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Abstract

Olives are one of the world's most important harvested crops and the most studied fruit trees. In this context, studies on olive tree
identification using state-of-the-art data acquisition methods are a prominent topic today. In this study, images obtained using an
unmanned aerial vehicle equipped with a multi-spectral sensor were processed, and olive tree classification was performed using
different methods. Using these methods, vegetation indices were generated using the spectral bands provided by the multispectral
sensor, and three other data set combinations were created. The effects of NDVI, SAVI, DVI, and RVI indices on the classification
were also investigated. Furthermore, the distinction between the olive tree class and other vegetation, artificial surfaces, and soil classes
was also quantitatively examined in each dataset. Accordingly, the highest-performing classification was achieved with an overall
accuracy of 91% using the Random Trees method with dataset set-2, which included multi-spectral bands.

1. Introduction

Food production has become strategically important due to
climate change, rapid population growth, and depletion of natural
resources. The sustainability of agricultural production is
currently significantly threatened by global issues like climate
change, population expansion, land degradation, and the growing
depletion of natural resources. In this regard, contemporary
technology-based remote sensing methods and smart agricultural
applications are strategically important for optimizing resource
use in agricultural production, which will increase efficiency and
reduce environmental consequences. In line with Target 2.4 of
the UN 2030 Agenda for Sustainable Development, this study
aims to promote sustainable production techniques and enhance
olive farming efficiency. Sensitive olive tree identification and
monitoring in this setting represents a strategic potential area in
terms of agricultural production, environmental sustainability,
climate change adaptation, and rural development strategies.

The olive tree is one of the oldest species in the Mediterranean
region (Besnard et al., 2011). This tree species has spread throug-
hout history and shaped the Mediterranean landscape (Siljeg et
al., 2023). Its resistance to extreme climatic conditions and its
adaptability to less fertile soils make the olive tree stand out for
its social, ecological, and economic benefits. The sustainability
and protection of olive trees are essential for many areas, inclu-
ding industry, forest fire prevention, and tourism. However, per-
forming manual identification and evaluation of olive trees is a
time-consuming and labor-intensive process. Advances in image
processing have enabled the development of automatic detection
and counting systems (Srestasathiern and Rakwatin, 2014). Ma-
chine learning learns discriminative rules using training data
instead of predetermined arbitrary parameters to classify com-
plex data (Atik et al. 2020). Adding vegetation indices to mul-
tispectral UAV data can increase the performance of machine
learning algorithms (Atik, 2025). With the development of ma-
chine learning methods, research into the rapid, automatic, and
accurate classification of land cover classes has increased
(Rahman et al., 2020).

The high spatial resolution provided by UAV imagery, combined
with computer vision algorithms, has led to significant advances
in various fields such as forestry, agriculture, geology, sur-
veillance and traffic monitoring (Jemaa et al., 2023). Aerial

images obtained by UAV provide much better spatial-temporal
resolution than satellite-based remote sensing images (Minarik
and Langhammer, 2016). Recently, with the integration of multi-
spectral cameras into UAVS, significant progress has been made
in the detection and monitoring of vegetation. The multispectral
sensor plays a leading role in precision agriculture applications,
mostly due to the possibility of extracting vegetation indices
(Avola et al., 2019).

The primary objective of this study is to differentiate between
olive and non-olive areas using pixel-based classification, by
comparing classification performance based on different combi-
nations of bands and vegetation indices to highlight the most
effective inputs. In this study, multispectral UAV images of olive
trees were subjected to photogrammetric evaluation, followed by
the calculation of typical vegetation indices NDVI, SAVI, RVI,
and DV to support classification processes. Their use enables a
more accurate classification of olive trees by increasing the dis-
tinction between relevant surface features in the multispectral
imagery. The initial phase involves semantic segmentation of the
preprocessed data, enabling images to be partitioned into seg-
ments. Semantic segmentation will be performed on the prepro-
cessed data, followed by supervised classification using Mini-
mum Distance, Maximum Likelihood, Random Trees, and Sup-
port Vector Machine algorithms. The classifications will be eva-
luated by calculating and comparing accuracy metrics, including
overall accuracy, user accuracy, producer accuracy, and confu-
sion matrices.

