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Abstract:

The ability to automatically recognize a wide variety of objects in complex 3D urban environments without relying on predefined
categories or annotated training data is becoming increasingly important for end-users of large-scale geospatial 3D datasets. Given that
objects in urban scenes noticeably vary across locations, users and applications, flexible annotation-free methods for 3D semantic
segmentation are getting desirable. In this work, we present and compare two approaches for classifying aerial photogrammetric point
clouds. The first employs conventional supervised 3D neural networks trained on annotated datasets and predefined object classes. The
second adopts a training-free, open-vocabulary strategy that detects objects directly in images and subsequently projects and refines
them within 3D space. Approaches are evaluated through quantitative metrics and qualitative analysis, providing insights into their

respective capabilities and limitations over 3D urban areas.
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1. Introduction

3D scene understanding is becoming increasingly important in
this era, with applications ranging from autonomous driving to
urban planning and heritage preservation (Grilli and Remondino,
2020; Ozdemir et al., 2021; Mao et al., 2023). Segmenting
objects in a 3D scene is still a major challenge in the vision and
geospatial communities. While many deep learning models have
been developed in recent years and achieved promising methods
(Guo et al., 2021; Zeng et al., 2022; Sun et al., 2024), significant
bottlenecks  remain:  imbalanced  classes,  accuracy,
misclassification, generalization, upscaling, etc. Solutions to
address these challenges include data augmentation (Zhu et al.,
2024), neuro-symbolic logic rules (Grilli et al., 2023), class
weighting (Griffiths and Boehm, 2019),
oversampling/undersampling techniques (Ren and Xia, 2023) or
a multi-level multi-resolution approach (Bayrak et al., 2023).
Supervised 3D deep learning models are data-hungry, require
extensive annotations and are not class agnostic. Acquiring and
annotating the necessary 3D data is expensive. Consequently,
recent developments are moving towards unsupervised or open-
vocabulary (OV) segmentation methods (Chen et al., 2023a;
Gelis, et al., 2023; Boudjoghra et al., 2024; Liu et al., 2024a;
Nguyen et al., 2024), which aims to remove the limitation of
fixed class labels. Generally, these methods utilize self-
supervised learning (SSL) strategies or foundation 2D models,
removing the requirement for 3D training data altogether.
Application in indoor or small-scale scenarios are available
whereas urban, forestry and large-scale scenarios are still of
limited investigation (Takhtkeshha et al., 2024; Bieri et al., 2025;
Ruoppa et al., 2025).
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Figure 1: Unsupervised annotation-free semantic segmentation results (right) of an urban point cloud (left).

This work investigates how training-free open-vocabulary (OV)
methods could pair or complement conventional supervised 3D
neural network for urban point cloud classification (Figure 1).
Experiments on urban datasets shows the capabilities and
limitations of OV methods, highlighting their prospective to
improve 3D segmentation performance across a wider range of
urban classes and datasets.

2. Related works
2.1 Terminology jungle

The convergence of multiple communities and technologies has
led from one side to open and commercial solutions able to
automatically process large point cloud datasets but, from the
other side to a set of new terms with a general lack of clear
meanings for the geospatial sector. In the following we report
some of the hyping terms and a definition to explain the meaning
in particular for geospatial data:

e Transformers: Deep learning models based on self-attention
mechanisms to process entire sequences of data in parallel,
leading to a better understanding of context and long-term
relationships in text, vision, and other types of data.

e Large Language Models (LLM): generative pre-trained
transformers that can perform a variety of natural language
processing (NLP) and analysis tasks, including translating,
generating text, answering questions and identifying data
patterns (also for images or other data, often called Visual or
Multimodal Language Models).

e Vision-language model: an Al model that combines the
capabilities of large language models (LLMs) with computer
vision methods.
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e Open-vocabulary: a deep learning object detection or
segmentation method for images based on free-text prompts,
without limitations on fixed set of categories. They combine
vision-language models with object detection or
segmentation architectures.

e Zero-shot: a deep learning method where a model is trained
to recognize and classify new objects without explicitly being
trained on those objects' examples.

e Few-shot learning: a deep learning method that uses a small
number of examples for training a model.

e Foundation model: a 2D or 3D machine/deep learning model
trained on vast datasets so it can be applied across a wide
range of use cases (e.g. SAM, DINO, etc.).

e Generalization: the ability of a deep learning model to make
accurate predictions on multiple scenarios and for input data
it has never seen before.

