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Abstract

This work presents a structured data-driven framework for estimating ground-level carbon monoxide (CO) concentrations in the
Metropolitan City of Milan (MCM) by integrating Sentinel-5P satellite observations, Copernicus Atmosphere Monitoring Service
reanalysis data, and ERA5 meteorological variables with advanced machine learning techniques. The methodology employs uni-
fied data preprocessing, systematic feature engineering (e.g., boundary layer height-adjusted CO, lagged meteorological variables),
Bayesian optimization for hyperparameter tuning, SHAP-based feature selection, model ensembling, and robust statistical valid-
ation. Eight regression models, including a custom Dense Attention Network (DAN), were evaluated across multiple temporal
aggregation windows (4–24 hours before 15:00 GMT+1) to identify optimal configurations for CO estimation. Using data from
January 2019 to November 2024, the framework identified the 21:00–15:00 GMT+1 window as most effective for capturing at-
mospheric dynamics such as nighttime accumulation, morning emission peaks, and daytime dilution. The DAN achieved the best
performance, with a mean normalized root mean squared error of 0.4879 ± 0.0252 on the test set, outperforming ensemble and
traditional regression models, offering a scalable, interpretable, and cost-effective approach to urban CO monitoring in data-scarce
environments with potential adaptation to other pollutants and regions.

1. Introduction

Carbon monoxide (CO) is emitted primarily through incom-
plete combustion of fossil fuels and biomass and its pres-
ence in the atmosphere has significant impacts both on public
health, causing respiratory problems (World Health Organiza-
tion, 2024), and on climate, contributing to the deterioration
of air quality and climate forcing (von Schneidemesser et al.,
2015). Despite the critical need to monitor ground-level CO
for environmental and health management, global surface-level
monitoring remains highly uneven. As seen in Figure 1, out of
the 33,984 CO world air quality monitoring stations, 32,254
stations (approximately 95%) are in Asia, Europe, or North
America, while only 996 (approximately 3%) of these stations
are located in low or lower middle-income countries (LMIC)
(Smith et al., 2025), resulting in data scarcity that limits sci-
entific understanding and policy formulation in underrepresen-
ted regions.

In response to this gap, we present a modeling framework
that integrates satellite-based observations, modeled reanalysis
products, and ground-level measurements to estimate surface-
level CO concentrations. These datasets have been widely used
to capture non-linear dependencies and spatiotemporal variabil-
ity in atmospheric pollution modeling (Shetty et al., 2024, Fania
et al., 2024, Chen et al., 2024, Chen et al., 2025). We implemen-
ted Machine Learning (ML) models aimed at overcoming the
limitations of satellite measurements and sparse ground-based
monitoring, offering a scalable and cost-effective approach to
surface-level CO estimation in data-scarce regions.

2. Data and Preprocessing

The area of interest of this study is the Metropolitan City of
Milan (MCM) from January 2019 to November 2024. Ground-

level measurements are to be estimated as a single daily aver-
age at the overpass time of the satellite Sentinel-5P (from 11:00
to 15:00 UTC+1). Results are validated directly with meas-
urements from the ground monitoring network from Lombardy
ARPA (Regional Environment Protection Agency) (https://
www.dati.lombardia.it/stories/s/auv9-c2sj).

2.1 Data Sources

2.1.1 Sentinel-5P data In this study, we used the Level 3
Sentinel-5P CO data (s5p CO), which is already preprocessed
and ingested by Google in the Earth Engine Data Catalogue.
To ensure data quality, Google Earth Engine (GEE) applies pre-
defined filtering thresholds based on the quality assurance (QA)
values provided in the original Level 2 products. For CO, pixels
with QA values below 50% are discarded. The Level 3 grid
uses a pixel size smaller than the native one, resulting in a spa-
tial resolution of approximately 1.1 km × 1.1 km (Google Earth
Engine, 2025).