2. Material and Methods
2.1 Data Collection and Flight Planning

In this study, the research area for this project is a nine-acre olive
grove located in AkkOy village, within the Thermal District of
Yalova, comprising approximately 350 olive trees. Yalova is
located in the Marmara region of Tiirkiye. Despite its small size,
Yalova is one of the provinces where olive cultivation is
widespread due to its dense concentration of olive trees. The
multispectral aerial images were captured by a DJI Mavic 3
Multispectral UAV. The flight height is 50 meters. The overlap
and sidelap ratios were selected as 80% and 70%, respectively.
Along with RGB values, red-edge and near infrared bands were
also obtained. The ground sampling distance (GSD) is 4.2 cm for
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multispectral images and 2.3 cm for RGB images. A total of 361
multispectral aerial images were captured. The image of the area
is given in Figure 1.
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Figure 1. Study area.

2.2 Generation of Orthomosaic by Photogrammetric
Evaluation

Orthomosaics are geometrically corrected images that are
appropriate for precise distance measurements because they
remove distortions brought on by topography relief, lens
aberrations, and camera location. The Structure from Motion
(SfM) technique was used in this study to process images and
create orthomosaics. Structure-from-Motion (SfM) is a computer
vision method that calculates 3D space coordinates using 2D
images taken from different angles and with a certain coverage
ratio (Bozkurt et al., 2024). SfM starts by employing strong
feature detectors, like the Scale-Invariant Feature Transform
(SIFT), which guarantee consistency in the face of scale, rotation,
and lighting changes, to identify distinguishable keypoints across
overlapping images. Outlier removal algorithms and ratio tests
are two techniques used to filter matched keypoints for geometric
consistency. The camera pose and scene geometry are
simultaneously reconstructed by automatically detecting similar
features in various images (Arkali and Atik, 2025). A sparse 3D
point cloud is then produced by estimating camera postures via
bundle adjustment. To create a comprehensive 3D model that
forms the foundation for the creation of orthomosaic and digital
elevation models, the last stage entails densifying the precise
sparse point cloud using Multi-View Stereo (MVS) (Deliry and
Avdan, 2021). In this study, the SfM algorithm was applied with
Pix4Dmapper.

2.3 Extraction of Vegetation Indices from Multispectral
Orthomosaic

A variety of spectral bands are used to create vegetation indices,
which include data on biomass, leaf area, and plant health. By
using these indices for species and density analysis, this study
seeks to enhance classification algorithms. Standard indices
include the RENDVI and GNDVI for monitoring plant nitrogen
status and early stress detection, the NDVI for evaluating
vegetation vigor, the EVI for accounting for soil and atmospheric
influences, and the SAVI for sparse vegetation by mitigating the

effects of soil brightness (Giovos et al.,, 2021; Interstate
Technology & Regulatory Council, 2019). The list of indices to

be used is given in Table 1.

Indices Equation
NDVI NIR — RED
NIR + RED
SAVI NIR — RED
— X (1+1L
NIR + RED + L a+o
RVI RED
NIR
Dvi NIR —RED

Table 1. Vegetation indices used in the study
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Figure 2. General flow of the study
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2.4 Maximum Likelihood Classification

Maximum Likelihood is a supervised classification method
which is based on the Bayes theorem. It makes use of a
discriminant function to assign pixel to the class with the highest
likelihood. Class mean vector and covariance matrix are the key
inputs to the function and can be estimated from the training
pixels of a particular class. (Ahmad & Quegan ,2012).

2.5 Minimum Distance Classification

Minimum distance classifiers belong to a family of classifiers
referred to as sample classifiers. In such classifiers the items that
are classified are groups of measurement vectors (e.g. all
measurement vectors from an agricultural field), rather than
individual vectors as in more conventional vector classifiers
(Wacker and Landgrebe,1972).

