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Abstract

The map, as a way of representing geospatial data, is designed to reflect important information about the Earth as deeply and
accurately as possible. To meet this requirement, maps are produced in different scales and different types, depending on the task
being solved. Created by highly educated specialists, the map contains not only raw geospatial data, but also some high-level
knowledge accumulated by people during the exploration of the Earth. The introduction of deep learning into the data analysis
process has allowed the development of neural network models that can solve complex aerial image processing tasks, such as
semantic image segmentation, object detection and recognition, and retrieving of semantic relations between objects in a scene.
These advances created the background for moving to image (scene) understanding as a higher level of image analysis. The current
study addresses to a problem of multi-scale scene graph generation from aerial images, similarly to creating maps of different scales.

1. Introduction

The map, as a way of representing geospatial data, is designed
to reflect important information about the Earth as deeply and
accurately as possible. To meet this requirement, maps are pro-
duced in different scales and different types, depending on the
task being solved. Created by highly educated specialists, the
map contains not only raw geospatial data, but also some high-
level knowledge accumulated by people during the exploration
of the Earth. We can say that the map is some kind of reflection
of the human understanding of the scene.

The specifics of geospatial data are such that it may be required
at different scales, depending on the application. Accordingly,
maps are created at different scales, reflecting objects and their
attributes in accordance with the application. This representa-
tion of geospatial data is very helpful in understanding the area
under study.

Recent advances in data processing techniques, based on the
collection and analysis of huge amounts of data, allow to move
from processing data to understanding it.

Image classification (as the assignment of an image to one of the
predefined classes) can be considered as the first step to image
understanding, and then moving to the next level with labelling
entities in the image (Li and Wang, 2003). But object detection
and recognition is not enough to understand the scene, which
should also include extracting semantic links between detected
objects.

Deep learning methods of data analysis make it possible to
solve with high quality such tasks as image classification, se-
mantic segmentation, object detection and recognition, change
detection, and other, that can be considered as preliminary
stages of understanding an image (scene). For making the next
step in image understanding it as necessary to extract semantic
links between objects in the scene – to create so-called scene
graph, reflecting hierarchy and relationships of the objects.

Scene graph is an abstraction of a scene, that operates with ob-
jects and relations between them (Johnson et al., 2015b). Stand-
ard form of presentation for the scene graph is triplet (a set

of triplets) of the type <subject - predicate - object>.
The example of scene graph for a scene with plain structure is
shown in Figure 1.

Figure 1. Scene graph for a scene with plain structure.

Scene graphs initially were introduced for analysis of ground-
based images, and were applied for image captioning, visual
question answering, and similar problems (Li et al., 2024), and
deep learning techniques provided an impressive progress in
solving these tasks. As to scene graph generation for aerial im-
ages, significantly less research has been conducted.

It should be noted, that scene understanding is also substantial
for applications that use geospatial information (e.g. autonom-
ous unmanned aerial vehicles, geo-information systems, envir-
onmental monitoring, and others).And almost all such applica-
tions work with a hierarchical data structure of various levels of
detail.

This study examines the problem of generating a scene graph
for input aerial images of various scales with the generation of
a scene graph of scale and presentation level in accordance with
the scale of the input image.

The main contributions of the study can be summarized as:

• the framework for multi-scale semantic scene graph gener-
ation that reflects the relationships between objects at dif-
ferent scales;

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W18-2025 
Symposium on GeoSpatial Technologies: Visions and Horizons 2025 (GeoVisions2025), 8–10 October 2025, Çanakkale, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W18-2025-215-2026 | © Author(s) 2026. CC BY 4.0 License.

 
215



(a) Samples of maps of different scales

(b) Aerial images of the same scales

Figure 2. Examples of maps of different scales and aerial images of the same scale.