2.1.2 CAMS data This study employs the European Centre
for Medium-Range Weather Forecasts Atmospheric Composi-
tion Reanalysis 4 (EAC4), a product of Copernicus Atmosphere
Monitoring Service (CAMS). EAC4 is the fourth-generation
global reanalysis of atmospheric composition, produced by
combining model simulations with a vast array of satellite and
in situ observations using a data assimilation system based
on the Integrated Forecasting System (IFS). EAC4 spans from
2003 onward and provides global estimates of atmospheric vari-
ables, including surface-level CO, with a temporal resolution of
3 hours and a horizontal resolution of approximately 0.75° ×
0.75° (Inness et al., 2019).

We downloaded the CO (cams CO) and relative hu-
midity (r) data from CAMS Atmosphere Data Store
(https://ads.atmosphere.copernicus.eu/datasets/
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Figure 1. Worldwide distribution of on-the-ground monitoring
stations reporting in April 2024. Regulatory grade sensors in
light green and non-regulatory grade monitors in dark green.
Source: (Smith et al., 2025), reproduced under the terms of the
Creative Commons Attribution License (CC BY 4.0).

cams-global-reanalysis-eac4?tab=download). Ac-
cording to the instructions of the data store, to obtain surface
values for CO, we select model level 60, which is the level
of the Earth’s surface. For relative humidity, we select pres-
sure level 1000 hPa, which is close to standard atmospheric
pressure.

CAMS CO assimilates surface-level CO measurements, which
helps to address the mismatch between CO total column dens-
ities of Sentinel-5P and ground truth CO values, and then to en-
hance the accuracy and reliability of our models. Thus, we in-
cluded it as a feature. As for relative humidity, it affects the hy-
groscopic growth of particles, influencing their deposition rates
and radiative properties. High humidity may also enhance sec-
ondary aerosol formation, indirectly affecting pollutant levels
(Niyogi and Raman, 2001). Including relative humidity as a
feature helps our models to learn the physical and chemical re-
lationships that affect CO dispersion.

2.1.3 ERA5 data ERA5, ECMWF’s fifth-generation global
atmospheric reanalysis, provides hourly estimates of atmo-
spheric, ocean-wave, and land-surface variables from 1940
to the present, updated daily with a 5-day latency. It com-
bines model data with global observations using data assimil-
ation to produce a physically consistent dataset. The data is
provided on a regular 0.25° latitude-longitude grid (0.5° for
ocean waves) and includes both single-level and pressure-level
products in hourly and monthly-mean formats. To quantify un-
certainty, ERA5 incorporates a 10-member ensemble (sampled
at 3-hourly intervals, with pre-computed mean and spread), re-
flecting the evolving observing system’s information content.

This regridded subset offers readily accessible data suitable for
most common climate and weather applications (Hersbach et
al., 2025).

From Copernicus Climate Change Service, Climate Data Store
(https://cds.climate.copernicus.eu/datasets/
reanalysis-era5-single-levels?tab=download), we
collected boundary layer height (blh), 10m u-component of
wind (u10), 10m v-component of wind (v10), surface net
solar radiation (ssr), surface net thermal radiation (str), 2m
temperature (t2m), surface pressure (sp), total precipitation
(tp), leaf area index, high vegetation (lai hv) and leaf area
index, low vegetation (lai lv) for this study. These variables
contribute uniquely to atmospheric processes such as mixing,
transport, and chemical transformation. By integrating these
factors, our model is better equipped to learn the underlying
physical and chemical relationships that affect CO dispersion,
thereby enhancing the estimation of ground-level CO concen-
trations. The following provides a detailed account of how
each variable influences these processes and contributes to
the overall dynamics of pollutant behavior in the atmosphere
(Barlow, 2009, McNider and Pour-Biazar, 2020, Li et al., 2017,
Yang et al., 2016, Sorbjan, 2003, Arya, 2001, Pleim and Ran,
2011).