2.2 3D deep learning segmentation methods

PointNet (Qi et al., 2017a) represented a significant pioneering
breakthrough in deep learning models for point cloud
segmentation. It analyzes point clouds directly by employing
specialized operations such as max-pooling to maintain
consistent understanding regardless of the point order. Similarly,
PointNet++ (Qi et al., 2017b) introduces a hierarchical structure
that covers local geometric details across multiple scales.
KPConv (Thomas et al., 2019) performs convolution directly on
point clouds by locating learnable kernel points in a local 3D
neighbourhood. Each kernel point gives weights to close input
points based on their spatial distance, allowing for flexible and
geometry-aware feature learning. The flexible version enhances
adaptability to complex shapes and varying point densities.
Alternative approaches employ different architectures, such as
the Graph Convolutional Neural Network (DGCNN) (Zhang et
al., 2019) which utilize dynamically generated graphs in feature
space to capture local neighbourhood information using edge
convolution operations. Transformer architectures for 3D point
cloud semantic segmentation, including Point Transformer (Zhoa
et al., 2021), Superpoint transformer (Robert et al., 2023),
Mask3D (Schult et al, 2023), developed rapidly and
demonstrated successful results. Voxel-based — e.g. VoxelNeXt
(Chen et al., 2023b), or graph-based — e.g. GTNet (Zhou et al.,
2024) representations are also proposed as efficient solutions for
semantic segmentation of 3D data.

2.3 Zero-shot and open-vocabulary segmentation methods

One of the main limitations of supervised deep learning methods
is their high dependency on annotated data for training. For
accuracy and high performance, these methods require training
operations on large amounts of data, which is costly in terms of
annotations, especially for point clouds. Moreover, despite the
training cost, these methods are limited to the labels they are
trained on and cannot perform well for new classes outside the
scope of the training data. These limitations led to the
development of zero-shot methods. In the image domain,
researchers enrich zero-shot ability by training models on
language and images together. CLIP (Radford et al., 2021)
trained two encoders for images and text to align the text and
vision embeddings (i.e. vision-language model). Currently, there
are many vision-language methods (Minderer et al., 2022; Zhai
et al., 2023) that connect the language domain with vision. Most
of these models for object detection - i.e. GLIP (Li et al., 2022),

! https://github.com/HuguesTHOMAS/KPConv
2 https://github.com/yanx27/Pointnet_Pointnet2_pytorch

OV-DETR (Zang et al., 2022) or Grounding DINO (Liu et al.,
2024b) or segmentation - i.e. Mask DINO (Li et al., 2023), OV3D
(Jiang et al., 2024) or Sa2VA (Yuan et al., 2025), provide open-
vocabulary (OV) capability, which means they can perform
detection/segmentation operations beyond their training data,
simply by receiving the desired class name as text input.

In the 3D domain, recent classification methods are also moving
toward OV-based segmentation. These methods highly rely on
the power of previously mentioned 2D models. OpenScene (Peng
et al.,, 2023) leverage on the OV 2D segmentation model
OpenSeg (Ghiasi et al., 2022) for 3D scene segmentation.
Similarly, ConceptFusion (Jatavallabhula et al., 2023) combine
SAM - Segment Anything Model (Kirillov et al., 2023) with
CLIP (Radford et al., 2021) to segment 3D scenes. Some methods
use a class-agnostic 3D instance segmentor to generate masks.
They subsequently apply OV 2D models. OpenMask3D (Takmaz
et al., 2023) is an example of such a method, which uses Mask3D
(Schult et al., 2023) to extract 3D masks. These masks are then
projected onto the images from the scene, and 2D models are
used to extract CLIP embeddings for each 3D mask. This allows
them to later query the 3D scene and segment the desired objects.
Search3D (Takmaz et al., 2025) builds a hierarchical OV 3D
scene representation, enabling the search for entities at varying
levels of granularity: fine-grained object parts, entire objects, or
regions described by attributes like materials. Alami and
Remondino (2024) presented a training-free and flexible method
for indoor 3D point cloud segmentation using 2D OV models and
geometric features. The method detects queried objects in images
using 2D detectors such as YOLO-World (Cheng et al., 2024)
and Grounding DINO, projects the masks to 3D and refines them
with XGBoost-guided region growing. It does not use dataset-
specific training and operates directly on the surveyed scene.

