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Abstract

Simultaneous Localisation and Mapping (SLAM) is a technique that allows a vehicle to determine its location and map its sur-
roundings simultaneously. This study was carried out to produce a 3-dimensional (3D) model of the environment using the SLAM
technique by processing the data obtained from Light Detection and Ranging (LiDAR) and stereo camera sensors mounted on an
Unmanned Ground Vehicle (UGV) capable of operating in an indoor-outdoor area. The environment was modelled using LiDAR-
SLAM and Visual Simultaneous Localisation and Mapping (VSLAM) methods, using the LiDAR sensor and the stereo camera
integrated into the UGV. The accuracy assessment of the produced models was made by comparing the real sizes of the objects in
the environment with the sizes in the produced model. In addition, the model’s surface accuracies were tested by examining the
linearity of flat surfaces selected from the study area.

1. Introduction

Simultaneous Localisation and Mapping (SLAM) is a technique
that allows a robot or autonomous system to simultaneously
create a map of its surroundings and determine its location on
the map while navigating an environment with the help of vari-
ous sensors (Ahmed et al., 2023). With the developments in
sensor and computer technologies, as well as the reduction of
sensor sizes and costs, SLAM is now widely used in many fields
such as robotics, artificial intelligence, autonomous driving sys-
tems, industry and academia (Barros et al., 2022). Although
the traditional methods used for positioning, Global Navigation
Satellite Systems (GNSS), and Real-Time Kinematic (RTK) (Ilci
and Toth, 2020), provide high accuracy in open areas; however,
they are insufficient in indoor and complex environments due
to signal obstacles (Cheng et al., 2022). In contrast, SLAM of-
fers a much more reliable and flexible solution in these environ-
ments, as it performs mapping and positioning simultaneously
by processing environmental data directly with sensors. Thanks
to SLAM, robots can create maps by identifying structural ele-
ments such as wall corners and doors in their environment, plan
paths using this data, and move safely by maintaining their bal-
ance even when faced with unexpected situations (Roy et al.,
2023).

SLAM technique is divided into two main categories, Visual-
SLAM (VSLAM) and Light Detection and Ranging based SLAM
(LiDAR-SLAM), depending on the sensor types used to col-
lect data from the environment (Dai et al., 2023). VSLAM
works with stereo, monocular or RGB-D cameras; it analyses
the environment and performs mapping and positioning opera-
tions (Chen et al., 2022). Thanks to advanced algorithms such
as Oriented FAST and Rotated BRIEF (ORB-SLAM) (Mur-
Artal et al., 2015) and Direct Sparse Odometry (DSO) (Engel
et al., 2018), positioning accuracy has increased, and the sys-
tem has become faster and more efficient. VSLAM stands out
with its economical, lightweight, and easy-to-install structures.
It can run on microprocessor computers, embedded systems,
and even smartphones. However, performance loss may occur
in environments where there is not enough light or where there

are no distinct visual details on the surfaces (Özbayrak and İlçi,
2024).

VSLAM are divided into two main categories based on using
information from images: feature-based and direct. Feature-
based VSLAM systems detect salient visual features in images
and perform SLAM by tracking the movement of these points
over time. The tracking process becomes more stable thanks to
feature extractors (SIFT, ORB) and descriptors widely used in
image processing. These methods are usually based on filtering-
based models (e.g. Extended Kalman Filter (EKF)) and bundle
adjustment-based optimisation methods (BA) (Beghdadi and
Mallem, 2022). Unlike feature-based methods, direct-based
methods do not detect any features directly using pixel inform-
ation in the image. These methods use photometric consistency
as an error metric to estimate camera motion and directly evalu-
ate the sensor data without preprocessing. They aim to achieve
accurate positioning by minimising photometric error (Barros
et al., 2022).