2.1.4 ARPA data In-situ CO measurements were obtained
from ARPA Lombardy (located in the North of Italy) monit-
oring stations, which are publicly accessible via ARPA’s on-
line portal (https://dati.lombardia.it/), offering valid-
ated hourly to annual datasets, interactive maps, and download-
able reports. These data are fundamental for atmospheric mod-
eling, emission inventories, and policy assessment.

2.2 Data Harmonization

2.2.1 Temporal Harmonization Given the varying tem-
poral resolutions of our datasets, we need to perform temporal
alignment. Considering the daily overpass time of the Sentinel-
5P satellite over the MCM (12:00 to 15:00 GMT+1) (Cedeno
Jimenez and Brovelli, 2023, Veefkind et al., 2012) and the time
required for CO to be transported from the surface to the at-
mosphere and detected by the TROPOMI instrument on board
Sentinel-5P, we first conducted the study in the time window
from 11:00 to 15:00 GMT+1.

Additionally, we selected several distinct periods prior to 15:00
GMT+1 (i.e., the preceding 6, 12, 18, and 24 hours) to explore
how the results vary with the temporal aggregation window.
This approach allows us to assess the sensitivity of the rela-
tionship between surface-level variables and satellite-detected
CO concentrations to different timescales of atmospheric pro-
cesses, such as pollutant accumulation, transport, and vertical
mixing. By comparing results across these timeframes, we
aim to identify the most representative temporal window for
capturing the surface-to-atmosphere dynamics relevant to the
Sentinel-5P overpass measurements. To enable this compar-
ison across different time windows, it is necessary to perform
temporal harmonization of the data according to the specified
time periods.

After initial loading and inspection, we convert all datasets to
pandas DataFrames. For Sentinel-5P data, no time alignment
is required as it contains only one measurement per day in the
MCM. For the other datasets (CAMS, ERA5 and ARPA data-
sets), we performed temporal filtering, selecting data within a
specified time window. Within each window, we computed the
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mean of the values to create a consistent daily measurements.
This approach ensured coherent temporal coverage across all
datasets and enabled accurate integration for downstream ana-
lysis.

2.2.2 Spatial Harmonization To ensure all datasets share
the same spatial resolution, we first reprojected all data to a
common coordinate reference system, UTM Zone 32N, using
the PyProj library (https://pypi.org/project/pyproj/).
This projection was selected because it provides consistent dis-
tance measurements in meters, which is essential for accurate
spatial interpolation and grid alignment, particularly in north-
ern Italy.

To determine a suitable spatial resolution we used the minimum
distance between ARPA CO monitoring stations, which was
2.96 km. Since ARPA sensors provide ground-truth observa-
tions, this resolution serves as a reliable reference for com-
paring and integrating other datasets. The meshgrid function
from NumPy library (https://numpy.org/doc/stable/
reference/generated/numpy.meshgrid.html) and Geo-
Pandas library (https://geopandas.org/en/stable/
were used to create a uniform spatial grid at this resolution.
These functions generate coordinate matrices from coordinate
vectors, enabling us to create a regular grid for interpolation
and assignment of data points.

For datasets with sparse or coarse resolution, such as CAMS
and ERA5, we applied bilinear interpolation using the Lin-
earNDInterpolator function from SciPy library (https://
scipy.org/). This interpolation method is appropriate for
scattered data, as it estimates values based on the weighted av-
erage of the surrounding data points, providing smooth approx-
imations for the grid.

In contrast, for datasets with finer spatial resolution or dis-
crete point measurements, such as ARPA CO and Sentinel-
5P CO, we assigned data to the nearest grid point using cK-
DTreefunction from SciPy library. The cKDTree is highly effi-
cient for nearest-neighbor queries, making it ideal for quickly
finding the closest grid point to each data point, especially when
dealing with large datasets.

2.3 Feature Engineering

In addition to the raw variables, several derived features were
computed to enhance model performance.

