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Abstract: 
The ability to automatically recognize a wide variety of objects in complex 3D urban environments without relying on predefined 
categories or annotated training data is becoming increasingly important for end-users of large-scale geospatial 3D datasets. Given that 
objects in urban scenes noticeably vary across locations, users and applications, flexible annotation-free methods for 3D semantic 
segmentation are getting desirable. In this work, we present and compare two approaches for classifying aerial photogrammetric point 
clouds. The first employs conventional supervised 3D neural networks trained on annotated datasets and predefined object classes. The 
second adopts a training-free, open-vocabulary strategy that detects objects directly in images and subsequently projects and refines 
them within 3D space. Approaches are evaluated through quantitative metrics and qualitative analysis, providing insights into their 
respective capabilities and limitations over 3D urban areas. 
 

  

 
 

Figure 1: Unsupervised annotation-free semantic segmentation results (right) of an urban point cloud (left).  

1. Introduction 

3D scene understanding is becoming increasingly important in 
this era, with applications ranging from autonomous driving to 
urban planning and heritage preservation (Grilli and Remondino, 
2020; Özdemir et al., 2021; Mao et al., 2023). Segmenting 
objects in a 3D scene is still a major challenge in the vision and 
geospatial communities. While many deep learning models have 
been developed in recent years and achieved promising methods 
(Guo et al., 2021; Zeng et al., 2022; Sun et al., 2024), significant 
bottlenecks remain: imbalanced classes, accuracy, 
misclassification, generalization, upscaling, etc. Solutions to 
address these challenges include data augmentation (Zhu et al., 
2024), neuro-symbolic logic rules (Grilli et al., 2023), class 
weighting (Griffiths and Boehm, 2019), 
oversampling/undersampling techniques (Ren and Xia, 2023) or 
a multi-level multi-resolution approach (Bayrak et al., 2023).  
Supervised 3D deep learning models are data-hungry, require 
extensive annotations and are not class agnostic. Acquiring and 
annotating the necessary 3D data is expensive. Consequently, 
recent developments are moving towards unsupervised or open-
vocabulary (OV) segmentation methods (Chen et al., 2023a; 
Gelis, et al., 2023; Boudjoghra et al., 2024; Liu et al., 2024a; 
Nguyen et al., 2024), which aims to remove the limitation of 
fixed class labels. Generally, these methods utilize self-
supervised learning (SSL) strategies or foundation 2D models, 
removing the requirement for 3D training data altogether. 
Application in indoor or small-scale scenarios are available 
whereas urban, forestry and large-scale scenarios are still of 
limited investigation (Takhtkeshha et al., 2024; Bieri et al., 2025; 
Ruoppa et al., 2025). 

This work investigates how training-free open-vocabulary (OV) 
methods could pair or complement conventional supervised 3D 
neural network for urban point cloud classification (Figure 1). 
Experiments on urban datasets shows the capabilities and 
limitations of OV methods, highlighting their prospective to 
improve 3D segmentation performance across a wider range of 
urban classes and datasets. 
 

2. Related works 

2.1 Terminology jungle 

The convergence of multiple communities and technologies has 
led from one side to open and commercial solutions able to 
automatically process large point cloud datasets but, from the 
other side to a set of new terms with a general lack of clear 
meanings for the geospatial sector. In the following we report 
some of the hyping terms and a definition to explain the meaning 
in particular for geospatial data:  
• Transformers: Deep learning models based on self-attention 

mechanisms to process entire sequences of data in parallel, 
leading to a better understanding of context and long-term 
relationships in text, vision, and other types of data. 

• Large Language Models (LLM): generative pre-trained 
transformers that can perform a variety of natural language 
processing (NLP) and analysis tasks, including translating, 
generating text, answering questions and identifying data 
patterns (also for images or other data, often called Visual or 
Multimodal Language Models). 

• Vision-language model: an AI model that combines the 
capabilities of large language models (LLMs) with computer 
vision methods. 
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• Open-vocabulary: a deep learning object detection or 
segmentation method for images based on free-text prompts, 
without limitations on fixed set of categories. They combine 
vision-language models with object detection or 
segmentation architectures. 

• Zero-shot: a deep learning method where a model is trained 
to recognize and classify new objects without explicitly being 
trained on those objects' examples. 

• Few-shot learning: a deep learning method that uses a small 
number of examples for training a model. 