On the other hand, LiDAR-SLAM is a system that works with
laser technology and can map the environment with high pre-
cision and density (Başaran and İlçi, 2025). Thanks to its
wide Field of View (FoV) and ability to provide 3D data, it
provides more accurate results in large-scale and complex ap-
plications, less affected by light changes, dust and night con-
ditions. These advantages of LiDAR technology have enabled
the development of various solution approaches in SLAM al-
gorithms. Particularly, 3D LiDAR technology is widely used
in many fields, especially in autonomous vehicles, robotic sys-
tems and mapping applications, thanks to the high resolution
and dense coordinate data it provides (Raj et al., 2020), (Sun et
al., 2019), (Yan et al., 2018). However, the high cost of LiDAR
systems and the long development process limit the widespread
use of this technology.

Scan matching is an introductory module in LiDAR-SLAM sys-
tems that allows for estimating the robot’s pose over consec-
utive scans. This method is widely used in applications with
six degrees of freedom (DoF), especially where precise pos-
itioning is required. It is divided into two categories: direct
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matching methods and feature-based matching methods. Clas-
sical algorithms such as Iterative Closest Point (ICP) and Nor-
mal Distributions Transform (NDT), which are direct match-
ing methods, estimate pose by aligning point clouds iteratively.
Additionally, matching methods based on environmental char-
acteristics are also available (Wang et al., 2023). Raster match-
ing can be performed based on raw points and low-level geo-
metric features such as normals, planes, and edges extracted
from point clouds. Such feature-based matching methods ex-
tract these attributes automatically and then perform matching
between scans. Considering the advantages and limitations of
both SLAM methods, the method appropriate for the applica-
tion and purpose is preferred (Huang, 2021).

This study aims to test the accuracy provided by LiDAR-SLAM
and VSLAM techniques. LiDAR and Stereo camera systems
were placed on a developed Unmanned Ground Vehicle (UGV),
and a 3D model of the work area was produced with the SLAM
technique. For the data’s accuracy analysis, the actual lengths
of objects whose dimensions can be easily measured via a total
station in the environment were compared with the 3D model
lengths. Additionally, the linearity of flat surfaces in the envir-
onment was analysed through 3D reference models obtained us-
ing terrestrial laser scanners, and the surface accuracies provided
by SLAM applications were interpreted.

2. Experimental Studies

2.1 Mobile Platform

This study aims to create a 3D model of indoor areas using
sensors integrated into the developed UGV. VSLAM and LiDAR-
SLAM techniques were used to generate a 3D model of the in-
door environment. ZED 2i stereo camera datacwas used for
VSLAM (Figure 1), and OS1-128 LiDAR data was used for
LiDAR-SLAM (Figure 2). Jetson AGX Orin was the operating
system for collecting and processing data.

Figure 1. LiDAR system connection diagrams.

The ZED 2i stereo camera mounted on the vehicle developed in
the project uses a stereo matching algorithm to create 3D model
data, thus determining the depth map in millimetres (mm). The
ZED 2i has an advanced positional tracking algorithm for ro-
botic applications, thanks to a 120-degree wide-angle FoV and
thermal calibration for significantly improved positional track-
ing sensitivity and accuracy. It also has a built-in IMU, ba-
rometer, temperature sensor and magnetometer (Stereolabs,

Figure 2. Camera system connection diagrams.

Figure 3. The real-time model of the study area produced using
the 3D modeling system.

2022). Figure 3 presents the real-time model of the study area
produced using the 3D modeling system.

Another sensor on the vehicle, the OS1-128 LiDAR, provides
high-density and detailed point cloud data thanks to its 128-
channel resolution, allowing for highly detailed mapping of en-
vironmental objects. With a target detection range of up to 200
meters, reliable and precise data can be obtained within a wide
working area. The sensor’s approximately 45-degree FoV en-
ables comprehensive analysis of complex environmental condi-
tions such as dense urban areas or indoor spaces. Thanks to
these features, the OS1-128 sensor is especially preferred in
autonomous systems, robotic applications and precision map-
ping projects. Its high resolution offers superior performance
in critical tasks such as environmental perception, object recog-
nition and detailed mapping (Ouster, 2025) (Figure 4).