3. Semantic segmentation methods
3.1 3D Deep learning segmentation method

Due to their outstanding performance in various works (Chen et

al., 2022; Bayrak et al., 2024), three 3D DL methods are used:

e KPConv': the architecture is configured with 15 kernel points
and an input radius of 18.0 m, and the initial subsampling
distance is set to 0.3 m and the convolution radius to 2.5 m.
The batch size is set to 3, Cross Entropy Loss function and
Stochastic Gradient Optimizer are used with an initial
learning rate of 10-3, and a momentum of 0.98. The learning
rate is set to decrease exponentially, with a chosen
exponential decay that guarantees a division by 10 every 100
epochs during a training of 250 epochs.

e PointNet++? (PN++): scenes are tiled into 6x6 m to 10x10 m
sections, with 4096 points per tile. Coordinates are
normalized (X, y to unit square; z shifted to the tile
minimum). Classes are weighted by point count, normalized
to mean 1. The model is trained for 100 epochs, but the epoch
with the highest IoU is chosen for testing. Adam optimizer is
used with a cyclic learning rate between 1x107¢ and 1x1073,
step size 1000 and cycle momentum disabled.

e Superpoint Transformer® (SPT) (Robert et al, 2023, Robert et
al 2024): scenes are partitioned into superpoints over tiles of
about 300 x 400 m?. Training is run for 2000 epochs with a
batch size of 2. Optimization uses AdamW with an initial
learning rate of ~5x1073. The best model is selected based on
validation IoU.

3 https://github.com/drprojects/superpoint_transformer
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Figure 2: The proposed segmentation pipeline. Scene images are queried for a desired class using a 2D open-vocabulary (OV) model.
For each image, the best class is selected for each pixel. The resulting segmented masks are then projected onto the point cloud and each

point is labelled with the highest score through a voting process.
3.2 Open-vocabulary 3D segmentation method

We build upon the methodology presented by Alami and
Remondino (2024), customizing the approach for aerial point
clouds over urban areas and 2D OV models on large nadir and
oblique aerial images (Figure 2). Their original projection
method first voxelizes the point cloud, then uses ray casting to
connect mask values from segmented images to the voxels and
finally assigns those values to the points in each voxel. Here, after
ray casting, all points visible are isolated in the segmented image
and then, using camera parameters, projected back onto the
segmented image to directly assign to each point its mask label.
Due to the pipeline’s modular design (Figure 2), different 2D
open-vocabulary models are experimented. In particular, we
adopted the Sa2VA model, which integrates LLaVA (Liu et al.,
2023) with SAM (Kirillov et al., 2023). Unlike open-vocabulary
detectors like Grounding DINO, which perform best with short,
unambiguous class names, Sa2VA leverages a strong vision-
language model capable of understanding natural language
descriptions and segmenting objects from full-sentence prompts.
This capability allows to identify classes described in more detail,
rather than relying solely on a concise prompt. Therefore we
further adapted Sa2VA by removing its built-in thresholding
step, enabling us to obtain a per-pixel score for each queried
class. For each class, we computed the score distribution and set
a threshold equal to the mean score (although this can also be
manually defined). Applying a threshold allows points below the
threshold to be labelled as unknown/other; without it, the entire
scene would be forced into one of the queried classes. For each
image, the outputs from all classes are merged by assigning each
pixel to the class with the highest score.

Due to the nature of urban aerial images and their cm-level GSD,
some objects can be very small with respect to the original,
extremely large image sizes. Moreover, passing a full aerial
image to a 2D OV model is often computationally infeasible and
small objects may be missed due to resizing. To address this,
images are divided into smaller tiles, processed individually and
then results are accumulated. For aerial images, tiling is applied
in all cases, while for smaller images it is used only to detect
small objects. Choosing the right tile size is crucial: tiles that are
too small can fragment large objects, causing misdetection (e.g.,
a building wall might be classified as street if only part of it
appears in the tile). In our experiments, tile sizes between 250-
500 pixels worked well for the used data.

