades,
drainage deficiencies) and can misallocate scarce budgets. We

frame the challenge as a geospatial decision problem: segment compared with purely rule-based or ad-hoc
the national network; enrich with multi-source layers traffic approaches?
loading (ESAL/AADT), climate normals and extremes, terrain L
(slope/erosion), land-use context—within a unified spatial ~ 1-5 Research Objectives
database; compute segment-level composite risk indicators; and . L
1. Data Fusion: Integrate historical KGM traffic

expose explainable, cost-aware treatment suggestions at the

point of decision datasets with GEE environmental layers in a unified

spatial database.

2.  Composite Metric: Develop a scalable FRCI by
systematically assigning weights to traffic and
environmental features to quantify segment-level risk
on a 0—100 scale.

Gap. There is no auditable workflow that
continuously refreshes spatially granular risk indices at national

integrated,

scale, translates those risks into transparent, cost-aware

treatments with expected benefits, and consistently grounds
decisions in up-to-date standards and historical contracts. This
necessitates a GIS-centric, Alassisted framework that fuses

3.  Decision Support: Build an SQL-backed dashboard
plus an Al-driven suggestion engine for consistent,
transparent ~ recommendations aligned with
institutional standards and records.
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2. Literature Review & Previous
2.1 Highway Maintenance Prioritisation Paradigms

Early approaches relied on the Pavement Condition Index (PCI)
(Shahin, 2005). Deterministic models used deterioration curves
vs. cumulative ESALs (Paterson, 1987). Recent work leverages
ML on sensor imagery (Gopalakrishnan, 2018).

3.3 Data Sources

Era Primary Data | Method Limitation

1980s Visual PCI Manual Subjective
ranking

1990s PCI+ AADT HDM-III Static curves
models

2010s LIDAR, GPR | ML Data-hungry
classifiers

2020s Multisource Deep Explainability

fused ensembles

Table 1. Comparison of highway-maintenance prioritisation
methods

2.2 Environmental Factors in Road Deterioration

Thermal cracking accelerates with high diurnal temperature
swings; freeze—thaw cycles induce potholes via icelens
expansion (Qiu et al., 2022). Vegetation indices (NDVI) relate
to moisture retention and subgrade condition (U.S. Geological
Survey, 2011).

2.3 Traffic-Load Impact Assessment

ESAL normalizes mixed traffic; heavy vehicles dominate
fatigue damage (o< axle load4) (Huang, 2004). Speed regimes
matter: high-speed corridors vs. stop-and-go (Gillespie et al.,
1993).

2.4 Multi-Criteria Decision Analysis in Infrastructure

AHP is widely adopted for transparency (Saaty, 1980). Fuzzy
AHP and TOPSIS handle uncertainty (Kahraman et al., 2004;
Hwang and Yoon, 1981). GIS-MCDA frameworks exist for
related risks (Malczewski, 2006).

2.5 Representative Prior Studies

Remote sensing for roadway condition. Comprehensive
review linking remote sensing to road evaluation (Schnebele et
al., 2015).

Automated inspection at scale. Smartphone imagery with deep
neural networks for road damage detection (Maeda et al., 2018).

3. Methodology
3.1 Study Population

All  segments of Tirkiye’s national KGM network
(expressways, primary, secondary). Each segment has a KKNO
identifier.

3.2 Study Sample

Segments in the database after ETL:
e point sampling ~5 km along each segment from
environmental/terrain rasters;
e aggregation to KKNO level for index construction
and analyses.

Data Satellite / Product Feature(s) / Notes
Traffic (KGM, | KGM (official | AADT at dilim per
2024) counts) KKNO;
transformed to
ESAL.
GEE rasters Sentinel-2 MSI | NDVI, NDWI
Landsat-8 L2 | Land Surface
Temperature (LST)
CHIRPS Precipitation
SRTM Elevation, Slope,
Roughness
HydroSHEDS Flow — TWI
MODIS Snow cover
Sentinel-5P Acrosols / dust
VIIRS DNB | Night lights
SMAP Soil moisture
Derived — Erosion Risk =
Slope X
Precipitation.
Time window — 2022-01-01 to
2024-12-31;
harmonized at 100
m scale.
Table 2. Core data sources and processing summary.
Asset details: TurkeyRoads (Table) W Edit

DESCRIPTION ~ FEATURES ~ PROPERTIES

Feawre  city_name kkn  system:index  yol uzunlu
Index (String) floe (SUIng) (g ing) (string) (Float)

0 2583 15.27
1 HY70-03 286
2 AD260-04 095
3 AD595-08 2168

HTY-817
03

TablelD [[] 5 Bk34 10.51
projects/ee-
nj imewlouud/assets/TurkeyRoads

6 k3B 11.99
isT34 213

Date

Start date: oss2 & isT34-00 08

End date: osiz Adalar feribo
File Size 2.58MB o

Humber of Features 3162 *Limited to the first 10 features.

