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Abstract

The recent developments in cellular communication technologies, especially the emergence of 6G, have increased the need for
accurate and reliable signal path loss prediction models. The accuracy of predictions is reduced because traditional empirical
approaches often fail to take into account the complex relationships between radio signals and the three-dimensional urban envir-
onment. Therefore, integrating advanced machine learning algorithms with diverse geographic data offers a promising direction for
improving prediction performance and supporting next-generation network planning.
This paper introduces an integrated methodology that combines Geographic Information Systems (GIS) with stacking ensemble ma-
chine learning models to enhance signal path loss prediction. The study made several key contributions, which are outlined below:
(I) A GIS-based framework has been developed to integrate the Digital Twin (DT) of the study area with machine learning-based
path loss models, incorporating 3D geographic data such as terrain height and building elevations. (II) The study assesses binary
hybrid algorithms by examining three ensemble learning models (Gradient Boosting Machine (GBM), Extreme Gradient Boosting
(XGBoost), and CatBoost). The fusion of 3D spatial data with ensemble learning algorithms has led to notable advancements in
mobile network design, improving the accuracy of signal attenuation predictions. (III) Lastly, the paper emphasizes the potential of
GIS-assisted machine learning techniques for future network deployments, including applications in DT, 6G, and beyond.

1. Introduction

A wide range of technologies is currently being developed to
enhance the intelligence, efficiency, and sustainability of urban
environments. Digital twins, which provide virtual represent-
ations of physical assets, systems, or processes updated with
real-time data, (Zhang et al., 2024) are used in the monitor-
ing, analysis, and optimisation of city components (Xia et al.,
2022). This technology makes significant contributions to the
sustainability and efficiency of smart cities.

Advances in communication systems are crucial for the devel-
opment of smart cities and digital twin technology. High-speed
internet, 5G and big data analytics are key components of these
systems. However, for this infrastructure to work effectively,
problems such as signal loss must be reduced (Ibhaze et al.,
2016, Shaibu et al., 2023). Digital twin technology assists in
predicting and optimizing communication quality by simulat-
ing propagation characteristics such as path loss and multipath
effects. This simulation enables the estimation of communica-
tion quality and its subsequent optimization by utilizing signals
from different frequency bands to ensure reliable communica-
tion (Cui et al., 2023). The physically accurate digital twin,
scalable to city level, can be used to calculate and visualise sig-
nal quality thanks to data including the location of buildings
and base stations, vegetation, elevation, radio propagation, etc
(Kuruvatti et al., 2022). The extensive and detailed data sets
provided by the digital twin allow machine learning algorithms
to achieve higher accuracy and performance in tasks such as
signal strength estimation and network optimisation.

Recently, machine learning approaches have been recognized
as playing a significant part in cellular networks. Recent ad-
vances in machine learning (ML) offer a compelling alternative
for applications such as mobile network functionality, location-
based services and signal strength estimation. The employment

of machine learning-based path loss models for the estimation
of path loss has increased in prevalence when contrasted with
the utilisation of empirical and deterministic path loss models.
This enhancement in utilisation can be explained by the com-
prehensive nature of the data employed to train the machine
learning models (Moraitis et al., 2021, Ojo et al., 2022). Tra-
ditional signal prediction methods are inadequate in the face of
environmental complexity and dynamic variability, while ma-
chine learning provides higher accuracy and reliability thanks
to its ability to learn from large data sets. Machine learning-
based approaches facilitate an effective solution to overcome
these challenges. Machine learning methods have the capacity
to learn from large data sets and have the potential to optimise
the performance of communication networks by making predic-
tions with higher accuracy and reliability (Fauzi et al., 2022,
Morocho-Cayamcela et al., 2019). In this regard, the advant-
ages offered by machine learning-based methods have led to
increasing literature interest in the area of signal path loss es-
timation.