• Foundation model: a 2D or 3D machine/deep learning model 
trained on vast datasets so it can be applied across a wide 
range of use cases (e.g. SAM, DINO, etc.). 

• Generalization: the ability of a deep learning model to make 
accurate predictions on multiple scenarios and for input data 
it has never seen before. 

 
2.2 3D deep learning segmentation methods 

PointNet (Qi et al., 2017a) represented a significant pioneering 
breakthrough in deep learning models for point cloud 
segmentation. It analyzes point clouds directly by employing 
specialized operations such as max-pooling to maintain 
consistent understanding regardless of the point order. Similarly, 
PointNet++ (Qi et al., 2017b) introduces a hierarchical structure 
that covers local geometric details across multiple scales. 
KPConv (Thomas et al., 2019) performs convolution directly on 
point clouds by locating learnable kernel points in a local 3D 
neighbourhood. Each kernel point gives weights to close input 
points based on their spatial distance, allowing for flexible and 
geometry-aware feature learning. The flexible version enhances 
adaptability to complex shapes and varying point densities. 
Alternative approaches employ different architectures, such as 
the Graph Convolutional Neural Network (DGCNN) (Zhang et 
al., 2019) which utilize dynamically generated graphs in feature 
space to capture local neighbourhood information using edge 
convolution operations. Transformer architectures for 3D point 
cloud semantic segmentation, including Point Transformer (Zhoa 
et al., 2021), Superpoint transformer (Robert et al., 2023), 
Mask3D (Schult et al., 2023), developed rapidly and 
demonstrated successful results. Voxel-based – e.g. VoxelNeXt 
(Chen et al., 2023b), or graph-based – e.g. GTNet (Zhou et al., 
2024) representations are also proposed as efficient solutions for 
semantic segmentation of 3D data. 
 
2.3 Zero-shot and open-vocabulary segmentation methods 

One of the main limitations of supervised deep learning methods 
is their high dependency on annotated data for training. For 
accuracy and high performance, these methods require training 
operations on large amounts of data, which is costly in terms of 
annotations, especially for point clouds. Moreover, despite the 
training cost, these methods are limited to the labels they are 
trained on and cannot perform well for new classes outside the 
scope of the training data. These limitations led to the 
development of zero-shot methods. In the image domain, 
researchers enrich zero-shot ability by training models on 
language and images together. CLIP (Radford et al., 2021) 
trained two encoders for images and text to align the text and 
vision embeddings (i.e. vision-language model). Currently, there 
are many vision-language methods (Minderer et al., 2022; Zhai 
et al., 2023) that connect the language domain with vision. Most 
of these models for object detection - i.e. GLIP (Li et al., 2022), 

 
1 https://github.com/HuguesTHOMAS/KPConv 
2 https://github.com/yanx27/Pointnet_Pointnet2_pytorch 

OV-DETR (Zang et al., 2022) or Grounding DINO (Liu et al., 
2024b) or segmentation - i.e. Mask DINO (Li et al., 2023), OV3D 
(Jiang et al., 2024) or Sa2VA (Yuan et al., 2025), provide open-
vocabulary (OV) capability, which means they can perform 
detection/segmentation operations beyond their training data, 
simply by receiving the desired class name as text input. 
In the 3D domain, recent classification methods are also moving 
toward OV-based segmentation. These methods highly rely on 
the power of previously mentioned 2D models. OpenScene (Peng 
et al., 2023) leverage on the OV 2D segmentation model 
OpenSeg (Ghiasi et al., 2022) for 3D scene segmentation. 
Similarly, ConceptFusion (Jatavallabhula et al., 2023) combine 
SAM - Segment Anything Model (Kirillov et al., 2023) with 
CLIP (Radford et al., 2021) to segment 3D scenes. Some methods 
use a class-agnostic 3D instance segmentor to generate masks. 
They subsequently apply OV 2D models. OpenMask3D (Takmaz 
et al., 2023) is an example of such a method, which uses Mask3D 
(Schult et al., 2023) to extract 3D masks. These masks are then 
projected onto the images from the scene, and 2D models are 
used to extract CLIP embeddings for each 3D mask. This allows 
them to later query the 3D scene and segment the desired objects. 
Search3D (Takmaz et al., 2025) builds a hierarchical OV 3D 
scene representation, enabling the search for entities at varying 
levels of granularity: fine-grained object parts, entire objects, or 
regions described by attributes like materials. Alami and 
Remondino (2024) presented a training-free and flexible method 
for indoor 3D point cloud segmentation using 2D OV models and 
geometric features. The method detects queried objects in images 
using 2D detectors such as YOLO-World (Cheng et al., 2024) 
and Grounding DINO, projects the masks to 3D and refines them 
with XGBoost-guided region growing. It does not use dataset-
specific training and operates directly on the surveyed scene. 
 