Figure 1. Study frame: national KGM network.
3.4 GEE Pipeline and Sampling

The area is tiled for processing; centerlines are densified with
samples every ~5 km. Time-averaged composites are made per
raster (2022-2024), then values are extracted with
sampleRegions (scale 100 m) and exported to CSV.
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Figure 3. Sampling scheme along road centerlines (iS km
spacing).

Figure 4. Example of extracted climate/terrain variables.

3.5 Traffic Data Processing (ETL 2024)

The 2024 workbook (all sheets) is loaded; two-row headers are
flattened and standardized; a year=24 tag is added; numeric
types are coerced. Key fields: BL.NO, ILi, KKNO, DILIM NO,
UZUNLUK KM, SAYIM TURU, and traffic volumes (YOGT)
by class (car/medium truck/bus/truck/truck+trailer). ESAL
factors: car 0.0004, medium truck 0.5, bus 0.7, heavy truck 1.5,
truck-+trailer 2.0.

Daily_ESAL = Zc (vehicle_count. x ESAL_factor,)
(1)

_ Daily_ESAL
CTDLESAL km = s

@

CTDI is robust-scaled by trimming the 1-99% quantiles and
applying min—max to 0-100 to yield CTDI_norm; CTDI_status
buckets are built with bins [-1, 5, 12, 100] Ilabeled
low/normal/high. Dilim rows are collapsed to the KKNO level
by summing volumes/length/ESAL, averaging speed/violation
metrics, computing length-weighted CTDI ESAL km and
CTDI norm, and selecting the worst CTDI status when
multiple exist. Outputs are saved to CSV and to database tables:
traffic_data, traffic_output, google earth_engine data, and
final_result.

ORTA YKL TicAR TASIT

15 [KASTAMGNU oawos | 1| 1 joTss ez tsan| @1 7| 0 1sm| el
75 KASTAMONL w00t | 2 | w0 oTssa ] ™| W e

70|
oTsss SEaa| amsa| 2| iz s am| 6|
2 joTssi ECTTI T R T ) EXG
Tass| ames| 74| &1 & e 12
oTssa B ECING
jorss zemn|  avz| w3 | 2 24| 60|
orssa 727 EG 1

15 KARABLUK a1z

2
|

5 | ZONGULDAK Wil | 2
1

7

z

of of | | =

Ba70| 4anes| @i 08| 12 feda| &2
oTss I L I I
jorssa eoms| a0 stz 3 ee| @

HEEREHEHBE

5 | KARABOK 10013
15 |GANKRI o1 | 1

Figure 5. Traffic ETL snapshot and CTDI fields.

3.6 Final Road Condition Index (FRCI)

Criteria and weights (sum = 1.0): CTDI_norm 0.08, Slope 0.18,
NDVI mean 0.12, NDWI mean 0.15, TWI 0.15, Precip_mean
0.10, Snow cover 0.12, Erosion risk 0.10. “Worse when
higher”: CTDI, Slope, TWI, Precip, Snow, Erosion. “Better
when higher”: NDVI, NDWI; these are inverted after
normalization to 1 — “x for semantic consistency. Normalization
rescales to [0, 1] (log transforms for right-skewed variables as
needed).

raw — min

FRCLraw(s) = Z w; Ti(8), FRClo-100 =

max — min

)

Classification: Very Good < 20; Good 20—40; Fair 40—60; Poor
60-80; Very Poor > 80. Traffic override rule: if CTDI norm
exceeds a high operational threshold, degrade one level.

3.7 Maintenance Suggestion Module

Overview. This module converts analytics (FRCI and
constituent features) into short, consistent maintenance
suggestions per segment. It runs a local Qwen model (Ollama
qwen3:1.7b) as a controlled text generator: it never invents facts
and only verbalizes provided fields and rule outcomes.

Triggering. Whenever a user clicks a point/segment on the
map, the frontend resolves the KKNO and sends the payload.

Inputs per segment. FRCI (0-100) and class; CTDI norm,
Slope, Precip_mean, Snow cover, TWI,
NDVI _mean/NDWI mean,  Erosion risk;  rule-selected
candidate treatments (e.g., crack sealing, patching, thin overlay,
mill & overlay, drainage, slope stabilization, shoulder/ditch
works) with costs and expected life extension.

