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Abstract 

 

This study develops a transparent, weighted framework for assessing road condition and prioritizing maintenance at the segment 

level. Traffic data (AADT/ESAL) are fused with climate and terrain layers extracted via Google Earth Engine (GEE) into a national 

spatial database. A Final Road Condition Index (FRCI; 0–100) is derived from eight weighted criteria (CTDI, slope, vegetation, 

surface water, topographic wetness, precipitation, snow, erosion), updated periodically to reflect changing conditions. The 

framework was applied to Türkiye’s national road network managed by the General Directorate of Highways (KGM). Environmental 

rasters were sampled every 5 km along road centerlines, traffic was converted to ESAL and normalized to CTDI, and the FRCI was 

computed as a weighted sum. An interactive Streamlit dashboard with a MySQL/PostgreSQL backend enables visualization, 

sensitivity testing, and AI-driven treatment recommendations, benchmarked against KGM’s current inspection-based system. Results 

show that incorporating GEE layers improved prioritization compared to AADT-only baselines, increased decision consistency, 

reduced time-to-decision, and yielded higher benefit under fixed budgets. The suggestion engine provided more consistent, better-

justified recommendations. The study recommends adopting the FRCI framework nationally, institutionalizing periodic GEE 

updates, formal governance of weights and criteria, and embedding the dashboard and suggestion engine into KGM’s annual 

planning cycle for more efficient, evidence-based maintenance. 

 

 

1. Introduction 

1.1 Background and Motivation 

Türkiye’s 68,000 km highway network links industrial hubs, 

ports, and rural communities. Pavement distress rutting, 

cracking, potholes intensifies where heavy traffic loads coincide 

with harsh climatic and topographic conditions. Agency 

practices centered on visual surveys and ad-hoc traffic counts 

capture only snapshots of a multifactor problem, often leading 

to reactive rather than preventive planning.  

 

1.2 Problem Statement 

KGM allocates maintenance funds largely from periodic visual 

inspections and annual traffic volumes. These inputs under-

represent spatial/temporal variability (e.g., freeze thaw in the 

Black Sea, extreme heat on the Mediterranean, steep grades, 

drainage deficiencies) and can misallocate scarce budgets. We 

frame the challenge as a geospatial decision problem: segment 

the national network; enrich with multi-source layers traffic 

loading (ESAL/AADT), climate normals and extremes, terrain 

(slope/erosion), land-use context—within a unified spatial 

database; compute segment-level composite risk indicators; and 

expose explainable, cost-aware treatment suggestions at the 

point of decision. 

 

Gap. There is no integrated, auditable workflow that 

continuously refreshes spatially granular risk indices at national 

scale, translates those risks into transparent, cost-aware 

treatments with expected benefits, and consistently grounds 

decisions in up-to-date standards and historical contracts. This 

necessitates a GIS-centric, AIassisted framework that fuses 

heterogeneous data to generate explainable, segment-level 

recommendations tied to verifiable documentary evidence. 

1.3 Main Research Question 

How can a weighted framework with systematically assigned 

feature weights provide an integrated, auditable workflow that 

continuously updates segment-level risk indices (FRCI), 

translates them into transparent and cost-effective maintenance 

treatments, and grounds each recommendation in current agency 

standards and historical records? 

 

1.4 Sub-questions 

1. To what extent does using GEE to derive risk indices 

from traffic, climate, and terrain improve maintenance 

prioritization compared with current KGM practices?  

2. How can AI-driven maintenance suggestion engines 

enhance decision consistency and cost-effectiveness 

compared with purely rule-based or ad-hoc 

approaches? 

 

1.5 Research Objectives 

1. Data Fusion: Integrate historical KGM traffic 

datasets with GEE environmental layers in a unified 

spatial database. 

2. Composite Metric: Develop a scalable FRCI by 

systematically assigning weights to traffic and 

environmental features to quantify segment-level risk 

on a 0–100 scale. 

3. Decision Support: Build an SQL-backed dashboard 

plus an AI-driven suggestion engine for consistent, 

transparent recommendations aligned with 

institutional standards and records. 
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2. Literature Review & Previous  

2.1 Highway Maintenance Prioritisation Paradigms 

Early approaches relied on the Pavement Condition Index (PCI) 

(Shahin, 2005). Deterministic models used deterioration curves 

vs. cumulative ESALs (Paterson, 1987). Recent work leverages 

ML on sensor imagery (Gopalakrishnan, 2018).  

 

Era Primary Data Method Limitation 

1980s Visual PCI Manual 

ranking 

Subjective 

1990s PCI + AADT HDM-III 

models 

Static curves 

2010s LIDAR, GPR ML 

classifiers 

Data-hungry 

2020s Multisource 

fused 

Deep 

ensembles 

Explainability 

Table 1. Comparison of highway-maintenance prioritisation 

methods 

 

2.2 Environmental Factors in Road Deterioration 

Thermal cracking accelerates with high diurnal temperature 

swings; freeze–thaw cycles induce potholes via icelens 

expansion (Qiu et al., 2022). Vegetation indices (NDVI) relate 

to moisture retention and subgrade condition (U.S. Geological 

Survey, 2011). 