The segmented images are then projected back onto the point
cloud. Since each 3D point can appear in multiple images, its
final label is determined via a voting scheme, selecting the class
with the highest cumulative score across all its projections.

Since the used point clouds have full image coverage, every point
already has a label, making the original (Alami and Remondino,
2024) incomplete-coverage refinement method unnecessary.
Moreover, geometric features per point at multiple radii are not
used due to their computationally and memory intensive needs in
dense aerial urban datasets. Instead, a lightweight noise-
reduction step is used: for each point, we compared its label with
those of its nearest neighbours and examined a very small set of
geometric features (i.e. linearity, verticality and surface change).
If a point’s label differed from that of nearby points with similar
geometric properties, its label is reassigned; otherwise, it
remained unchanged.

4. Datasets and metrics

For the testing and validation procedures, the following datasets
are used:
e STPLS3D (Chen et al.,
world USC scene
e  Hessigheim 3D (Kélle et al., 2021)
e  QGraz (Farella et al., 2025).

2022), specifically the real-

Datasets STPLS3D - = Hessigheim Graz
USC 3D

Source Photogr. Photogr. Photogr.

Platform Drone Drone Aircraft

# Classes 8(9) 7(1) 7

Size (km?) 6 0.1 1.6

# Points (mil) 29 82 107

# Images ca 4,500 ca 1,000 ca 50

Image type Oblique Nadir Nadir +
Oblique

Image  size 4,864 x 14,204 x 14,144 x

(px) 3,648 px 10,652 px 10,560 px

Avg GSD -2 cm 2-3 cm 5 cm (nadir)

Table 1: Employed datasets. In parenthesis the original number
of classes wrt the used ones.

In the STPLS3D-USC scene, predictions are generated for the
classes Vehicle, Pole, Tree, Building, Impervious Surface (road),
Fence and Grass/Dirt (Dirt, which appears only rarely, is merged
with Grass). For open-vocabulary methods, the unlabelled points
are grouped as Others, while for deep learning models, the Clutter
class is used as Others. As Sa2VA could not detect Clutter, no
results are reported in Table 2.

For the Hessigheim 3D dataset, predictions are generated for Low
Vegetation, Impervious Surface (road), Vehicle, Soil/Gravel.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-4-W18-2025-19-2026 | © Author(s) 2026. CC BY 4.0 License. 21



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W18-2025
Symposium on GeoSpatial Technologies: Visions and Horizons 2025 (GeoVisions2025), 8—-10 October 2025, Canakkale, Turkiye

Facade, Roof and Chimney are merged into the class Building;
Shrub and Tree are merged; Vertical Surface, Urban Furniture
and Unknown points are merged into the class Others. This is due
to the fact that the available images are nadir, therefore vertical
structures (like facade and chimney) are not clearly visible in the
images, hence badly detectable by an OV method.

Fo the Graz dataset, predictions are generated for Fagade, Roof,
Tree, Grass, Vehicle and Impervious Surface (street/pavements).
In order to report a complementary and robust evaluation,
Intersection-over-Union (IoU) and F-1 Score metrics are
calculated to demonstrate the spatial overlap between predictions
and annotations as well as the relation between precision and
recall, respectively.

