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Abstract

The high versatility and affordable price made Unmanned Aerial Vehicles (UAVs) very popular in many civil applications. Despite
their usage often takes advantage of automatic flight mode, this flight modeality is usually limited to the good working conditions
of Global Navigation Satellite Systems (GNSS) positioning. Extending their operability to cases when GNSS is not available or
reliable, including for instance departure and landing in not open-sky areas, is clearly of great importance for the drone market.
This paper aims at investigating the performance of a vision-based system to monitor, and support, if needed, UAV movements,
within some tens of meters from a ground camera, used to track the UAV. In this work, a uncalibrated camera is used to track the
UAV: UAV detection on the camera frames is implented with a background subtraction approach, even if neural network-based
approaches can be used as well. Then, the UAV centroid on the camera frames along with its area in pixels are used as inputs for
the machine learning predictors. While using an uncalibrated camera is clearly suboptimal in terms of performance, it eases the
usage of the proposed method in for non-expert operators. The proposed approach is tested both on a synthetic and a real dataset,
collected at the Agripolis campus of the University of Padua, in order to determine whether the performance is limited by the size
of available training dataset. The results reported in this work show that the usage of tree ensamble regression can lead to submeter

errors in tracking a UAV with a ground camera, when the UAV is at less than approximately 100 meters from the camera.

1. Introduction

Unmanned Aerial Vehicles (UAVs) have become widely pop-
ular for outdoor applications due to their versatility and cost-
effectiveness, particularly when Global Navigation Satellite
Systems (GNSS) positioning is reliable. However, the need
to expand their usability in areas with poor GNSS coverage
has led to the development of alternative positioning systems,
able to compensate the GNSS unreliability in certain crit-
ical conditions. These systems often integrate different kind
of sensors, including cameras (Nabavi-Chashmi et al., 2023),
LiDAR (Opromolla et al., 2016), ultrasound (Paredes et al.,
2017), UWB (Masiero et al., 2017, Zahran et al., 2019), and
RADAR (Barra et al., 2022, Zahran et al., 2018), sometimes
even utilizing multi-platform communication and localization
(Masiero et al., 2023a, Masiero et al., 2023b).

Cameras have emerged as a popular choice among these altern-
ative sensors, thanks to their affordability and usability in dif-
ferent contexts. For instance, when mounted on a UAV, they
can serve for both navigation and mapping purposes. This cap-
ability is exploited in Simultaneous Localization and Mapping
(SLAM, (Leonard and Durrant-Whyte, 1991, Strasdat et al.,
2012)) approaches (Macario Barros et al., 2022, Kazerouni et
al., 2022), which may be further enhanced with supplementary
sensor data to improve localization accuracy (Mateos-Ramirez
et al., 2024).

Achieving absolute positioning using a drone-mounted camera
typically requires the usage of additional reference points, such
as landmarks, targets, or ground control points in aerial pho-
togrammetry (Forstner and Wrobel, 2016, Kraus, 2011). Al-
ternatively, cameras installed in the flying area can be used to
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monitor and localize UAVs, similarly to motion capture systems
(Masiero et al., 2019), though this usually necessitates multiple
cameras for accurate tracking (Islam et al., 2020, Mustafah et
al., 2012).

Among the cases of interest for alternative positioning systems
for UAVs, it is worth to mention precise navigation for landing
in small areas without reliable GNSS, which is clearly a cru-
cial application that demands alternative sensor support. This
scenario also applies to UAV monitoring in surveillance applic-
ations, where various sensors, including RADAR, acoustic ar-
rays, and cameras, have been employed. Actually, the rising
incidence of UAV-related aerial incidents, particularly near air-
ports, has also motivated numerous studies on drone detection
and monitoring (Wang et al., 2020, Shanliang et al., 2022).

Camera-based UAV detection primarily relies on background-
foreground segmentation methods (assuming a relatively static
background, (Seidaliyeva et al., 2020)), or, more recently, on
deep learning techniques, often utilizing YOLO (You Only
Look Once, (Redmon et al., 2016, Redmon and Farhadi, 2017,
Hussain, 2023)) networks (Jiang et al., 2022, Aydin and Singha,
2023). Artificial intelligence methods can also be applied to
various other UAV-related tasks (Rahman et al., 2024, Yan et
al., 2023).