2.3.1 Wind speed and wind direction Wind speed and
wind direction were computed from u and v components of
wind at 10m above the ground (u10 and v10). Since machine
learning models cannot inherently interpret directional or angu-
lar vector data such as wind direction, it is necessary to apply
an appropriate encoding technique. We used cyclical encod-
ing (Pranonsatit et al., 2025) to transform the wind direction,
which ranges from 0° to 360°, into its sine and cosine compon-
ents (wd sin and wd cos). This approach preserves the cyclical
nature of the data.

2.3.2 Normalized Carbon Monoxide Using normalized
CO (CO per blh), calculated as the ratio of Sentinel-5P CO
(s5p CO) to boundary layer height (blh), offers a more phys-
ically meaningful and context-aware feature for estimating
ground-level CO concentrations compared to using raw s5p CO
values alone. This normalization accounts for the vertical mix-
ing capacity of the atmosphere, which directly influences how
satellite-observed column concentrations relate to surface-level
pollution.

2.3.3 Solar thermal contrast Solar thermal contrast,
defined as the normalized difference between surface net solar
radiation (ssr) and surface net thermal radiation (str). This fea-
ture captures the balance between incoming solar energy and
outgoing longwave radiation, which influences atmospheric sta-
bility and vertical mixing processes(Li et al., 2017, Yang et al.,
2016).

2.3.4 Previous meteorological factors As mentioned
earlier, we selected several distinct periods prior to 15:00
GMT+1: we tested among the preceding 4, 6, 12, 18, and 24
hours to explore how the results varies with the timeframe.
For each time window, we calculated the average value of the
meteorological factors over a specific period. This period starts
at 15:00 GMT+1 the previous day and ends at the start of the
current time window. We then added this calculated average
value to the model’s input data as a new feature. To identify
these new features, we appended ” pre” to abbreviations of
the original meteorological factor names. This helps to better
describe the physical and chemical dynamics of the ground.

2.4 Dataset Splitting

We divided 60% of the dataset into a training set, 20% into a
validation set, and 20% into a test set. We tested two data-
splitting strategies and compare the results of them.

• Shuffle split: We used train test split function from scikit-
learn library (https://scikit-learn.org/stable/
modules/generated/sklearn.model_selection.

train_test_split.html) to split the data. We set the
random state to control reproducibility and use random
shuffle to put the data in a random order. In this case,
models capture the relationship exclude the time trend of
data.

• Chronological split: We sorted all unique dates from the
index of the pandas DataFrame. The dates were then di-
vided into three parts: training, validation, and testing. We
created each dataset by filtering the DataFrame to contain
only rows matching the dates in each part. In this way,
the data is split in chronological order to maintain the tem-
poral integrity of the time series. Models can also capture
the time variation of data.

3. Methodology

3.1 Machine Learning Framework

The machine learning framework includes data download, data
preprocessing and training pipeline, as shown in Figure 2. Data
download and preprocessing were detailed in Chapter 3. In the
following sections, we describe the training pipeline and the
associated workflow in detail.

Figure 2. Machine learning framework.
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3.2 Training Pipeline

We developed this work using a training pipeline based on pre-
vious work (Cedeno Jimenez and Brovelli, 2023). We referred
to this pipeline as it has been deriving good performance, with
an average NRMSE of 55.92% and R2 of 0.76 when estimating
ground-level NO2 concentrations in MCM during the Sentinel-
5P satellite pass. The algorithm was then adapted for estimating
CO concentrations.

3.2.1 Model Training In this study, we implemented a
series of models:

• Support Vector Regression (SVR)

• Decision Tree (DT)

• Random Forest (RF)

• Gradient Boosting (GB)

• XGBoost (XGB)

• Multilayer Perceptron (MLP)

• Dense Attention Network (DAN)

• Long Short-Term Memory (LSTM)

DAN and LSTM are two models adapted by us using Tensor-
Flow (https://www.tensorflow.org/). DAN is a feed-
forward neural network, featuring an attention mechanism that
dynamically weights input features to emphasize informat-
ive signals and suppress noise. LSTM is a specialized re-
current neural network (RNN) with memory cells to cap-
ture long-range dependencies in sequential/temporal data (Ho-
chreiter and Schmidhuber, 1997). The rest of the models
were imported from scikit-learn (https://scikit-learn.
org/stable/)library.