 

2.3 Traffic-Load Impact Assessment 

ESAL normalizes mixed traffic; heavy vehicles dominate 

fatigue damage (∝ axle load4) (Huang, 2004). Speed regimes 

matter: high-speed corridors vs. stop-and-go (Gillespie et al., 

1993). 

 

2.4 Multi-Criteria Decision Analysis in Infrastructure 

AHP is widely adopted for transparency (Saaty, 1980). Fuzzy 

AHP and TOPSIS handle uncertainty (Kahraman et al., 2004; 

Hwang and Yoon, 1981). GIS–MCDA frameworks exist for 

related risks (Malczewski, 2006). 

 

2.5 Representative Prior Studies 

Remote sensing for roadway condition. Comprehensive 

review linking remote sensing to road evaluation (Schnebele et 

al., 2015).  

Automated inspection at scale. Smartphone imagery with deep 

neural networks for road damage detection (Maeda et al., 2018). 

 

3. Methodology 

3.1 Study Population 

All segments of Türkiye’s national KGM network 

(expressways, primary, secondary). Each segment has a KKNO 

identifier. 

 

3.2 Study Sample 

Segments in the database after ETL: 

• point sampling ∼5 km along each segment from 

environmental/terrain rasters; 

• aggregation to KKNO level for index construction 

and analyses. 

 

 

3.3 Data Sources 

Data Satellite / Product Feature(s) / Notes 

Traffic (KGM, 

2024) 

KGM (official 

counts) 

AADT at dilim per 

KKNO; 

transformed to 

ESAL. 

GEE rasters 

 

 

 

 

 

 

 

Sentinel-2 MSI 

Landsat-8 L2 

  

NDVI, NDWI 

Land Surface 

Temperature (LST) 

CHIRPS 

  

Precipitation 

SRTM 

  

Elevation, Slope, 

Roughness 

HydroSHEDS 

  

Flow → TWI 

MODIS 

  

Snow cover 

Sentinel-5P 

  

Aerosols / dust 

VIIRS DNB 

  

Night lights 

SMAP 

  

Soil moisture 

Derived — Erosion Risk = 

Slope × 

Precipitation. 

Time window — 2022-01-01 to 

2024-12-31; 

harmonized at 100 

m scale. 

Table 2. Core data sources and processing summary. 

 

 
Figure 1. Study frame: national KGM network. 

 

3.4 GEE Pipeline and Sampling 

The area is tiled for processing; centerlines are densified with 

samples every ∼5 km. Time-averaged composites are made per 

raster (2022–2024), then values are extracted with 

sampleRegions (scale 100 m) and exported to CSV. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W18-2025 
Symposium on GeoSpatial Technologies: Visions and Horizons 2025 (GeoVisions2025), 8–10 October 2025, Çanakkale, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W18-2025-173-2026 | © Author(s) 2026. CC BY 4.0 License.

 
174



 

 
Figure 2. Collecting rasters from Google Earth Engine. 

 

 
Figure 3. Sampling scheme along road centerlines (∼5 km 

spacing). 

 

 
Figure 4. Example of extracted climate/terrain variables. 

 

3.5 Traffic Data Processing (ETL 2024)  

The 2024 workbook (all sheets) is loaded; two-row headers are 

flattened and standardized; a year=24 tag is added; numeric 

types are coerced. Key fields: BL.NO, İLİ, KKNO, DİLİM NO, 

UZUNLUK KM, SAYIM TÜRÜ, and traffic volumes (YOGT) 

by class (car/medium truck/bus/truck/truck+trailer). ESAL 

factors: car 0.0004, medium truck 0.5, bus 0.7, heavy truck 1.5, 

truck+trailer 2.0. 

 

(1) 

           (2) 

 

CTDI is robust-scaled by trimming the 1–99% quantiles and 

applying min–max to 0–100 to yield CTDI_norm; CTDI_status 

buckets are built with bins [−1, 5, 12, 100] labeled 

low/normal/high. Dilim rows are collapsed to the KKNO level 

by summing volumes/length/ESAL, averaging speed/violation 

metrics, computing length-weighted CTDI_ESAL_km and 

CTDI_norm, and selecting the worst CTDI_status when 

multiple exist. Outputs are saved to CSV and to database tables: 

traffic_data, traffic_output, google_earth_engine_data, and 

final_result. 

 

 
Figure 5. Traffic ETL snapshot and CTDI fields. 

 

3.6 Final Road Condition Index (FRCI) 

Criteria and weights (sum = 1.0): CTDI_norm 0.08, Slope 0.18, 

NDVI_mean 0.12, NDWI_mean 0.15, TWI 0.15, Precip_mean 

0.10, Snow cover 0.12, Erosion risk 0.10. “Worse when 

higher”: CTDI, Slope, TWI, Precip, Snow, Erosion. “Better 

when higher”: NDVI, NDWI; these are inverted after 

normalization to 1 − ˜x for semantic consistency. Normalization 

rescales to [0, 1] (log transforms for right-skewed variables as 

needed). 