2.2 3D SLAM Modelling

In order to test the accuracy of the model to be obtained, the 120
m long corridor, which contains objects such as doors, radiators,
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Figure 4. Instant picture of OUSTER 128 Channel LiDAR while
modelling the environment.

fire cabinets, etc., whose dimensions can be easily measured,
was selected as the application area of the project. Figure 5
shows the mobile platform and the camera, and LiDAR sensors
mounted on the UGV.

Figure 5. Unmanned ground vehicle.

For the VSLAM application, images collected with the ZED2i
stereo camera were evaluated using the ZEDfu application, which
is part of the ZED-SDK software. Sequential image data were
processed using the VSLAM method in ZEDfu, and a 3D model
of the study area was obtained in true colours. A 128-channel
3D LiDAR sensor was used for LiDAR-SLAM, and the HDL
Graph SLAM algorithm was used in the data processing (Koide
et al., 2019). This algorithm adopts a direct matching approach
and performs pose estimation between consecutive scans with
the NDT algorithm. Alignment is achieved over the entire point
cloud without feature extraction, and loop closure detection is
performed by checking similarity with past scans at specific in-

tervals to maintain the system’s consistency. The 3D LiDAR-
SLAM and VSLAM models that were produced are given in
Figure 6.

Figure 6. 3D SLAM models (top: LiDAR-SLAM, bottom:
VSLAM).

3. Results

In order to test the accuracy of the 3D models obtained with
LiDAR-SLAM and VSLAM, firstly, the length and height val-
ues of thirteen heater radiators, four fire boxes, two doors, two
red panels, one fire exit door and one column, which were loc-
ated in the study area and whose dimensions could be easily
measured with the Total Station. The real dimensions of these
objects and the dimensions measured from the 3D model are
shown in Figure 8. The difference values measured from the
real and model dimensions are given in Table 1.

Another analysis performed to evaluate the accuracy of the pro-
duced models is the examination of surface accuracy. For this
analysis, 10 ground and 14 right and left wall surfaces were se-
lected in the area modelled in Figure 7, and a Root Mean Square
Error (RMSE) analysis was performed (Table 2). According to
the direction determined as reference, the right wall was named
Right (R), the left wall was named Left (L), and the ground was
named Ground (G).

The RMSE values for the plane of the surfaces are shown in
Table 2. The RMSE values are calculated using Equation 1.

RMSE =

√∑n

i=1
e 2
i

n
(1)

where ei is the distance between the predicted and actual (for
sample i), and n is the number of points.

4. Conclusions

In this study, the data collected with LiDAR and camera sensors
integrated on the UGV were processed using LiDAR-SLAM
and VSLAM techniques, and a 3D model of the selected interior
space was created.

In order to test the accuracy of the produced 3D model, two
different analyses were performed. In the first analysis, based
on the measurements performed on the objects, the maximum
value of the ”width” differences of the LiDAR system was de-
termined as ±0.05 m and the average value as ±0.01 m. Like-
wise, the maximum difference for LiDAR-SLAM in ”height”
differences was ±0.02 m, and the average was ±0.01 m. In the
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Object Actual size Model (LiDAR) Model (Camera) Difference LiDAR Difference Camera
Width (m) Height (m) Width (m) Height (m) Width (m) Height (m) Width (m) Height (m) Width (m) Height (m)

Heater Radiator 1.40 0.60 1.40 0.60 1.40 0.61 0.00 0.00 0.00 0.01
Red Panel 1.25 0.90 1.20 0.88 1.20 0.90 -0.05 -0.02 -0.05 0.00
Fire Exit 1.04 2.17 1.04 2.18 1.05 2.19 0.00 0.01 0.01 0.02
Fire Box 0.88 0.69 0.89 0.68 0.90 0.71 0.01 -0.01 0.02 0.02
Column 0.55 1.64 0.56 1.62 0.55 1.63 0.01 -0.02 0.00 -0.01
Door 1.08 2.24 1.09 2.23 1.07 2.24 0.01 -0.01 -0.01 0.00