Until the present day, path loss estimation studies based on en-
semble methods have addressed a wide variety of stand-alone
machine learning methods and ensemble methods. In some
studies aimed at predicting signal path loss, artificial neural
network (ANN)-based ensemble learning techniques have been
compared with stand-alone machine learning methods (Kwon
and Son, 2024). Utilising data obtained through image pro-
cessing techniques as input, (Sotiroudis et al., 2022) designed
a two-level ensemble model based on the ‘stacked generalisa-
tion’ approach, incorporating seven different machine learning
algorithms.In other work, it has been reported that a stacking-
based ensemble algorithm consisting of decision trees and ran-
dom forest classifiers provides the highest accuracy for estim-
ating the speed and distance of users (Aggarwal et al., 2024).
(Goudos and Athanasiadou, 2019) has used signal strength (RSS)
data collected by unmanned aerial vehicles (UAVs) in urban en-
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vironments at different altitudes for future mobile communica-
tion systems and proposed a new ensemble learning model con-
sisting of five base learners. In a study based on path loss data
obtained from Greece’s rural regions, (Moraitis et al., 2022)
evaluated the performance of diverse ensemble learning mod-
els in quantifying propagation loss in such areas. In this study,
a stacking technique consisting of five base learners and DNN
customized as a meta-learner has demonstrated the highest level
of performance. A review of the current literature shows that a
limited number of academic studies have focused on two-level
stacking-based ensemble models that integrate machine learn-
ing models based on augmentation to estimate signal path loss
in the 1800 MHz frequency band in urban areas by integrating
them with Geographic Information Systems (GIS).

This study demonstrates that the integration of ML-based ra-
dio propagation models and urban three-dimensional (3D) mod-
els offers significant contributions to the optimisation of urban
communication networks. The objectives of this study are as
follows: (i) generate signal coverage maps through spatial ana-
lyses; (ii) simulate path loss models using mobile station meas-
urements, building, and Digital Elevation Model; (iii) develop
and perform evaluation of binary hybrid models consisting of
different boosting-based ML methods. This study provides a
comprehensive assessment by integrating Geographic Informa-
tion Systems (GIS) based spatial analyses with signal path loss
models to assess the signal loss for each base station. A Di-
gital Twin of the study area, has been created by combining
3D building models and Digital Elevation Model (DEM). In
addition, this structure has made it possible to integrate signal
path loss models into smart city applications. Two hybrid mod-
els consisting of ensemble boosting models (XGBoost, Cat-
Boost, Gradient Boosting Machine) that take into account the
effects of distance, 3D spatial data, land use/cover, and topo-
graphy on signal strength are comparatively evaluated. The sig-
nal propagation and coverage area of the base stations are simu-
lated with digital twin and GIS-supported spatial modelling and
visualisation techniques.

The organization of the paper is as outlined below: Section II
presents the study area and data preparation; Section III de-
scribes GIS-integrated spatial analyses and machine learning
models used for estimating path loss; Section IV provides the
findings and discussion; and Section V concludes the paper
with the main results.

2. Study Area, Measurement Method and Data
Organization

Istanbul is the world’s 23rd-largest metropolis. It has a popu-
lation of 16 million. The total area of Istanbul is 5,460 square
kilometres. The study area has been identified as Istanbul. The
study area’s elevation varies from 0 to 536 meters. Downlink
signal measurements have been performed in Kadıköy, Fatih
and Zeytinburnu in accordance with the national frequency plan
in order to train and validate the boosting based models. To im-
plement the machine learning model, a total of three distinct
categories of datasets have been incorporated into the model
as inputs. Details on the study area are presented in Figure 1.
Three differently structured datasets have been used as input to
implement the machine learning model. The dataset consists
of base station site topology, geographical data and measure-
ment station data. The dataset has been incorporated into a geo-
graphical database. The World Geodetic System (WGS 1984),

Figure 1. Study Area.

a datum that is widely known and used worldwide, is used for
all our data layers.

The site topology database contains the location, height, an-
tenna power, and frequency information of the base stations in
the study area. The geographical database comprises three data-
sets: (i) Digital Elevation Model (DEM) data, which provides
land elevation above sea level at a 25 × 25 meters resolution
in raster format; (ii) CORINE (Coordination of Information on
the Environment) infrastructure, which classifies spatial regions
into 44 different categories based on land use and land cover
characteristics; and (iii) building height data, a vector poly-
gon dataset that includes the footprints, corner coordinates, and
height information of buildings within the study area.

The survey station data include the coordinates of mobile re-
ceiver base stations within the study area, the distance between
the mobile station and the base station, the height of the re-
ceiver, and the Received Signal Strength (RSS) values collec-
ted in the field using the HF-6065 spectrum analyzer. Figure 2
shows the Aaronia HF 6065 portable spectrum analyzer. The
1800 MHz frequency band is based on the Turkish National
Frequency Plan, and detailed band allocation information has
been obtained in accordance with this plan. In the course of
this study, downlink frequency division duplex (FDD) signal
measurements have been conducted within the 1800 MHz band
(1805.1–1879.9 MHz)(GSM & IMT-2000/UMTS & IMT De-
tailed Band Plan and Allocation Information Turkey, 2023).