 

3. Semantic segmentation methods 

3.1 3D Deep learning segmentation method 

Due to their outstanding performance in various works (Chen et 
al., 2022; Bayrak et al., 2024), three 3D DL methods are used: 
• KPConv1: the architecture is configured with 15 kernel points 

and an input radius of 18.0 m, and the initial subsampling 
distance is set to 0.3 m and the convolution radius to 2.5 m. 
The batch size is set to 3, Cross Entropy Loss function and 
Stochastic Gradient Optimizer are used with an initial 
learning rate of 10-3, and a momentum of 0.98. The learning 
rate is set to decrease exponentially, with a chosen 
exponential decay that guarantees a division by 10 every 100 
epochs during a training of 250 epochs. 

• PointNet++2 (PN++): scenes are tiled into 6×6 m to 10×10 m 
sections, with 4096 points per tile. Coordinates are 
normalized (x, y to unit square; z shifted to the tile 
minimum). Classes are weighted by point count, normalized 
to mean 1. The model is trained for 100 epochs, but the epoch 
with the highest IoU is chosen for testing. Adam optimizer is 
used with a cyclic learning rate between 1×10⁻⁶ and 1×10⁻³, 
step size 1000 and cycle momentum disabled. 

• Superpoint Transformer3 (SPT) (Robert et al, 2023, Robert et 
al 2024): scenes are partitioned into superpoints over tiles of 
about 300 × 400 m². Training is run for 2000 epochs with a 
batch size of 2. Optimization uses AdamW with an initial 
learning rate of ~5×10⁻3. The best model is selected based on 
validation IoU. 

3 https://github.com/drprojects/superpoint_transformer 
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Figure 2: The proposed segmentation pipeline. Scene images are queried for a desired class using a 2D open-vocabulary (OV) model. 
For each image, the best class is selected for each pixel. The resulting segmented masks are then projected onto the point cloud and each 
point is labelled with the highest score through a voting process. 

3.2 Open-vocabulary 3D segmentation method 

We build upon the methodology presented by Alami and 
Remondino (2024), customizing the approach for aerial point 
clouds over urban areas and 2D OV models on large nadir and 
oblique aerial images (Figure 2). Their original projection 
method first voxelizes the point cloud, then uses ray casting to 
connect mask values from segmented images to the voxels and 
finally assigns those values to the points in each voxel. Here, after 
ray casting, all points visible are isolated in the segmented image 
and then, using camera parameters, projected back onto the 
segmented image to directly assign to each point its mask label. 
Due to the pipeline’s modular design (Figure 2), different 2D 
open-vocabulary models are experimented. In particular, we 
adopted the Sa2VA model, which integrates LLaVA (Liu et al., 
2023) with SAM (Kirillov et al., 2023). Unlike open-vocabulary 
detectors like Grounding DINO, which perform best with short, 
unambiguous class names, Sa2VA leverages a strong vision-
language model capable of understanding natural language 
descriptions and segmenting objects from full-sentence prompts. 
This capability allows to identify classes described in more detail, 
rather than relying solely on a concise prompt. Therefore we 
further adapted Sa2VA by removing its built-in thresholding 
step, enabling us to obtain a per-pixel score for each queried 
class. For each class, we computed the score distribution and set 
a threshold equal to the mean score (although this can also be 
manually defined). Applying a threshold allows points below the 
threshold to be labelled as unknown/other; without it, the entire 
scene would be forced into one of the queried classes. For each 
image, the outputs from all classes are merged by assigning each 
pixel to the class with the highest score. 
Due to the nature of urban aerial images and their cm-level GSD, 
some objects can be very small with respect to the original, 
extremely large image sizes. Moreover, passing a full aerial 
image to a 2D OV model is often computationally infeasible and 
small objects may be missed due to resizing. To address this, 
images are divided into smaller tiles, processed individually and 
then results are accumulated. For aerial images, tiling is applied 
in all cases, while for smaller images it is used only to detect 
small objects. Choosing the right tile size is crucial: tiles that are 
too small can fragment large objects, causing misdetection (e.g., 
a building wall might be classified as street if only part of it 
appears in the tile). In our experiments, tile sizes between 250-
500 pixels worked well for the used data. 
The segmented images are then projected back onto the point 
cloud. Since each 3D point can appear in multiple images, its 
final label is determined via a voting scheme, selecting the class 
with the highest cumulative score across all its projections. 