After data preprocessing, all data sources were integrated into
a single pandas Dataframe. As mentioned earlier, we divided
60% of the DataFrame into a training set, 20% into a validation
set, and 20% into a test set. Each set of data was divided into
X and y. X was used as the input feature and y was used as the
target (ground-level CO concentration).

3.2.2 Hyperparameter tuning For hyperparameter tuning,
we used Bayesian optimization method via BayesSearchCV
function (https://scikit-optimize.github.io/
stable/modules/generated/skopt.BayesSearchCV.

html). Bayesian optimization is an effective method to tune
model’s hyperparameters when evaluation is computationally
expensive (Wang et al., 2024, Snoek et al., 2012). We used the
validation set for hyperparameter tuning, after that we obtained
the optimal set of parameters and then used them to retrain the
models.

3.2.3 Model Ensemble In addition to the models pre-
viously described, we selected the two best-performing
models from those imported from scikit-learn, based on their
validation performance. We then used the VotingRegressor
function (https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.VotingRegressor.html)
to develop an ensemble model from these two models.

The Voting Regressor is an ensemble learning method that com-
bines predictions from multiple base regression models to pro-
duce a final output. Rather than training a meta-model, the Vot-
ing Regressor performs a simple averaging (either weighted or
uniform) of the individual predictions from each base regressor.
This technique helps to reduce variance and improve prediction
robustness by using the strengths of diverse models (Breiman,
1996, Zhou, 2012). This method is particularly effective when
combining diverse models as it tends to cancel out individual
model biases and variances. Thus, we used this method to fur-
ther improve our results.

3.2.4 Model Testing During testing, we retrained all mod-
els on the combined set of training and validation sets and then
test them on the test set. To evaluate the performance of the
model, we used the following metrics:

• Root Mean Square Error (RMSE): Measures the square
root of the average squared differences between predicted
and actual values.

• Mean Absolute Error (MAE): Measures the average abso-
lute differences between predicted and actual values.

• Coefficient of Determination (R2): Represents the propor-
tion of variance in the dependent variable explained by the
model.

• Normalized Root Mean Square Error (NRMSE): Normal-
izes RMSE using the standard deviation of actual values.

By using these metrics, we can perform a comprehensive eval-
uation of our model. But in this study, we mainly focus on
NRMSE. NRMSE is a scale-independent metric that allows
for intuitive and meaningful comparison of model performance
across different datasets. It measures how prediction errors
compare to the natural variability in the data: values below 1
indicate that the model performs better than simply using the
mean, with lower values reflecting excellent performance. This
normalization provides a clear sense of relative error and is es-
pecially useful for comparing models when data scales vary.
This will allow us to compare the results with other studies in
related fields in the future.

3.2.5 Model Explainability To interpret the estimations of
our models, we employed SHAP (SHapley Additive exPlana-
tions), a unified framework for interpreting model outputs based
on cooperative game theory (Lundberg and Lee, 2017). SHAP
assigns each feature an importance value for a particular predic-
tion by computing Shapley values, which represent a fair distri-
bution of the model’s output among the input features. SHAP
values were calculated to assess both global feature importance
across the dataset and local explanations for individual predic-
tions. In this study, the method provided insight into how vari-
ables influenced the predicted ground-level CO concentrations,
enhancing interpretability and trust in the model outputs.