Figure 2. Portable Spectrum Analyzer.
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3. GIS Integration of Spatial Analysis for Signal Path
Loss

Proximity analyses assess the spatial relationships of features
(such as points, lines, polygons, or raster cells) by measur-
ing their distances to surrounding features or cells. Proxim-
ity analysis involves calculating the distance between input fea-
tures and the nearest feature in a different layer or feature class,
as well as deriving additional information about their spatial
neighborhood (Ness and Brogaard, 2008). In this study, the
distances of mobile stations to the nearest base station are de-
termined by proximity analysis.

Visibility analysis has been applied in the study as another spa-
tial analysis. Visibility analysis is a type of analysis used in
GIS applications to examine whether there is a direct line of
sight (LOS analysis) from a specific point in an area to another
point, and how much of the surrounding area can be seen from
a specific observation point (Viewshed analysis) (Zhao et al.,
2024). Furthermore, obstacles such as terrain height and build-
ings have been automatically detected in the 3D visibility ana-
lysis. In this scope, using DEM and a single observation point,
a new raster image showing the visible and invisible areas for
each BTS (coded with 1 and 0) has been produced. The mutual
visibility problem between each BTS and each survey station in
the study area is shown in Figure 3 based on visibility analysis
with 3D spatial linearity and the intersection of the topographic
profile.

Figure 3. Visibility Analysis.

In the following stage of this study, spatial overlay analysis has
been applied. In spatial analysis, the process of overlaying and
merging the layers of maps belonging to different geographical
features that have the same coordinate system is referred to as
spatial overlay analysis. Spatial join is a spatial analysis method
frequently used in GIS. Spatial join analysis is a simple way to
rapidly examine spatial correlation. This method combines fea-
ture information from multiple layers within the same coordin-
ate system by leveraging their spatial relationships (Zhang et
al., 2021). The land use types where the measurement stations
are located have been determined by spatial join analysis.

4. Ensemble Learning Methods for Signal Path Loss

In this study, binary hybrid models of various individual ma-
chine learning (ML) algorithms such as CatBoost, XGBoost,
GBM are evaluated for a regression problem. An understand-
ing of the individual algorithms is essential for interpreting the
hybrid modeling approach; therefore, brief descriptions of each
model are presented.

Gradient Boosting Machine (GBM) is a supervised learning
technique capable of predicting both categorical and continuous
target variables. A strong predictive model is built iteratively
using multiple weak learners (typically decision trees) while
minimizing the loss function via gradient descent (Aldossari,
2023).

XGBoost is an optimised and accelerated implementation of the
Gradient Boosting Machine (GBM), offering superior perform-
ance especially when applied to structured datasets. Addition-
ally, XGBoost can operate efficiently in high-dimensional fea-
ture spaces, maintaining relatively low computational cost com-
pared to other gradient boosting algorithms (Liu et al., 2022).
Assume a data set defined as D={(xi,yi)}, i = 0, 1, ..., n where
each xi consists of m attributes xi= (xi1,..., xim) . Here, ŷi
represents the predicted output value for the i-th data point.

ŷi =

T∑
t=1

ft(xi), ft ∈ F (1)

Here, F denotes a set of regression trees; xi represents the ex-
planatory variables for the ith data point; the expression ft(xi)
refers to the prediction made by the tth tree in the ensemble.
The final prediction is obtained by summing the outputs of all
T trees, where T denotes the total number of trees used in the
model (Nagao and Hayashi, 2020).

CatBoost is a type of GBM model that can automatically con-
vert categorical features in data sets into numerical data, thereby
reducing the need for data preprocessing. In complicated data
sets containing categorical data, this model can process the data
directly, thereby providing simpler but more effective perform-
ance. Symmetric trees are a decision tree model that divides
into subtrees by splitting at each node and form the basis of the
model. These symmetric trees are structurally similar to each
other in that they apply the same splitting condition to all leaf
nodes at each level of the tree. This eliminates the problem of
overfitting and provides higher prediction accuracy without cre-
ating deep trees (Masood et al., 2023). The CatBoost model can
be defined as in equation 2:

Z = H(xi) =
∑J

j=1
cj1{x∈Rj} (2)

Here, H(xi) denotes the function of a decision tree constructed
based on the explanatory variables xi. Each tree splits the fea-
ture space into disjoint regions Rj , corresponding to its leaves,
based on binary splits of both numerical and encoded categor-
ical features.

This hybrid approach utilises an ensemble learning technique
known as stacking and it has been observed that this technique
provides higher accuracy than other machine learning algorithms.
This approach seeks to enhance prediction accuracy by lever-
aging the strengths of multiple basic regressors. The essence
of the stacking technique lies in its hierarchical structure: This
method consists of multiple basic regressors, each of which is
independently trained on the dataset. The basic regressors gen-
erate predictions, which the higher-level meta-regressor then
uses as input features. This meta-regressor, often termed the
final estimator, combines the outputs of the base regressors to
generate the final prediction. The flow chart of the aforemen-
tioned method is provided in Figure 4.
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Figure 4. Flow chart of the stacking model.