This study focuses on using a single (external) ground camera
installed in the flying area to track UAV movements. While
the vision-based detection method is similar to those men-
tioned earlier, this approach employs just one uncalibrated
camera, unlike multi-camera systems, hence making the sys-
tem easier to use to non-highly qualified operators. To be
more specific, the proposed method is based on the usage of
a simple background-subtraction approach for determining the
foreground-background separation, to a Kalman filter, running
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on image frames, for 2D tracking and data association, and, fi-
nally, on the usage of machine learning tools to estimate the
UAV position based on some geometric features extracted from
image frames, e.g. the centroid and the area of the blob on the
image frames corresponding to the tracked UAV.

This paper presents both some experimental results, obtained
for a dataset collected at the University of Padua (Italy), and
some on a synthetic dataset, in order to just test the machine
learning predictors, independently of the influence of errors
coming from the vision-based detection and the uncalibrated
camera.

The paper is organized as follows: first, the proposed method is
introduced in Section 2, then Section 3 presents the case study
considered to test the proposed method, 4 shows the obtained
results, and, finally, some conclusions are drawn in Section 5.

2. UAV tracking with a ground-camera

First, it is assumed that the UAV is flying in an area visible by
the camera: while the method is independent of being an out-
door or indoor scenario, the UAV visibility is a key working
condition in order to make the method effective. Furthermore,
the scene is assumed to be mostly static, as in (Seidaliyeva et al.,
2020). Indeed, in this working dynamic objects, such as UAVs,
can be easily detected via background subtraction: moving ob-
jects can be determined by applying a minimum threshold to the
absolute difference between the current frame and a past one.

Some outlier measurements can be rejected by imposing some
regularity restrictions on the detected object trajectory and on
the object area. To be more specific, first, minimum and max-
imum thresholds are imposed on the detected object area in or-
der to be potentially considered a UAV. Then, a Kalman filter
is used to track the trajectories of the detected objects on the
image plane. In particular, trajectory regularity restrictions are
imposed, limiting the trajectories performed by UAVs as those
that at each frame are not too far from the predicted locations
on the image plane. When multiple objects are detected in the
same frame, such Kalman filter is used for data association as
well: each track is continued with the 2D location closed to its
Kalman prediction.

It is worth to notice that the above mentioned method for ob-
ject tracking on the image plane may not be able to distinguish
between UAVs and other dynamic objects/birds. To such aim,
many studies already considered the usage of deep learning-
based methods, in particular those exploiting YOLO-based ap-
proaches (Jiang et al., 2022, Aydin and Singha, 2023). Since
several works already faced this problem, such aspect is not in-
vestigated here. Instead, the reader is referred to (Jiang et al.,
2022, Aydin and Singha, 2023) and the references therein.

Once that a UAV is detected on the image frame, a machine
learning-based regression is exploited in order to estimate the
UAV 3D location in the desired reference frame. To such aim,
a set of features is extracted from the image frame and fed into
the used machine learning tool. In particular, the centroid of
the UAV region on the image plane is extracted, and, intuitively,
used to determine the direction of the UAV with respect to the
camera reference frame. Then, the area of the UAV region on
the image frame is extracted as well, being such area inversely
proportional to the square of the UAV-camera distance.

A supervised approach has been used to implement the above
mentioned procedure: a learning dataset, where the UAV
ground truth position is assumed to be known as well, is used to
properly train the machine learning-based regressor. To be more
specific, a different machine learning regressor is independently
trained on each direction, x, y, z. Gaussian kernel regression,
Support Vector Machine (SVM) based regression and tree en-
semble regression (100 regression trees aggregated by means of
the Least Squares Boosting algorithm) are considered, for com-
parison, as machine learning-based regressions. Without loss
of generality, ground truth UAV locations are assumed to be
expressed as UTM (Universal Transverse Mercator) projected
coordinates, however, the adaptation of the proposed approach
to different choices is trivial. Then, the trained model(s) can be
used to predict the UAV position in new camera frames.

3. Case study

The method presented in the previous section is tested on a data-
set collected at the Agripolis campus of the University of Padua.
Such dataset has been collected during a data acquisition cam-
paign by a joint team of researchers, participating to the Italian
PRIN 2022 project PAIN AND GAIN, and within the IAG WG
4.1.5 “Wireless positioning with terrestrial instruments”.

A DII Matrice 210 UAV was used during the test, being
filmed by a Sony alpha ILCE-5100 camera (video resolution
1440 x 1080 pix, at 25 Hz), mounted on tripod, positioned on
the ground, at a few tens of meters from the fight area. The
DIJI Matrice 210 flew for approximately 15 minutes, along the
trajectory shown in Fig. 1, at different altitudes, but being still
visible by the camera, when in its field of view. Fig. 2 shows the
distribution of UAV-camera distances during the flight. Fig. 3
shows a frame captured by the Sony alpha ILCE-5100 during
the flight of the DJT Matrice 210 UAV.
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Figure 1. Track of DJI Matrice 210 during the test (red line).