5. Results

Results for the STPLS3D-USC dataset are reported in Table 2
and Figure 3. Grounding DINO queried terms such as vehicle,
pole, tree, building, road, dirt, grass and fence. After detecting
these objects in the images, SAM is used to extract object masks
and project them onto the point cloud. Refinement is skipped
because the available 4,500 images provided near-complete
coverage of all points, making refinement unnecessary. On the
other hand, for the Sa2VA-based method, more detailed
descriptions/prompts are used requiring no additional tuning.
Sa2VA outperformed the initial Grounding DINO + SAM setup,
particularly for classes with large, continuous surfaces (e.g.,
streets, grass). While conventional 2D models detect these
classes using bounding boxes that are then refined by SAM,
Sa2VA bypasses the bounding box stage and produces per-pixel
segmentations directly from text prompts. This difference is
particularly relevant for classes with large or continuous extents,
as it changes how segmentation boundaries are defined. Due to
the large image size and the relatively small size of pole and fence
objects, instead of downscaling the images, a tiling (1,024x1,024
px with some 256 px of overlap) is applied to help OV models
detecting them more effectively. When 2D models internally
resize the images, pole can vanish entirely, while fence often
blend into nearby classes such as building, impervious surface or
grass, therefore, tiling is only applied for these two classes. Other
classes, such as building, tree and vehicle are already sufficiently
visible in the full images, and tiling in these cases often led to
misclassifications. For example, small image patches containing
only a portion of a building are sometimes misinterpreted as
impervious surface or other classes.

STPLS3D - USC

3D DL: Gm?l::(’ﬁng ov:
Class KPConv Dino + SAM Sa2VA
F-1 F-1 F-1

ToU Score ToU Score ToU Score
Building 93.75  96.78 77.17  87.11 8243  90.37
Tree 8623  92.6 6578 79.36 7055 82.73
Vehicle 47.44 6436 3747 5451 2846 4431
Pole 50.62 6721 1898 3191 616 116
Fence 2641 4178 198 389 661 1239
Tmp. 69.52  82.02 12.66 22.47 53.08 69.35
surface
Grass &
Dirt () 3132 4771 2941 4545 3562 52.52
Others (**) | 26.65 42.09 1.14 225 - -

Table 2: Metric results on STPLS3D - USC dataset. (*) merged;
(**): clutter and unknown.

As shown by the reported results, the performance of the open-
vocabulary approach is highly dependent on the chosen 2D
model. Accuracy can vary based on both the size of the queried
object and the wording of the prompt. Class definitions also
influence results. For example, when querying the OV model
with road to detect impervious surface, it may not recognize
pavements. Conversely, using pavement may miss actual road
areas. Moreover, querying the exact impervious surface can be
ambiguous for the model and often leads to reduced performance.
In other cases, the OV model’s interpretation of an object in the
image does not match the annotation definition in the point cloud.
For instance, for fence and pole classes, the OV models
sometimes detect visually plausible areas, such as protective
walls on rooftops or balconies (as fence) or the trunks of palm
trees (as pole), that are respectively annotated as building or tree
in the ground truth (Figure 3).

Hessigheim 3D

3D DL: PN++ OV: Sa2VA

Class IoU F-1 IoU F-1
Score Score

Low Vegetation 77.23 87.15 47.11 @ 64.05
Impervious Surface 78.76 | 88.12 | 46.67 @ 63.64
Vehicle 3393  50.76 13.7 | 24.09
Building (*) 83.67 | 91.11 | 76.19 @ 86.49
Tree & Shrub 58.33 | 73.68 | 28.28 @ 44.09
Soil / Gravel 24.50 @ 39.36 7.13 13.32
gﬂl)‘nown / Others 2633 | 4169 657 | 1233

Table 3: Metric results on Hessigheim 3D dataset. (*) merged
facade, roof and chimney. (**): unlabelled points, vertical
surface and urban furniture.

For Hessigheim 3D, results are consistent with those on
STPLS3D (Figure 4 and Table 3), with the 3D DL model
achieving generally higher performance than the proposed OV
method in all classes. For this dataset, the images are downscaled
to 1,362x1,024 pixels. The original images are indeed too large
in size and tiling has been avoided to preserve context. Indeed,
unlike STPLS3D, where downscaling can make some classes
harder to detect due a more complex scene, in Hessigheim 3D the
classes remain visible and easier to detect after downscaling, so
tiling is unnecessary. Moreover, some labels are inherently
difficult for 2D models to interpret from the available images. For
example, detecting building fagades from nadir imagery is
challenging and abstract classes such as urban furniture can
encompass a wide range of objects. Prompting for every possible
item in such a category is both time-consuming and expensive,
while using a general prompt like “urban furniture” results in low
detection rates and frequent failures. In general, for such cluttered
environment, the most visually distinct and semantically simple
classes are well detected by the 2D model.