 

(3) 

 

Classification: Very Good ≤ 20; Good 20–40; Fair 40–60; Poor 

60–80; Very Poor > 80. Traffic override rule: if CTDI_norm 

exceeds a high operational threshold, degrade one level.  

 

3.7 Maintenance Suggestion Module 

Overview. This module converts analytics (FRCI and 

constituent features) into short, consistent maintenance 

suggestions per segment. It runs a local Qwen model (Ollama 

qwen3:1.7b) as a controlled text generator: it never invents facts 

and only verbalizes provided fields and rule outcomes. 

 

Triggering. Whenever a user clicks a point/segment on the 

map, the frontend resolves the KKNO and sends the payload. 

 

Inputs per segment. FRCI (0–100) and class; CTDI_norm, 

Slope, Precip_mean, Snow cover, TWI, 

NDVI_mean/NDWI_mean, Erosion risk; rule-selected 

candidate treatments (e.g., crack sealing, patching, thin overlay, 

mill & overlay, drainage, slope stabilization, shoulder/ditch 

works) with costs and expected life extension. 

 

Generation policy. Allowed: a concise recommendation, 2–3 

driver bullets naming top factors, and an optional budget note 

(benefit-per-cost under a user budget). Forbidden: new 

numbers/thresholds, external/vendor knowledge, or re-ranking 

(ranking is done by the rule engine). Missing fields are called 

out briefly and default to a qualitative suggestion. 

 

Prompt & decoding. System role: “Civil-infrastructure editor. 

Use only provided fields. Do not invent facts. Preserve 

numbers/units. Be concise.” Selectable style (UI): academic-

concise vs. operator-plain; language mirrors user locale 

(TR/EN). Temperature/top-p: 0.5/0.9 (or 0.2 for repeatable 

text). Max tokens: 256–512 (pop-ups), up to 1024 for printable 

summaries. Stateless calls (no cross-segment memory). 

 

Integration with the dashboard. Map click → resolve KKNO 

→ assemble payload (signals, candidates, costs/benefits, context 

flags) → call Qwen → render recommendation + drivers (+ 

budget note). Exports include the same text. 
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Configuration summary. Model: qwen3:1.7b (local); role: 

controlled NL rendering of rule outputs. Inputs: FRCI/class; 

CTDI_norm; Slope; Precip_mean; TWI; 

NDVI_mean/NDWI_mean; Snow; Erosion; length; unit cost; 

life extension; benefit-per-cost; context flags. Outputs: concise 

recommendation + driver bullets + optional budget line. 

 

 
Figure 6. Segment-level suggestion panel after clicking a point 

on the map. 

 

3.8 Document Assistant (RAG) 

The document assistant provides auditable, just-in-time answers 

to engineering and policy questions by restricting generation to 

a curated corpus (standards, contracts, manuals, reports). It 

implements a classic retrieval-augmented generation loop with 

persistent vector indexing, conversational memory, and 

filename-level source display. 

 

 
Figure 7. RAG assistant UI with sources. 

 

 
Figure 8. Local (Ollama) LLM settings. 

 

 
Figure 9. Optional Groq LLM settings. 

 

4. Results and Analysis 

4.1 Composite Traffic Density Index (CTDI) 

Across 25,777 segments, 18 fall in the High-stress category, 

concentrated along the Istanbul–Ankara corridor and the Thrace 

freight belt. 

 

4.2 Interactive National Map 

The interactive FRCI overlay (Streamlit+Mapbox) supports 

filtering by status or city. 

 

 
Figure 10. National FRCI map dashboard. 

 

 
Figure 11. Point details panel in the interactive map. 

 

4.3 Environmental Factor Analysis 

Slope and precipitation are the strongest positive correlates with 

FRCI (worse condition).  
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Figure 12. Association between slope and FRCI. 

 

 
Figure 13. Association between precipitation and FRCI. 

 

4.4 FRCI Analysis 

Slope and precipitation are the strongest positive correlates with 

FRCI (worse condition).  

 

4.4.1 Distribution of Scores Heavy left skew: 64% of 

segments have FRCI < 5 (no-traffic or very short links); the tail 

extends to > 60 in high-risk mountain passes. 

 

 
Figure 14. Distribution of the Road Condition Index (FRCI) 

 

 
Figure 15. FRCI class breakdown across the network. 

 

4.4.2 Category Breakdown 

 

 

 
Figure 16.  Top correlated features with FRCI (0–100). 
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4.5 Interactive Dashboard Highlights 

 
Figure 17. Dashboard main page overview. 

 

 

 
Figure 18. Key charts provided in the dashboard. 

 

 

 
Figure 19. Filtering by city in the dashboard. 

 

4.6 Case Study: Ankara Ring Road 

Filtering to ANKARA yields 1,843 segments (Avg FRCI ≈ 

10.6); the worst 5% align with steep grades (> 6%) and high 

ESAL. 

 

4.7 Summary of Key Findings 

• Traffic explains ∼55% of FRCI variance; environmental 

factors ∼45%. 

• Slope and precipitation are the top environmental 

stressors. 

• Re-allocating 20% of resurfacing budget to “Very Poor” 

segments would cut network-wide risk lane 

kilometres by ∼35%. 
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