3.3 Workflow

To optimize the estimation of ground-level CO concentrations
in the Metropolitan City of Milan (MCM), we applied a struc-
tured machine learning framework, focusing initially on the
11:00–15:00 GMT+1 window, aligned with Sentinel-5P over-
pass and CO detection timing. We compared models with and
without hyperparameter tuning and evaluated various data split-
ting strategies. The analysis was then extended to additional
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time windows (6, 12, 18, and 24 hours before 15:00 GMT+1)
to identify the most effective period. Using SHAP values, we
refined the feature set by removing less impactful variables, se-
lected the best-performing model, and analyzed residuals to as-
sess error patterns. To ensure robustness, we ran 20 shuffle-split
validations, addressed extreme values in the ARPA dataset us-
ing the IQR method, and confirmed the statistical significance
of improvements through Wilcoxon signed-rank tests.

4. Results and Discussion

4.1 Model Training with and without hyperparameter
tuning

For the first set of tests, we used shuffle split to divide the data-
set, trained models in the time window 11:00 to 15:00 GMT+1
without hyperparameter tuning. The resulting best model was
RF. The NRMSE on the test set was 0.6363, as shown in Table
1. After implementing hyperparameter tuning, the best model
was the ensemble model of MLP and GB using voting regressor.
The NRMSE on the test set was 0.6216, as shown in Table
2. The performance improvement was not significant, but we
mitigated overfitting. From Figure 3, we can see that the gap
between the training and validation curves has narrowed before
and after hyperparameter tuning.

Model MAE RMSE R2 NRMSE
RF 0.1195 0.1669 0.5952 0.6363

RF+GB 0.1198 0.1673 0.5932 0.6378
SVR 0.1205 0.1702 0.5794 0.6485
MLP 0.1219 0.1714 0.5735 0.6531
XGB 0.1239 0.1720 0.5703 0.6555
GB 0.1257 0.1743 0.5588 0.6642
DT 0.1769 0.2552 0.0544 0.9724

Table 1. Results of model training without hyperparameter tun-
ing. Unit of MAE and RMSE is mg/m3.

Model MAE RMSE R2 NRMSE
MLP+GB 0.1183 0.1631 0.6136 0.6216

MLP 0.1199 0.1640 0.6094 0.6250
XGB 0.1199 0.1644 0.6074 0.6266
SVR 0.1190 0.1663 0.5985 0.6336
GB 0.1220 0.1686 0.5873 0.6424
RF 0.1245 0.1701 0.5796 0.6484
DT 0.1394 0.1935 0.4564 0.7373

Table 2. Results of model training with hyperparameter tuning.
Unit of MAE and RMSE is mg/m3.

4.2 Comparing chronological split and shuffle split

Model MAE RMSE R2 NRMSE
LSTM 0.1844 0.2173 0.2782 0.8496

RF 0.1881 0.2178 0.2608 0.8598
XGB 0.1861 0.2179 0.2605 0.8600
SVR 0.1887 0.2203 0.2442 0.8694

SVR+GB 0.1922 0.2239 0.2188 0.8838
DT 0.1874 0.2274 0.1943 0.8976
GB 0.1988 0.2332 0.1525 0.9206

MLP 0.2019 0.2376 0.1204 0.9379

Table 3. Results of Chronological Split. Unit of MAE and RMSE
is mg/m3.

After the hyperparameter tuning was completed, we then tested
chronological split with same features, models parameters and

Figure 3. Learning curves of the best model before (top) and after
(bottom) hyperparameter tuning.

time window. In this stage, the LSTM model performed best
with a test set NRMSE of 0.8496, as shown in Table 3, which
was 36.68% worse than the best result of the shuffle split.
Since shuffle split works better in our case, we continued to
use shuffle split in the following steps.

4.3 Additional features

After adding blh, blh pre, CO per blh, stc, cams CO, lai lv,
lai hv, lai lv pre, lai hv pre, r and r pre as features, the best
model was ensemble model SVR + GB, with a test NRMSE of
0.5819, as shown in Table 4, which was 6.38% lower than the
best result without adding them.