Reference positions of the UAV were collected by a GNSS re-
ceiver mounted on the UAV, working in NRTK mode at 5 Hz,
with the closest permanent station of the used network at less
than 100 m from the flight area. Only fixed solutions were
used (either in the training or validation of the method) in this
work. Before being fed into the machine learning regression
models, UTM projected coordinates were computed (ETRS89-
UTM32), and locally shifted to make them more easily read-
able.

The camera collected ~22500 frames during the flight. The
UAV was visible on approximately 70% of them, hence 2/3 of
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Figure 2. Distribution of DJI Matrice 210-camera distances
during the test.

Figure 3. DJI Matrice 210 flying during the test, shown in a
Sony alpha ILCE-5100 frame.

such frames were randomly selected to be used in the training
phase, whereas the remaining ones were used for validation.

4. Results

4.1 Experimental results

The three considered machine learning methods (Gaussian ker-
nel regression, SVM-based regression, tree ensemble regres-
sion) were compared on the collected dataset, leading to the
positioning results shown in Table 1, where mean and Median
Absolute Deviation (MAD) error values are shown along the z,
vy, z directions.

The tree ensemble regression model performed apparently bet-
ter than the other two considered methods. The mean errors
along the z, y, z directions were very close to zero, whereas the
error variability, assessed with MAD, in of some tens of centi-
meters.

The sources of such errors can be both the vision-based UAV
detection methods and the implemented machine learning-
based regression. Since the experimental results shown in this
subsection does not allow to separate such two contributions,
the following subsection is dedicated to determining the method
performance on synthetic data, where the only factor influen-
cing the error is the implemented machine learning-based re-
gression method.

Fig. 5 shows the estimation error temporal correlation, on a se-
quence 100 s long.

Gaussian kernel regression

x[m] | ylm] | z[m]

mean 1.12 0.31 0.84
MAD | 9.63 | 10.67 4.28
SVM-based regression

x[m] | y[m] | z[m]

mean | 2.02 | -3.54 2.07
MAD | 4.43 8.83 3.90

Tree ensemble regression
x[m] | y[m] | z[m]

mean | -0.04 | 0.02 0.00
MAD | 0.56 | 0.64 0.13

Table 1. Comparison of positioning errors for different machine
learning regressors on experimental data.
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Figure 4. Positioning error distribution along the x, y and z
directions, obtained with one camera tracking a drone flying on
an area of approximately 60 m x60 m, using a tree ensemble

regression.
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Figure 5. Positioning error temporal correlation computed on a
100 s interval.

4.2 Results on a synthetic dataset

This subsection aims at evaluating the performance of the pro-
posed machine learning-based regression method on synthetic

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-4-W18-2025-249-2026 | © Author(s) 2026. CC BY 4.0 License. 251



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W18-2025
Symposium on GeoSpatial Technologies: Visions and Horizons 2025 (GeoVisions2025), 8—10 October 2025, Canakkale, Turkiye

data, in order to bypass the vision-based error unavoidable in
the experimental data. Since SVM and Gaussian kernel regres-
sions proved to perform much worse than the tree ensemble one
on experimental data, only the latter is considered in this sub-
section.

The UAV positions were randomly uniformly generated on a
100 m x 100 m x 20 m region, with minimum height above
the ground of 10 m and minimum camera-UAV distance of
~43.6 m. Camera model was assumed to be the pinhole one,
without any distortion. Pixel size was set sufficiently small to
have a negligible impact on the results.

The training dataset size was of 100 k random samples, whereas
the regression model was tested on a different dataset of 100 k
random samples. The distance probability distribution function
for the training samples is shown in Fig. 6.
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Figure 6. Distribution of UAV-camera distances in the synthetic
training dataset.

The results obtained on the test dataset are shown in Table 2,
whereas the probability density distribution of the error, along
the z, y and =z directions, is shown in Fig. 7.

Tree ensemble regression
x[m] | y[m] | z[m]
mean 0.00 0.00 0.00
MAD | 0.68 0.73 0.26

Table 2. Positioning errors for the tree ensemble regression
model on synthetic data.

5. Discussion and conclusions

The proposed positioning method employs a single, uncalib-
rated ground camera to track a UAV, when visible by the cam-
era, using machine learning techniques. Among the three com-
pared machine learning regressors, the tree ensemble one per-
formed significantly better, reaching close to zero average posi-
tioning error along all the three directions, both in experimental
and synthetic data, and sub-meter error variability (MAD), i.e.
around 0.6 meters along = and y, while smaller on the z direc-
tion.