2.6 Support Vector Machines

Vapnik's Support Vector Machines for regression and
classification are among the most used supervised machine
learning algorithms. They are a machine learning-based pattern
classification method with a strong theoretical background,
drawing on statistical learning theory and structural risk
minimization strategies. The fundamental purpose of support
vector machines is to identify a function in a multidimensional
space that can split training data based on known class labels
(Harman, 2021). The classification outcome is significantly
impacted by the parameters chosen when using the SVM
algorithm. Accuracy is directly impacted by the choice of C
constant or whether the kernel type is linear or rbf (Arkali et al.,
2025).

2.7 Random Trees

Random Trees classifiers are ensemble methods that involve
random selection of training data and features, and use decision
trees to generate multiple unrelated trees. This randomization is
particularly useful for noisy and high-dimensional datasets
because it helps reduce overfitting and maintains strong
classification accuracy (Belgiu and Dragut, 2016). In the field of
remote sensing and object-based image analysis (OBIA),
Random Trees are often applied to tasks such as tree crown
detection and vegetation mapping. The final classification is
determined by a majority vote from the predictions made by each
tree within the ensemble. Using both spectral and structural
information obtained from multispectral UAVs, Random Trees
have shown exceptional effectiveness in identifying individual
olive tree canopies in studies focusing on olive groves (Karydas
et al., 2023; Elsayed et al., 2023). These classifiers are
appropriate for traditional olive groves where trees may be
irregularly spaced since they are computationally efficient and
can handle varied environments.

2.8 Evaluation Metrics

Accuracy assessment of classifications was determined by means
of a confusion matrix (sometimes called error matrix), which
compares, on a class-byclass basis, the relationship between
reference data and the corresponding results of a classification
(Lillesand et al., 2004). Producer accuracy is form is a measure
of the accuracy of a particular classification scheme and shows
the percentage of a particular ground class that is correctly
classified (Story and Congalton,1986). Procuder Accuracy (PA)
can be calculating with using Equation (1).

Producer Accuracy (PA) = cqq X 100%c, 1)

where, Caa= element at position a™ row and a®" column,
ca=column sums.

User Accuracy is a measure of how well the classification is
performed. It indicates the percentage of probability that the class
which a pixel is classified to on an image actually represents that
class on the ground (Story and Congalton,1986). Equation (2)
presents the user accuracy calculation.

User Accuracy (UA) = ¢;; X 100%c; )
where, Ci.= row sum.

A measure of overall behaviour of the classification can be
determined by the overall accuracy. Equation (3) demonstrates
the overall accuracy formula.

U
Overall Accuracy (0A) = % X 100% 3)

where Q and U are the total number of pixels and classes,
respectively (Scepan,1999).

3. Results and Discussion

In this study, machine learning methods for the classification of
olive trees in multispectral orthomosaic images were
comparatively analyzed. Classification methods used in this
study were Maximum Likelihood, Minimum Distance, Support
Vector Machine, and Random Trees. Three datasets with
different band combinations were created for classification.

1. Dataset 1: RGB

2. Dataset 2: RGB + Red-edge + NIR

3. Dataset 3: RGB + Red-edge + NIR + 4 vegetation
indices

For training, 80 regions for each class were selected within the
study area (Figure 3). A similar number of samples were selected
from each class to prevent bias in model training. Test data was
distributed homogeneously across the study area and selected to
include 25 pixels from each class (Figure 4). Training and testing
were performed using ArcGIS Pro software.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIIl-4-W18-2025-195-2026 | © Author(s) 2026. CC BY 4.0 License. 197



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W18-2025
Symposium on GeoSpatial Technologies: Visions and Horizons 2025 (GeoVisions2025), 8—10 October 2025, Canakkale, Turkiye

Figure 3. Train samples selected from the study area.
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Figure 4. Test samples selected from the study area.

At first, just four approaches were applied to three-band RGB,
with the Random Trees method yielding the highest accuracy of
87%. Four algorithms gave results for five-band RGB-RE-NIR
that were typically better than the other band combinations;
However, the Random Trees approach stood out with a 91.0%
accuracy. When applied to Dataset 3, the Maximum Likelihood
method achieved the highest overall accuracy with 90.0%.