Model MAE RMSE R2 NRMSE
SVR+GB 0.1204 0.1619 0.6614 0.5819

GB 0.1214 0.1631 0.6563 0.5862
RF 0.1212 0.1650 0.6485 0.5929

SVR 0.1221 0.1655 0.6464 0.5947
XGB 0.1254 0.1681 0.6349 0.6042
MLP 0.1282 0.1698 0.6276 0.6102
DT 0.1365 0.1933 0.5177 0.6945

Table 4. Results of adding other features. Unit of MAE and
RMSE is mg/m3.

4.4 Comparing different time windows

We evaluated different time windows and found that the
21:00–15:00 GMT+1 period yielded the best performance
(Table 5), with the SVR+GB ensemble model achieving a test
NRMSE of 0.4794. This optimal performance likely arises
from the window’s alignment with key diurnal CO dynamics in
MCM: nighttime accumulation, morning emission peaks, and
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Time Window Best Model RMSE NRMSE
11:00-15:00 GMT+1 SVR+GB 0.1619 0.5819
09:00-15:00 GMT+1 SVR+GB 0.1593 0.5432
03:00-15:00 GMT+1 SVR+GB 0.1487 0.5101
21:00-15:00 GMT+1 SVR+GB 0.1460 0.4794
15:00-15:00 GMT+1 SVR 0.1429 0.5132

Table 5. Results of comparing different time windows. Unit of
RMSE is mg/m3.

daytime dilution (Barlow, 2009, Turner, 2020). In the fol-
lowing studies, we continued to conduct research within the
21:00–15:00 GMT+1 time window.

4.5 Dropping unimportant features

Figures 4 and 5 illustrate SHAP-based feature importance,
where the y-axis ranks features by their overall influence, and
the x-axis shows the direction and magnitude of each fea-
ture’s effect on individual predictions, with red points indic-
ating higher feature values. In Figure 4, features such as
cams CO, blh pre, CO per blh, lai lv, lai lv pre, r, and r pre
show high importance, confirming their positive contribution
to model performance. In contrast, features like lai hv pre,
wind dir sin, and lai hv had minimal impact and were progress-
ively removed. The final model retained 16 features, as shown
in Figure 5, leading to the best result with the DAN model,
which achieved a test NRMSE of 0.4730 (Table 6), represent-
ing a 1.34% improvement over using all features. This con-
figuration, using the 21:00–15:00 GMT+1 time window, was
found to be optimal. To further assess model performance, Fig-
ure 6 presents a residual histogram with KDE (left) and a Q-Q
plot (right); residuals appear approximately normally distrib-
uted with slight positive skew (skewness = 0.28), indicating
mild underestimation and suggesting a generally good model
fit with consistent variance (homoscedasticity).

Model MAE RMSE R2 NRMSE
DAN 0.1085 0.1440 0.7763 0.4730

SVR+MLP 0.1112 0.1459 0.7705 0.4791
SVR 0.1120 0.1483 0.7629 0.4869
MLP 0.1140 0.1488 0.7611 0.4888
GB 0.1145 0.1526 0.7489 0.5011

XGB 0.1170 0.1548 0.7415 0.5084
RF 0.1174 0.1570 0.7343 0.5155
DT 0.1401 0.1913 0.6054 0.6282

Table 6. Results of dropping unimportant features in time win-
dow 21:00-15:00 GMT+1. Unit of MAE and RMSE is mg/m3.

4.6 20 independent shuffle-split experiments

In order to make the results more reliable. We set 20 differ-
ent random states to perform 20 different shuffle splits in time
window 21:00-15:00 GMT+1, and trained all models to make
estimations 20 times.

From Table 7, we can see that the best model is still DAN, with
Mean ± STD of the NRMSE being 0.4879 ± 0.0252, which
is 0.4692% higher than the second-ranked ensemble model
SVR MLP.

4.7 Statistical tests on results

To assess whether the performance difference between DAN
and SVR+MLP was statistically significant, we first computed

Figure 4. Distribution of SHAP values for CO prediction of best
model in the 21:00-15:00 GMT+1 time window using all fea-
tures.