Since the used point clouds have full image coverage, every point 
already has a label, making the original (Alami and Remondino, 
2024) incomplete-coverage refinement method unnecessary. 
Moreover, geometric features per point at multiple radii are not 
used due to their computationally and memory intensive needs in 
dense aerial urban datasets. Instead, a lightweight noise-
reduction step is used: for each point, we compared its label with 
those of its nearest neighbours and examined a very small set of 
geometric features (i.e. linearity, verticality and surface change). 
If a point’s label differed from that of nearby points with similar 
geometric properties, its label is reassigned; otherwise, it 
remained unchanged. 
 
 

4. Datasets and metrics 

For the testing and validation procedures, the following datasets 
are used: 

• STPLS3D (Chen et al., 2022), specifically the real-
world USC scene 

• Hessigheim 3D (Kölle et al., 2021) 
• Graz (Farella et al., 2025). 

 
Datasets STPLS3D -

USC 
Hessigheim 

3D 
Graz 

Source Photogr. Photogr. Photogr. 
Platform Drone Drone Aircraft 
# Classes 8 (9) 7 (11) 7 
Size (km2) 6 0.1 1.6 
# Points (mil) 29 82 107 
# Images ca 4,500 ca 1,000 ca 50 
Image type Oblique Nadir Nadir + 

Oblique 
Image size 
(px) 

4,864 x 
3,648 px 

14,204 x 
10,652 px 

14,144 x 
10,560 px 

Avg GSD 1-2 cm 2-3 cm 5 cm (nadir) 
Table 1: Employed datasets. In parenthesis the original number 
of classes wrt the used ones. 
 
In the STPLS3D-USC scene, predictions are generated for the 
classes Vehicle, Pole, Tree, Building, Impervious Surface (road), 
Fence and Grass/Dirt (Dirt, which appears only rarely, is merged 
with Grass). For open-vocabulary methods, the unlabelled points 
are grouped as Others, while for deep learning models, the Clutter 
class is used as Others. As Sa2VA could not detect Clutter, no 
results are reported in Table 2. 
For the Hessigheim 3D dataset, predictions are generated for Low 
Vegetation, Impervious Surface (road), Vehicle, Soil/Gravel. 
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Facade, Roof and Chimney are merged into the class Building; 
Shrub and Tree are merged; Vertical Surface, Urban Furniture 
and Unknown points are merged into the class Others. This is due 
to the fact that the available images are nadir, therefore vertical 
structures (like facade and chimney) are not clearly visible in the 
images, hence badly detectable by an OV method.  
Fo the Graz dataset, predictions are generated for Façade, Roof, 
Tree, Grass, Vehicle and Impervious Surface (street/pavements).  
In order to report a complementary and robust evaluation, 
Intersection-over-Union (IoU) and F-1 Score metrics are 
calculated to demonstrate the spatial overlap between predictions 
and annotations as well as the relation between precision and 
recall, respectively. 
 
 

5. Results 

Results for the STPLS3D-USC dataset are reported in Table 2 
and Figure 3. Grounding DINO queried terms such as vehicle, 
pole, tree, building, road, dirt, grass and fence. After detecting 
these objects in the images, SAM is used to extract object masks 
and project them onto the point cloud. Refinement is skipped 
because the available 4,500 images provided near-complete 
coverage of all points, making refinement unnecessary. On the 
other hand, for the Sa2VA-based method, more detailed 
descriptions/prompts are used requiring no additional tuning. 
Sa2VA outperformed the initial Grounding DINO + SAM setup, 
particularly for classes with large, continuous surfaces (e.g., 
streets, grass). While conventional 2D models detect these 
classes using bounding boxes that are then refined by SAM, 
Sa2VA bypasses the bounding box stage and produces per-pixel 
segmentations directly from text prompts. This difference is 
particularly relevant for classes with large or continuous extents, 
as it changes how segmentation boundaries are defined. Due to 
the large image size and the relatively small size of pole and fence 
objects, instead of downscaling the images, a tiling (1,024x1,024 
px with some 256 px of overlap) is applied to help OV models 
detecting them more effectively. When 2D models internally 
resize the images, pole can vanish entirely, while fence often 
blend into nearby classes such as building, impervious surface or 
grass, therefore, tiling is only applied for these two classes. Other 
classes, such as building, tree and vehicle are already sufficiently 
visible in the full images, and tiling in these cases often led to 
misclassifications. For example, small image patches containing 
only a portion of a building are sometimes misinterpreted as 
impervious surface or other classes.  
 