Generation policy. Allowed: a concise recommendation, 2-3
driver bullets naming top factors, and an optional budget note
(benefit-per-cost under a user budget). Forbidden: new
numbers/thresholds, external/vendor knowledge, or re-ranking
(ranking is done by the rule engine). Missing fields are called
out briefly and default to a qualitative suggestion.

Prompt & decoding. System role: “Civil-infrastructure editor.
Use only provided fields. Do not invent facts. Preserve
numbers/units. Be concise.” Selectable style (UI): academic-
concise Vvs. operator-plain; language mirrors user locale
(TR/EN). Temperature/top-p: 0.5/0.9 (or 0.2 for repeatable
text). Max tokens: 256-512 (pop-ups), up to 1024 for printable
summaries. Stateless calls (no cross-segment memory).

Integration with the dashboard. Map click — resolve KKNO
— assemble payload (signals, candidates, costs/benefits, context
flags) — call Qwen — render recommendation + drivers (+
budget note). Exports include the same text.
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Configuration summary. Model: qwen3:1.7b (local); role:
controlled NL rendering of rule outputs. Inputs: FRCI/class;
CTDI_norm; Slope; Precip_mean; TWI,

NDVI_mean/NDWI_mean; Snow; Erosion; length; unit cost;
life extension; benefit-per-cost; context flags. Outputs: concise
recommendation + driver bullets + optional budget line.

Data Summary
1843
s Maintenance Suggestions:
10.6

Figure 6. Segment-level suggestion panel after clicking a poinf
on the map.

3.8 Document Assistant (RAG)

The document assistant provides auditable, just-in-time answers
to engineering and policy questions by restricting generation to
a curated corpus (standards, contracts, manuals, reports). It
implements a classic retrieval-augmented generation loop with
persistent vector indexing, conversational memory, and
filename-level source display.

Meee

UM Provder
Document Assistant

Figure 7. RAG assistant Ul with sources.

- -
. ) ' ® 6+ 0

@ LLM Settings

Select LLM Provider

Figure 8. Local (Ollama) LLM settings.

@ LLM Settings
Select LM Provider
W

Groq Settings

Figure 9. Optional Groq LLM settings.
4. Results and Analysis
4.1 Composite Traffic Density Index (CTDI)
Across 25,777 segments, 18 fall in the High-stress category,

concentrated along the Istanbul-Ankara corridor and the Thrace
freight belt.

4.2 Interactive National Map

The interactive FRCI overlay (Streamlit+tMapbox) supports
filtering by status or city.

Highway Road Condition Map

otaractos Rows Condition Hap.

Map Controls Interactive Road Map @

S s -
cEEmeEm A

I o £ L7 Y
City Filter - e e i TS

Turkey
Greoce 1
Map Appearance Z

s Syria

Figure 10. National FRCI map dashboard.

Map Appearance

Roud Status Logend

Road Segment Details

Data Summary 5600 km -

72036

Figure 11. Point details panel in the interactive map.

4.3 Environmental Factor Analysis

Slope and precipitation are the strongest positive correlates with
FRCI (worse condition).
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Relationship Between Slope and Road Condition Index
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Figure 12. Association between slope and FRCI.

Relationship Between Average Precipitation and Road Condition Index
Road Status
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Figure 13. Association between precipitation and FRCI.
4.4 FRCI Analysis

Slope and precipitation are the strongest positive correlates with
FRCI (worse condition).

4.4.1 Distribution of Scores Heavy left skew: 64% of
segments have FRCI < 5 (no-traffic or very short links); the tail
extends to > 60 in high-risk mountain passes.

Distribution of Road Condition Index (FRCI)
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Figure 14. Distribution of the Road Condition Index (FRCI)
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Figure 15. FRCI class breakdown across the network.

4.4.2 Category Breakdown

Top Correlated Features with FRCI_0_100
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Figure 16. Top correlated features with FRCI (0—100).
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4.5 Interactive Dashboard Highlights

Highway Maintenance Dashboard
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Figure 17. Dashboard main page overview.
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Figure 18. Key charts provided in the dashboard.
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Figure 19. Filtering by city in the dashboard.
4.6 Case Study: Ankara Ring Road

Filtering to ANKARA yields 1,843 segments (Avg FRCI =
10.6); the worst 5% align with steep grades (> 6%) and high
ESAL.

4.7 Summary of Key Findings

* Traffic explains ~55% of FRCI variance; environmental
factors ~45%.

* Slope and precipitation are the top environmental
stressors.

» Re-allocating 20% of resurfacing budget to “Very Poor”
segments would cut network-wide risk lane
kilometres by ~35%.
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