However, some confusion was observed between the soil and
artificial areas. This method struggled most on the Dataset 1
image, where spectral similarity between classes limited
classification success. In this case, the spectral similarity between
olive trees and other vegetation confused classification. For all
methods, classification using only RGB bands resulted in notable
confusion, especially between olive trees and artificial structures.
Among all twelve classification scenarios, the most accurate
classification of olive trees was obtained using Maximum
Likelihood and Random Trees. Using vegetation indices
improved the distinction between vegetated surfaces, enhancing
the model's ability to identify olive trees correctly. Results are

shown in Table 2.

Datasets l\/!aximum M_inimum Random | SVM
Likelihood Distance | Trees
Dataset 1 74.0 66.0 87.0 62.0
Dataset 2 88.0 85.0 91.0 85.0
Dataset 3 90.0 66.0 69.0 67.0

Table 2. Classification result of using all different band
combinations (The OA values are shown as a percentage).
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Figure 5. Maximum likelihood classification results.
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Figure 6. Minimum distance classification results.
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Figure 7. Support Vector Machines classification results.
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Figure 8. Random Trees results.

Classification results are presented on a class-by-class according
to UA and PA metrics (Table 3). According to the results, adding
RE and NIR bands significantly improves the performance of the
classifiers. Since the study focuses on olive trees, Maximum
Likelihood almost completely correctly identifies olive trees in
Dataset-2 and Dataset-3, according to the classification results.
The minimum distance method, however, produces incorrect
predictions for olive trees in Dataset-1. Adding vegetation
indices to a multispectral image does not guarantee a positive
increase in all classes. Particularly, adding vegetation indices to
the soil class negatively impacts classifier performance. The
Random Trees method successfully detects olive trees in Dataset-
1. This means that Random Trees achieves high success with a
small number of input features.

Dataset-1
Maximum Minimum SVM Random
Likelihood Distance Trees

Class UA PA UA PA UA PA UA PA

Olive 67.9 | 76.0 | 40.0 8.0 80.0 64.0 95.0 | 92.0
tr.

Oth. 731 | 76.0 | 95.7 | 88.0 | 94.0 68.0 95.0 | 88.0

veg.
Soil 69.7 | 92.0 | 63.9 | 920 | 83.0 | 60.0 100 | 72.0
Art. 100 | 520 | 421 | 640 | 540 | 960 | 680 | 96.0
surf.

Dataset-2

Olive 96.2 100 885 | 92.0 | 91.0 88.0 92.0 | 92.0
tr.

Oth. 95.8 92.0 85.2 92.0 91.0 88.0 91.0 84.0
veg.
Soil 74.2 92.0 | 724 | 84.0 | 86.0 80.0 96.0 | 96.0
Art. 90.0 72.0 95.0 76.0 72.0 84.0 85.0 92.0
surf.

Dataset-3
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Olive 100 100 58.3 28.0 | 76.0 | 92.0 78.0 | 88.0
tr.

Oth. 96.2 | 100 575 | 920 | 88.0 | 64.0 84.0 | 64.0

veg.
Soil 74.2 92.0 65.5 76.0 71.0 68.0 74.0 80.0
Art. 944 [ 680 | 977 | 720 | 750 | 84.0 81.0 | 84.0
surf.

Table 3. Class-based classification results by using all datasets.
(The values are shown as a percentage).

4, Conclusions

This study investigated the classification performance of
machine learning in olive tree detection using RGB and
multispectral aerial photographs obtained with a UAV. In
addition to olive trees in the designated region, other tree species,
soil, and artificial surfaces were also classified.

The study results indicate that while the Random Trees method
yields successful results only with RGB images, Maximum
Likelihood stands out when multispectral and vegetation indices
are used. This highlights the need to select a method based on the
dataset. In addition, optimal band selection for machine learning
tasks affects the performance of the algorithms (Atik and Atik,
2024). Furthermore, the high spatial resolution of UAV imagery
makes it possible to obtain detailed information about olive trees
from orthomosaics. Analyzing the yield status of identified trees
and monitoring their health will be key areas of focus for future
studies.
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