STPLS3D - USC 

Class 

3D DL: 
KPConv 

OV:  
Grounding 

Dino + SAM 

OV: 
Sa2VA 

IoU F-1 
Score IoU F-1 

Score IoU F-1 
Score 

Building 93.75 96.78 77.17 87.11 82.43 90.37 
Tree 86.23 92.6 65.78 79.36 70.55 82.73 
Vehicle 47.44 64.36 37.47 54.51 28.46 44.31 
Pole 50.62 67.21 18.98 31.91 6.16 11.6 
Fence 26.41 41.78 1.98 3.89 6.61 12.39 
Imp. 
surface 69.52 82.02 12.66 22.47 53.08 69.35 

Grass & 
Dirt (*) 31.32 47.71 29.41 45.45 35.62 52.52 

Others (**) 26.65 42.09 1.14 2.25 - - 
Table 2: Metric results on STPLS3D - USC dataset. (*) merged; 
(**): clutter and unknown. 

As shown by the reported results, the performance of the open-
vocabulary approach is highly dependent on the chosen 2D 
model. Accuracy can vary based on both the size of the queried 
object and the wording of the prompt. Class definitions also 
influence results. For example, when querying the OV model 
with road to detect impervious surface, it may not recognize 
pavements. Conversely, using pavement may miss actual road 
areas. Moreover, querying the exact impervious surface can be 
ambiguous for the model and often leads to reduced performance. 
In other cases, the OV model’s interpretation of an object in the 
image does not match the annotation definition in the point cloud. 
For instance, for fence and pole classes, the OV models 
sometimes detect visually plausible areas, such as protective 
walls on rooftops or balconies (as fence) or the trunks of palm 
trees (as pole), that are respectively annotated as building or tree 
in the ground truth (Figure 3). 
 

Hessigheim 3D 

Class 
3D DL: PN++ OV: Sa2VA 

IoU F-1 
Score IoU F-1 

Score 
Low Vegetation 77.23 87.15 47.11 64.05 
Impervious Surface 78.76 88.12 46.67 63.64 
Vehicle 33.93 50.76 13.7 24.09 
Building (*) 83.67 91.11 76.19 86.49 
Tree & Shrub 58.33 73.68 28.28 44.09 
Soil / Gravel 24.50 39.36 7.13 13.32 
Unknown / Others 
(**) 26.33 41.69 6.57 12.33 

Table 3: Metric results on Hessigheim 3D dataset. (*) merged 
facade, roof and chimney. (**): unlabelled points, vertical 
surface and urban furniture. 
 
For Hessigheim 3D, results are consistent with those on 
STPLS3D (Figure 4 and Table 3), with the 3D DL model 
achieving generally higher performance than the proposed OV 
method in all classes. For this dataset, the images are downscaled 
to 1,362x1,024 pixels. The original images are indeed too large 
in size and tiling has been avoided to preserve context. Indeed, 
unlike STPLS3D, where downscaling can make some classes 
harder to detect due a more complex scene, in Hessigheim 3D the 
classes remain visible and easier to detect after downscaling, so 
tiling is unnecessary. Moreover, some labels are inherently 
difficult for 2D models to interpret from the available images. For 
example, detecting building façades from nadir imagery is 
challenging and abstract classes such as urban furniture can 
encompass a wide range of objects. Prompting for every possible 
item in such a category is both time-consuming and expensive, 
while using a general prompt like “urban furniture” results in low 
detection rates and frequent failures. In general, for such cluttered 
environment, the most visually distinct and semantically simple 
classes are well detected by the 2D model. 
 