Since the experimental results shown in the paper do not allow
to separate the error due to machine learning regression from
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Figure 7. Positioning error distribution along the x, y and 2
directions, for the tree ensemble regression model, on synthetic
data.

the one caused by the vision-based UAV detection, the proposed
method has been tested on synthetic data as well, showing sim-
ilar results to those obtained on experimental data. Such results
show that the current performance level is primarily limited by
the machine learning regression method, rather than the vision
factors. This observation suggests that there is some potential
for further improvements, if a more effective machine learning
method is implemented.

In addition to the above observation, it is also worth to notice
that temporal regularity of the UAV trajectory has not been ex-
ploited in the method implemented for estimating the UAV po-
sition. The close-to-zero error along all the three directions and
the fact that the errors appear to be temporally low-correlated
(Fig. 5) suggest that some smoothing, for instance via Kalman
filtering, shall help improving the obtained results.

Additional input features or alternative regression models can
also be viable ways to further improve the model regression
capability. In particular, including deep learning approaches
may potentially show a superior regression performance.

Increasing the dataset size may also help improving the training
results, however, training on a larger synthetic dataset showed
a performance similar to the one obtained on the experimental
data.

While this work only investigated the use of the proposed
method on just one type of UAV, extending its usability to dif-
ferent UAVs can clearly be valuable in real applications and
it will be considered in our future works. Such generalization
will probably explicitly or implicitly involve a UAV classifica-
tion step, such as in (Rahman et al., 2024), which however is
expected to be challenging for large UAV-camera distances.

Using multiple cameras, high-resolution cameras and/or cal-
ibrated cameras will also be investigated in our future works:
such options are expected to ensure some further improvements
on the positioning performance, however implying the usage of
more complex/expensive systems.

Finally, UAV detection based on neural networks (e.g. YOLO-
like networks) will also be implemented in order to make the
proposed procedure more robust to the presence of dynamic ob-
jects/birds in the scene.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-4-W18-2025-249-2026 | © Author(s) 2026. CC BY 4.0 License. 252



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W18-2025
Symposium on GeoSpatial Technologies: Visions and Horizons 2025 (GeoVisions2025), 8—10 October 2025, Canakkale, Turkiye

Acknowledgements

This work is supported by the Italian PRIN 2022, project
PAIN AND GAIN-Positioning And INtelligent Alarms suppor-
ted by a New Dense GNSS Affordable Infrastructure, MUR
code 2022P8C7ZA (PRIN 2022-DD 104, 02/02/2022)-CUP
B53D23007380006.

References

Aydin, B., Singha, S., 2023. Drone detection using YOLOVS.
Eng, 4(1), 416-433.

Barra, J., Creuzet, T., Lesecq, S., Scorletti, G., Blanco, E., Za-
rudniev, M., 2022. Micro-drone ego-velocity and height estima-
tion in gps-denied environments using an FMCW MIMO radar.
IEEE Sensors Journal, 23(3), 2684-2692.

Forstner, W., Wrobel, B. P., 2016. Photogrammetric Computer
Vision. Springer.

Hussain, M., 2023. YOLO-v1 to YOLO-v8, the rise of YOLO
and its complementary nature toward digital manufacturing and
industrial defect detection. Machines, 11(7), 677.

Islam, A., Asikuzzaman, M., Khyam, M. O., Noor-A-Rahim,
M., Pickering, M. R., 2020. Stereo vision-based 3D positioning
and tracking. IEEE Access, 8, 138771-138787.

Jiang, Y., Jingliang, G., Yanqing, Z., Min, W., Jianwei, W.,
2022. Detection and tracking method of small-sized uav based
on yolov5. 2022 19th International Computer Conference on
Wavelet Active Media Technology and Information Processing
(ICCWAMTIP), 1-5.

Kazerouni, I. A., Fitzgerald, L., Dooly, G., Toal, D., 2022. A
survey of state-of-the-art on visual SLAM. Expert Systems with
Applications, 205, 117734.

Kraus, K., 2011. Photogrammetry: geometry from images and
laser scans. Walter de Gruyter.

Leonard, J., Durrant-Whyte, H., 1991. Simultaneous map build-
ing and localization for an autonomous mobile robot. Intelligent
Robots and Systems *91. ’Intelligence for Mechanical Systems,
Proceedings IROS ’91. IEEE/RSJ International Workshop on,
1442-1447 vol 3.

Macario Barros, A., Michel, M., Moline, Y., Corre, G., Carrel,
F, 2022. A comprehensive survey of visual slam algorithms.
Robotics, 11(1), 24.