Table 1. Accuracy values of objects’ dimensions

Wall Surface (cm) Wall Surface (cm) Floor (cm)
S.N. VSLAM LiDAR S.N. VSLAM LiDAR F.N. VSLAM LiDAR
R1 0.61 0.78 R5 0.31 0.84 G1 0.13 0.69
L1 0.75 0.87 L5 2.85 0.84 G2 0.09 2.84
R2 0.20 0.96 R6 0.29 0.75 G3 0.27 0.95
L2 0.66 0.90 L6 0.33 0.71 G4 0.20 1.28
R3 0.65 1.53 R7 0.25 0.76 G5 0.18 10.24
L3 4.66 1.21 L7 0.65 0.72 G6 0.27 1.75
R4 7.46 17.08 G7 11.50 0.13
L4 1.48 1.36 G8 0.12 1.53

G9 0.24 0.97
G10 0.12 1.11

Table 2. RMSE values of the surfaces.

Figure 7. Chosen areas for surface accuracy.

analyses performed for the camera system, the maximum dif-
ference in the ”width” measurement was calculated as ±0.05 m,
and the average was ±0.01 m; it was observed that the max-
imum difference in ”height” was ±0.02 m, and the average was
±0.01 m. These results indicate that both LiDAR-SLAM and
VSLAM produce similar errors in width and height measure-
ments, showing no significant difference in these dimensions.

Therefore, the accuracy levels of both systems vary depending
on the measurement dimension and environmental conditions.

The second analysis aims to evaluate the overall surface accur-
acy of the models. For this purpose, surfaces with homogeneous
distribution were examined using LiDAR and a stereo camera.
After this alignment, 24 surfaces (seven left walls, seven right
walls and 10 ground) were selected, and the RMSE values of the
VSLAM and LiDAR-SLAM data were calculated for each. The
obtained RMSE values were analysed, and the average RMSE
value of the surfaces belonging to the VSLAM was found to be
1.5 cm, while the average RMSE value of the LiDAR-SLAM
system was found to be 2.1 cm. These results show that the
camera-based system generally measures with lower errors and
offers higher accuracy, especially in indoor conditions. One
of the main reasons the LiDAR-SLAM produces higher RMSE
values is the range limitations, especially in indoor environ-
ments and narrow corridors. In long but narrow areas such as
corridors, the fact that the laser beams emitted from the LiDAR
sensor cannot reach certain surfaces at a right angle or pro-
duce data with insufficient intensity negatively affects the meas-
urement accuracy. This situation increases the measurement
noise, especially on surfaces viewed from far away or at nar-
row angles, and leads to deviation of the results. In general,
although the camera-based system provided higher surface ac-
curacy in this study, it was concluded that both systems exhibit
variable performance according to different surface types and
spatial conditions and that the appropriate system choice should
be made in the application context.

As a result of the study, it was determined that LiDAR-SLAM
and VSLAM have different advantages and disadvantages. VSLAM
is especially successful in perceiving visual details and colour-
texture information; this makes it advantageous in applications
such as object recognition and classification. For example, while
the camera sensor can detect paintings on the wall surface, LiDAR-
SLAM cannot reflect these objects in the model. However, cam-
eras are dependent on environmental light conditions, and their
performance may decrease in low-light environments. On the
other hand, LiDAR sensors can also collect data in dark envir-
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Figure 8. The dimensions of the objects in the study area were
measured from the model and their actual dimensions.

onments. However, LiDAR-SLAM systems can make inaccur-
ate measurements on semi-transparent surfaces such as glass
and water and are more costly.
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