Graz 

Class 3D DL: SPT OV: Sa2VA 
IoU F-1 Score IoU F-1 Score 

Roof 81.95 90.08 75.49 86.03 
Façade 73.73 84.88 68.22 81.10 
Grass 64.09 78.11 58.41 73.74 
Tree 82.15 90.20 75.60 86.11 
Vehicle 49.90 66.58 44.61 61.70 
Imp. Surface 67.35 80.49 59.96 74.97 
Others 14.41 25.19 - - 

Table 4: Metric results for the Graz dataset. 
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STPLS3D - USC 
Point cloud OV (Sa2VA) 3D DL (KPConv) Ground truth 

    

    

    

 
Figure 3: OV-based qualitative results for the STPLS3D scene with two close-up comparisons between open-vocabulary (OV) and 
deep learning (DL) predictions. The DL model produces sharper class boundaries by leveraging geometric information but shows 
reduced accuracy for radiometric classes such as grass (see also Table 2). The OV approach occasionally misinterprets class definitions, 
assigning labels such as pole to tree trunks or fence to small bushes and walls. OV segments classes with clear and unambiguous 
definitions more accurate. Please note the missing car in the upper-right GT figure, correctly detected by OV and DL methods. 
 

Hessigheim 3D 
Point cloud OV (Sa2VA) 3D DL (PN++) Ground truth 

    

 
Figure 4: Visual comparison OV and DL approach on Hessigheim 3D. The OV approach struggles when images and point clouds are 
inconsistent (e.g., cars visible in images but absent in the point cloud due to asynchronous acquisitions). It can also miss objects due 
to visual ambiguities, for example, trees surrounded by low vegetation being mislabelled as low vegetation. Metrics in Table 3. 
 
Results for the Graz dataset are reported in Figure 5-6 and Table 
4.  Similar to other experiments, OV approach is ideal for clear, 
unambiguous classifications. 3D DL produces clean and precise 
predictions for most of the classes.  
 

6. Conclusions 

The paper investigated how open-vocabulary (OV) methods 
could be used as a powerful semantic segmentation tool for urban 

3D point cloud classification when training data are unavailable 
or when annotation efforts need to be minimized. With respect to 
conventional / supervised 3D deep learning (DL) methods and 
for the employed datasets, open-vocabulary segmentation 
methods tend to perform well for visually clear and unambiguous 
classes but not for highly specific classes or tiny objects not well 
recognizable in aerial images (e.g. powerline cables, poles, etc.). 
For clattered environments, conventional 3D deep learning 
trained on labelled data still provide superior performances.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W18-2025 
Symposium on GeoSpatial Technologies: Visions and Horizons 2025 (GeoVisions2025), 8–10 October 2025, Çanakkale, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W18-2025-19-2026 | © Author(s) 2026. CC BY 4.0 License.

 
23



 

   

 

Graz dataset 
Point cloud OV predictions (Sa2Va) 

   

 
Figure 5: Qualitative results on the Graz dataset and the considered classes. Open-vocabulary methods can be particularly useful in 
scenarios where annotations or training data are unavailable, enabling scene segmentation without the need for model training. 

Point cloud OV (Sa2VA) 3D DL (SPT) Ground truth 

    
Figure 6: Visual comparison between OV and DL approaches on Graz (classes as in Figure 5). As in other datasets, the DL model 
provides sharper and more precise boundaries between objects. However, when classes are less ambiguous and visually simpler, the 
performance of both approaches becomes more comparable. Metrics in Table 4. 
 
The proposed OV-based method achieved satisfactory results on 
most of the datasets and classes, revealing the potential of 
querying any object/class if clearly visible in the aerial images. 
An important consideration is the temporal and spatial 
consistency between the 3D scene and the 2D images. Moving 
objects, such as vehicle, may be visible in the images but absent 
from the 3D reconstruction, creating prediction errors. A similar 
issue occurs with trees: in the photogrammetric 3D 
reconstruction, tree leaves may be missing due to smoothing or 
incorrect dense image matching, causing points - such as 
impervious surface or building - to be incorrectly predicted as 
tree when detections from the images are projected onto the point 
cloud. 
Despite these issues, a key advantage of the open-vocabulary 
approach is that it requires no training or manual annotations and 
classes can be detected on the fly. It is worth noting that 
multimodal and vision-language models are evolving rapidly. 
Hence, in the near future, it is plausible that 2D open-vocabulary 
models used for 3D data classification could match or even 
outperform fully trained deep learning approaches in certain 
settings. The roadmap suggests combining the strengths of both 
paradigms. For example, open-vocabulary methods could be 

used to annotate part of a dataset automatically, using these labels 
to train a supervised 3D deep learning model (pseudo-labelling). 
Leveraging the complementary advantages of 2D vision-
language models and 3D deep models could lead to improved 
segmentation performance across a wider range of urban classes 
and datasets. 
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