• the dataset for training and evaluating the proposed frame-
work

• evaluation of the proposed framework in task of multi-
scale semantic scene graph generation

2. Related work

2.1 Scene Graph Generation Research

Computer image understanding as a challenge to the scientific
community was appeared along with digital image processing.
At the earlier stages of studying this problem first attempts were
made by developing hand-crafted method for image classifica-
tion and object recognition (Torresani et al., 2010, Farhadi et
al., 2010, Vishnyakov et al., 2015). Such methods were fo-
cused on automatic generating of image description (Torresani
et al., 2010) or developing descriptors that serve for efficient
classification and provide high performance in object recogni-
tion (Farhadi et al., 2010, Vishnyakov et al., 2015). Some stud-
ies developed techniques for establishing some definite kinds
of relationships, such as relative location in a scene (Gould et
al., 2008), or co-occurrence and appearance (Galleguillos et al.,
2008).

But only with the development of modern deep learning meth-
ods, a fundamentally new level has been reached in solving the
problem of image understanding. These data-driven techniques
allow us to step from object detection and recognition to scene
understanding with retrieving semantic information on relation-
ships between objects. This semantic information is usually
presented as a scene graph, that reflects objects presented in a
scene and relationships between these objects (Johnson et al.,
2015b). Scene graphs are widely used in such tasks of image
analysis as visual question answering (Shi et al., 2019, Lee et
al., 2019b), image captioning (Yang et al., 2019, Gu et al., 2019,
Lee et al., 2019a).

First approaches in scene graph generation were based on two-
stage processing (Lu et al., 2016a), beginning with object re-
cognition in a scene and further combining the extracted objects
and predicates to generate relationships using an objective func-
tion. Some improvements in the quality of scene graph generat-
ing were obtained via exploiting standard recurrent neural net-
works, that use message passing mechanism to refine the pre-
diction iteratively (Xu et al., 2017).

Integration of object detection, image caption and scene graph
generation modules in one multi-level scene description net-
work (MSDN) (Li et al., 2017) allowed to obtain high perform-
ance in scene understanding due to passing rich information
through three network models.

Applying the Transformer network models for scene under-
standing provided new improvement in solving this prob-
lem. Considering the image as a scene graph that reflects
a scene as <subject - predicate - object> triplets and
some global context allowed the RelTransformer (Chen et
al., 2022) network achieving the state-of-the-art performance
on two large-scale benchmarks. Using gated recurrent units
(GRU) (Cho et al., 2014) in message passing after the tensor-
based relational module (Hwang et al., 2018) gave some arising
of the semantic relation accuracy. Also incorporating additional
information about scene semantic (Gkanatsios et al., 2019, Yu
et al., 2020) and statistics (Zhang et al., 2019) improved the
quality of scene graph generation.

And while considerable attention has been paid to the problem
of creating scene graphs for ground-based images, significantly
less research has been conducted in the field of aerial photo-
graphs and satellite images. The works on image captioning and
image representation (Wang et al., 2019, Shi and Zou, 2017) for
remote sensing data were pioneer studies, that shift research fo-
cus from image processing to image understanding. Integration
of fully convolutional U-Net network, and a long short-term
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Figure 3. Example images from the Segmentation and Visualization Aerial Images dataset extended with relationship annotations.

memory network (LSTM) in multi-scale remote sensing image
interpretation network (MSRIN) model (Cui et al., 2019) al-
lowed to perform semantic segmentation of an image for de-
tecting objects and to extract their relationships in one network
model. Dilated convolution block included in the graph convo-
lution network provides integration of multi-scale semantic in-
formation in multi-scale semantic fusion network (MSFN) (Li
et al., 2021), improving the cognitive capacity of the model.

2.2 Scene Graph Generation Datasets

While currently there are many datasets for scene graph gener-
ation research in the field of ground based imagery, the num-
ber of datasets for scene graph generation problem in aerial
and satellite imagery is noticeably smaller. This fact is one
of the reasons of less number research on scene graph gener-
ation for aerial imagery. Despite the availability large datasets
of ground-based images, that consist of thousands images and
tens of triplet queries (Johnson et al., 2015a, Lu et al., 2016b,
Krishna et al., 2017, Peyre et al., 2017), they could not be used
for remote sensing scene graph generation because of differ-
ences in content of objects and relationships.