Masiero, A., Fissore, F., Antonello, R., Cenedese, A., Vettore,
A., 2019. A comparison of UWB and motion capture UAV in-
door positioning. The International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, 42,
1695-1699.

Masiero, A., Fissore, F., Vettore, A., 2017. A low cost UWB
based solution for direct georeferencing UAV photogrammetry.
Remote Sensing, 9(5), 414.

Masiero, A., Morelli, L., Toth, C., Remondino, F,
2023a. Benchmarking Collaborative Positioning and Naviga-
tion Between Ground and UAS Platforms. The International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 48, 1127-1133.

Masiero, A., Toth, C., Remondino, F., 2023b. Vision and uwb-
based collaborative positioning between ground and uas plat-
forms. 2023 IEEE/ION Position, Location and Navigation Sym-
posium (PLANS), 748-754.

Mateos-Ramirez, P., Gomez-Avila, J., Villasenor, C., Arana-
Daniel, N., 2024. Visual odometry in gps-denied zones for
fixed-wing unmanned aerial vehicle with reduced accumulat-
ive error based on satellite imagery. Applied Sciences, 14(16),
7420.

Mustafah, Y. M., Azman, A. W., Akbar, F., 2012. Indoor UAV
positioning using stereo vision sensor. Procedia Engineering,
41, 575-579.

Nabavi-Chashmi, S.-Y., Asadi, D., Ahmadi, K., 2023. Image-
based UAV position and velocity estimation using a monocular
camera. Control Engineering Practice, 134, 105460.

Opromolla, R., Fasano, G., Rufino, G., Grassi, M., Savvaris, A.,
2016. Lidar-inertial integration for uav localization and map-
ping in complex environments. 2016 international conference
on unmanned aircraft systems (ICUAS), IEEE, 649-656.

Paredes, J. A., Alvarez, F. J., Aguilera, T., Villadangos, J. M.,
2017. 3D indoor positioning of UAVs with spread spectrum ul-
trasound and time-of-flight cameras. Sensors, 18(1), 89.

Rahman, M. H., Sejan, M. A. S., Aziz, M. A., Tabassum, R.,
Baik, J.-I., Song, H.-K., 2024. A comprehensive survey of un-
manned aerial vehicles detection and classification using ma-
chine learning approach: Challenges, solutions, and future dir-
ections. Remote Sensing, 16(5), 879.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You
only look once: Unified, real-time object detection. Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 779-788.

Redmon, J., Farhadi, A., 2017. Yolo9000: better, faster,
stronger. Proceedings of the IEEE conference on computer vis-
ion and pattern recognition, 7263-7271.

Seidaliyeva, U., Akhmetov, D., Ilipbayeva, L., Matson, E. T.,
2020. Real-time and accurate drone detection in a video with a
static background. Sensors, 20(14), 3856.

Shanliang, L., Yunlong, L., Jingyi, Q., Renbiao, W., 2022. Air-
port uav and birds detection based on deformable detr. Journal
of Physics: Conference Series, 2253number 1, IOP Publishing,
012024.

Strasdat, H., Montiel, J. M., Davison, A. J., 2012. Visual
SLAM: why filter? Image and Vision Computing, 30(2), 65—
77.

Wang, L., Ai, J., Zhang, L., Xing, Z., 2020. Design of airport
obstacle-free zone monitoring UAV system based on computer
vision. Sensors, 20(9), 2475.

Yan, X., Fu, T, Lin, H., Xuan, F., Huang, Y., Cao, Y., Hu,
H., Liu, P,, 2023. UAV Detection and Tracking in Urban Envir-
onments Using Passive Sensors: A Survey. Applied Sciences,
13(20). https://www.mdpi.com/2076-3417/13/20/11320.

Zahran, S., Masiero, A., Mostafa, M., Moussa, A., Vettore,
A., El-Sheimy, N., 2019. UAVs enhanced navigation in out-
door GNSS denied environment using UWB and monocular

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-4-W18-2025-249-2026 | © Author(s) 2026. CC BY 4.0 License. 253



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W18-2025
Symposium on GeoSpatial Technologies: Visions and Horizons 2025 (GeoVisions2025), 8—10 October 2025, Canakkale, Turkiye

camera systems. The International Archives of the Photogram-

metry, Remote Sensing and Spatial Information Sciences, 42,
665-672.

Zahran, S., Mostafa, M., Masiero, A., Moussa, A., Vettore,
A., El-Sheimy, N., 2018. Micro-RADAR and UWB aided UAV
navigation in GNSS denied environment. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XLII-1, 469-476.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-4-W18-2025-249-2026 | © Author(s) 2026. CC BY 4.0 License. 254