Graz
Class 3D DL: SPT OV: Sa2VA
ToU F-1 Score TIoU F-1 Score

Roof 81.95 90.08 75.49 86.03
Fagade 73.73 84.88 68.22 81.10
Grass 64.09 78.11 58.41 73.74
Tree 82.15 90.20 75.60 86.11
Vehicle 49.90 66.58 44.61 61.70
Imp. Surface | 67.35 80.49 59.96 74.97
Others 14.41 25.19 - -

Table 4: Metric results for the Graz dataset.
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Figure 3: OV-based qualitative results for the STPLS3D scene with two close-up comparisons between open-vocabulary (OV) and
deep learning (DL) predictions. The DL model produces sharper class boundaries by leveraging geometric information but shows
reduced accuracy for radiometric classes such as grass (see also Table 2). The OV approach occasionally misinterprets class definitions,
assigning labels such as pole to tree trunks or fence to small bushes and walls. OV segments classes with clear and unambiguous
definitions more accurate. Please note the missing car in the upper-right GT figure, correctly detected by OV and DL methods.

Hessigheim 3D

Soil /
Gravel

Low
Vegetation

Impervious
Surface

Unknown /
Others

. Tree /
Shrub

Figure 4: Visual comparison OV and DL approach on Hessigheim 3D. The OV approach struggles when images and point clouds are
inconsistent (e.g., cars visible in images but absent in the point cloud due to asynchronous acquisitions). It can also miss objects due
to visual ambiguities, for example, trees surrounded by low vegetation being mislabelled as low vegetation. Metrics in Table 3.

Results for the Graz dataset are reported in Figure 5-6 and Table
4. Similar to other experiments, OV approach is ideal for clear,
unambiguous classifications. 3D DL produces clean and precise
predictions for most of the classes.

6. Conclusions

The paper investigated how open-vocabulary (OV) methods
could be used as a powerful semantic segmentation tool for urban

3D point cloud classification when training data are unavailable
or when annotation efforts need to be minimized. With respect to
conventional / supervised 3D deep learning (DL) methods and
for the employed datasets, open-vocabulary segmentation
methods tend to perform well for visually clear and unambiguous
classes but not for highly specific classes or tiny objects not well
recognizable in aerial images (e.g. powerline cables, poles, etc.).
For clattered environments, conventional 3D deep learning
trained on labelled data still provide superior performances.
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Graz dataset

. Roof
Figure 5: Qualitative results on the Graz dataset and the considered classes. Open-vocabulary methods can be particularly useful in
scenarios where annotations or training data are unavailable, enabling scene segmentation without the need for model training.
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Figure 6: Visual comparison between OV and DL approaches on Graz (classes as in Figure 5). As in other datasets, the
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provides sharper and more precise boundaries between objects. However, when classes are less ambiguous and visually simpler, the
performance of both approaches becomes more comparable. Metrics in Table 4.

The proposed OV-based method achieved satisfactory results on
most of the datasets and classes, revealing the potential of
querying any object/class if clearly visible in the aerial images.
An important consideration is the temporal and spatial
consistency between the 3D scene and the 2D images. Moving
objects, such as vehicle, may be visible in the images but absent
from the 3D reconstruction, creating prediction errors. A similar
issue occurs with trees: in the photogrammetric 3D
reconstruction, tree leaves may be missing due to smoothing or
incorrect dense image matching, causing points - such as
impervious surface or building - to be incorrectly predicted as
tree when detections from the images are projected onto the point
cloud.

Despite these issues, a key advantage of the open-vocabulary
approach is that it requires no training or manual annotations and
classes can be detected on the fly. It is worth noting that
multimodal and vision-language models are evolving rapidly.
Hence, in the near future, it is plausible that 2D open-vocabulary
models used for 3D data classification could match or even
outperform fully trained deep learning approaches in certain
settings. The roadmap suggests combining the strengths of both
paradigms. For example, open-vocabulary methods could be

used to annotate part of a dataset automatically, using these labels
to train a supervised 3D deep learning model (pseudo-labelling).
Leveraging the complementary advantages of 2D vision-
language models and 3D deep models could lead to improved
segmentation performance across a wider range of urban classes
and datasets.
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