So the researcher in the field of remote sensing scene graph
generation creates the intended datasets for this study. So,
to develop and assess the multi-scale semantic fusion network
(MSFN) (Li et al., 2021) the authors gathered and annotated the
remote sensing scene graph dataset (RSSGD). It included an-
notations for object categories, their attributes, and the relation-
ships between the objects, thus providing the data for training
and evaluating the network model for scene graph generation.

One of the first dataset created for the problem of scene graph
generation is Geospatial Relation Triplet Representation dataset
(GRTRD) (Chen et al., 2021). It contains more than three thou-
sands high-resolution (0.5 m/pixel) images, about 20 thousands

annotation for objects and their geo-spatial relations. Several
sets of geo-spatial (topological, orientation, and distance) rela-
tion triplets are available for each image.

Also the Remote Sensing Image Caption Dataset RSICD (Lu et
al., 2017), containing about 40 categories for object and 16 for
relationship, can be used for developing method of scene graph
generation.

3. Materials and Methods

We use Graph Semantic Segmentation neural network model
for Aerial Imagery (GSS-AI model), developed at the previ-
ous stage of the study (Emelyanov et al., 2024, Knyaz et al.,
2025) as a starting point for developing simultaneous image
semantic segmentation and multi-scale scene graph generation
neural network model.

Scene graph G can be considered as a set of vertexes V , that
represent image regions and edges E, that represent relation-
ships between detected image regions. As the vertexes V , so
the edges E are labelled by the categories objects O and the
categories of the relationships R correspondingly.

Then the scene graph generation problem can be stated as to
find the model P (G|I), that predict the scene graph G for given
image I:

P : I → G (1)

It can be written as a set of sub-tasks:

P (G | I) = P (V | I)P (E | V, I)P (R,O | V,E, I), (2)
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Namely:

1. to create the object region proposal P (V |I),

2. to form objects’ relationship proposal P (E|V, I),

3. to label detected objects and relationships
P (R,O|V,E, I):

3.1 Framework for multiscale scene graph generation

So, the proposed multiscale scene graph generation (MSGG-
AI) framework (Figure 4) includes three main blocks. Firstly,
GSS-AI model, based on visual transformer and graph neural
network, performs image semantic segmentation and generates
object proposals (Emelyanov et al., 2024).

The GSS-AI network model uses attention mechanism to re-
trieve deep features, which then are aggregated in clusters by
the graph neural network. Applying Vision Transfomer (Doso-
vitskiy et al., 2020) trained with DINO (Caron et al., 2021) al-
lows to extract deep features in self-supervising mode resulting
in attention maps.

To extend the developed framework for solving the task of
multiscale scene graph generation it was modified by adding
object classification block and multiscale relation retrieving
block.

Basing on this attention maps, the problem of image semantic
segmentation is considered as the graph-cut task, the image
being represented by an undirected graph G = {V, E} with
node set V and edge set E . And the clusterization of the sim-
ilar areas is performed using the similarity matrix W , whose
elements wij are the similarities between image areas i and j,
i, j = 1 . . . n obtained from output feature vector of the Vision
Transformer.

Considering the matrix W as a map of image areas similarit-
ies, the partitioning of the image is performed with normalized
cut criterium, that requires maximizing interconnections within
a partition and minimizing the number of partition-to-partition
connections.

This procedure allows to perform image semantic segmentation
in self-supervising manner resulting in pixel-wise segmentation
map. For generating the graph of the scene that reflect hierarch-
ical structure of the scene the modified Graph R-CNN (Yang et
al., 2018) network model is used. The connections between fea-
tures of objects extracted at different scales allow retrieving the
scene graphs of different levels of details, according to the scale
of the image.