Model Mean ± STD of NRMSE
DAN 0.4879 ± 0.0252

SVR+MLP 0.4902 ± 0.0280
SVR 0.4938 ± 0.0264
GB 0.4959 ± 0.0272

MLP 0.4994 ± 0.0281
XGB 0.5104 ± 0.0288
RF 0.5164 ± 0.0290
DT 0.6026 ± 0.0379

Table 7. Results of 20 independent shuffle-split experiments
without removing extreme values in time window 21:00-15:00
GMT+1.

the squared errors of their estimates in the 21:00–15:00 GMT+1
time window and observed a non-normal distribution of their
differences (skewness = -1.15). This led us to use the Wilcoxon
signed-rank test instead of a paired t-test. The result yielded a p-
value of 0.02, indicating a significant difference in performance
between DAN and SVR+MLP in that particular split. However,
when we repeated the evaluation using 20 independent shuffle-
split experiments and again applied the Wilcoxon test at a 95%
confidence level, the performance difference between DAN and
SVR+MLP was no longer statistically significant. This contrast
is due to the single-split test being sensitive to data partition
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Figure 5. Distribution of SHAP values for CO prediction of best
model in the 21:00-15:00 GMT+1 time window after removing
unimportant features.

Figure 6. Histogram and Quantile-Quantile plot of residuals of
ground-level CO concentration estimated by DAN in time win-
dow 21:00-15:00 GMT+1.

randomness, whereas the shuffle-split approach averages out
variability, offering a more robust comparison. Across all pair-
wise comparisons, only a few, including DAN vs. SVR+MLP,
did not show significant differences. Nevertheless, both DAN
and SVR+MLP significantly outperformed all other models and
were the top performers overall. Given that SVR MLP relies on
two separate models (SVR and MLP) and an ensemble strategy,
while DAN is a standalone model, DAN remains the more prac-
tical and flexible choice despite their similar performance.

5. Conclusions and Future Work

This study developed a robust, data-driven framework for es-
timating ground-level CO concentrations in the Milan Central
Metropolitan area (MCM) by integrating Sentinel-5P, CAMS
reanalysis, and ERA5 meteorological data with advanced ma-
chine learning models. Through careful temporal analysis, we
identified the 21:00–15:00 GMT+1 window as optimal for cap-
turing CO accumulation and dispersion dynamics. Feature en-
gineering efforts, particularly the inclusion of CO per blh and
lagged meteorological variables, significantly enhanced model
performance. The DAN model emerged as the top-performing

architecture, outperforming others in terms of test NRMSE and
residual behavior. Although an ensemble model (SVR+MLP)
showed comparable performance across multiple shuffle splits,
DAN was favored due to its simplicity and comparable accur-
acy. Statistical tests confirmed that DAN and SVR+MLP signi-
ficantly outperformed other models, while the robustness of the
final model was validated through 20 independent shuffle-split
experiments.

Looking ahead, this framework could be extended in several
important directions. First, adapting the approach for multi-
pollutant modeling would enable more comprehensive air qual-
ity assessments, especially by including pollutants such as NO2,
O3, and PM2.5. Second, testing the framework across diverse
geographic regions with varying emission profiles and meteor-
ological conditions would demonstrate its transferability, poten-
tially supported by domain adaptation or transfer learning meth-
ods. Lastly, integrating complementary data sources, such as
traffic patterns, urban morphology, or mobile sensor networks,
could further improve the model’s ability to resolve fine-scale
spatial variability and capture localized pollution events.

In conclusion, this study offers a scalable and cost-effective
methodology for ground-level CO estimation in data-scarce
environments, reinforcing the value of fusing remote sens-
ing and reanalysis data with deep learning. The identifica-
tion of optimal temporal windows and critical predictive fea-
tures contributes valuable insights to pollutant-specific model-
ing strategies. By demonstrating the effectiveness of DAN and
highlighting future enhancements, this work lays the founda-
tion for improved urban air quality monitoring and supports
evidence-based decision-making in environmental and public
health policy.
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