The relationship proposal network RePN (Yang et al., 2018) is
used for predicting objects’ relationship proposal P (E | V, I)
(the second term of Equation (2)). The RePN directly models
the proposals in end-to-end manner.

For labeling the predicted scene graph (the third term of Equa-
tion (2)) the Gated Recurrent Unit (GRU) (Cho et al., 2014) is
applied. It refines the scene graph in iterative mode.

3.2 Dataset

We use segmentation and vectorization of aerial imagery
(SVAI) (Knyaz et al., 2025) dataset as a basis for creating the
intended dataset for tasks of multi-scale scene graph generation.
It was extending by adding aerial images of different scales and
their annotations.

The SVAI (Aerial Image Segmentation and Vectorization) data-
set is designed for aerial image analysis tasks, including change
detection, segmentation and vectorization, as well as scene
graph generation (Emelyanov et al., 2024). It contains 8,400
very high-resolution aerial photographs of various scenes taken
at different times and using different sensors. During this study
it has been extended by including about 2,500 aerial images
of different scale corresponding to standard set of scales for
maps. The SVAI data section for detecting changes contains
two thousand pairs of images of the same scenes taken at dif-
ferent times and containing changes in the scene. The change
detection section contains annotations for training and testing
neural network models for change detection, and the annota-
tions are binary masks marked with zero for unchanged areas
and a non-zero value for changed ones.

To study the problem of generating multi-scale semantic scene
graphs, the SVAI dataset was expanded by including images of
different scales for the same area and annotating categories of
objects and relationships at different scales.

Firstly, the objects shown in the images were divided into 32
classes, such as buildings, roads, rivers, bridges, as well as high-
level categories such as factories, settlements, airports, etc. The
classification classes were selected in accordance with the clas-
sification of topographic maps for further rapid adaptation to
the task of updating maps.

Secondly, 16 categories of relationships were introduced, rep-
resenting spatial topology, functional description and hierarchy
of objects. They describe possible relationships between ob-
jects in the scene, such as nearby, distant, around, passing
through, passing under, etc. to get a good initial approxim-
ation to the annotation triplets (<subject - predicate -

object>) we use data from OpenStreetMap1 resource.

4. Results

We evaluate of the proposed MSGG-AI framework in task of
Phrase Detection (PhrDet) (Lu et al., 2016a) in terms of the
R@k metric, that considers the part of ground-truth relation-
ship triplets (<subject - predicate - object>) among
the top k most confident triplet predictions in an image.

The evaluation has been carried out on the testing split of SVAI
dataset and has demonstrated the performance of R@100 =
45.12 and R@50 = 38.97, being at the state of the art level.

5. Conclusion

The developed MSGG-AI framework for multi-scale semantic
scene graph generation of aerial images allows to obtain scene
graph representation at different scales according to standard

1 https://www.openstreetmap.org
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Figure 4. The MSGG-AI framework architecture. Firstly, the pre-trained visual transformer retrieves deep features from the input
aerial image of different scales basing on attention mechanism, and graphical neural network performs clustering of these deep

features thus creating object region proposals and a set of object’s nodes and edges. Secondly, the relationship proposal network
RePN. Finally, the graph labeling is performed iteratively to refine the scene graph.

maps’ scales. The MSGG-AI framework uses the Vision Trans-
former and graph neural network provides accurate image seg-
mentation, and modified Graph R-CNN (Yang et al., 2018) net-
work mode generates the graph of the scene that reflect hier-
archical structure of the scene.

We trained the developed network model in task of multi-scale
scene graph generation on training split of Segmentation and
Vectorization of Aerial Imagery (SVAI) dataset, and then eval-
uated it on the testing split. The evaluation showed that deeper
extraction of the scene graph structure allows to improve per-
formance in terms of the R@k metric for aerial imagery.
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