In this study, the most appropriate hyperparameter selection for
each model has been performed using the GridSearchCV meth-
odology in the Scikit-Learn library in Python software. Hy-
perparameter tuning has been performed by cross-validation.
Cross-validation is a type of statistics-based resampling that
objectively and accurately analyzes the efficiency of machine
learning models across a variety of data sets.

K− fold cross validation is employed not only to assess model
performance but also to perform hyperparameter tuning to op-
timise generalisation capability. This procedure plays an im-
portant role in determining the stability of a machine learning
model. The K− fold cross validation method involves the divi-
sion of the data set into K subsets. The model is subsequently
subjected to training and testing K times, with each subset util-
ized as the test data set. The application steps and operational
logic of the method at issue are presented in Figure 5 in order
to illustrate the methodology more clearly.

Figure 5. K− fold Cross-validation Method.

Within the framework of this study, the value of k has been
designated as 10 by the K-fold cross-validation approach. Hy-
perparameters determined for the models are given in Table I.

5. Results and Discussions

In this study, frequency, received signal strength, land use/land
cover, height, base stations, and building heights collected from
the field have been used for modelling. Model development has
been implemented with Python JupyterLab and spatial analysis
and mapping with ArcGIS. The data set consists of both cat-
egorical and numerical data types. Categorical data has been
transformed with One Hot Encoding; data set has been divided
into 80% for training and 20% for testing. For the model, a

ML Models Optimum Hyperparameter
Hyperparameter Optimal value

XGBoost colsample bytree 0.8
learning rate 0.1
max depth 8

n estimators 300
CatBoost iterations 500

learning rate 0.1
depth 5

l2 leaf reg 6
GBM learning rate 0.1

max depth 5
n estimators 500

Table 1. Hyperparameter Tuning Outcomes.

new data set has been created with random points to gener-
ate synthetic data. All spatial analyses have been repeated to
create a new data set. Model evaluation metrics used to as-
sess the accuracy and generalisation capacity of the ensemble
method form the basis of performance analysis in regression-
based problems. This study employs two evaluation metrics:
the root mean squared error (RMSE) and the mean absolute
error (MAE). These metrics used in this study are considered
standard benchmarking criteria that allow comparison with sim-
ilar algorithms. These performance metrics can be defined math-
ematically as follows:

RMSE =

√
1

N

N∑
i=1

(
PLMeasured

i − PLPred
i

)2
(3)

MAE =
1

N

N∑
i=1

∣∣PLMeasured
i − PLPred

i

∣∣ (4)

Here, PLMeasured
i represents the signal path loss values ob-

tained as a result of the measurements, PLPred
i represents the

predicted signal path loss values, i represents the index of the
measured samples, and N represents the total number of samples
(Al-Thaedan et al., 2024).

In Table II, MAE and RMSE results for 1800 MHz path loss es-
timation have been presented. A comparative evaluation of en-
semble learning approaches for path loss prediction shows that
combining CatBoost and XGBoost yields superior predictive
performance compared to using XGBoost and GBM together.

Specifically, the CatBoost+XGBoost model achieved a substan-
tially lower mean absolute error (MAE) of 0.9802 compared
to 1.3496 for the XGBoost+GBM model, indicating that the
model produces predictions that, on average, deviate less from
the true path loss values. The Root Mean Square Error (RMSE)
results reinforce this finding: CatBoost+XGBoost achieved an
RMSE of 1.1910, substantially outperforming the other ensemble
(RMSE = 1.9767). As for the recommended stacking ensemble
models, CatBoost and XGBoost stacking models perform better
because CatBoost efficiently processes categorical data without
requiring transformation. These results suggest that the inclu-
sion of CatBoost, which is particularly effective in handling
categorical features and mitigating overfitting through ordered
boosting, contributed positively to the overall model robustness
and generalization capability. By contrast, the XGBoost+GBM
ensemble exhibited higher error metrics, which may reflect less
effective handling of non-linear dependencies and potential re-
dundancy between the two gradient boosting methods. Over-
all, the CatBoost+XGBoost ensemble offers a more accurate
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and reliable predictive framework for modeling path loss in the
studied propagation environment.

Ensemble Models Performance Metrics
MAE RMSE

CatBoost+XGBoost 0.9802 1.1910
XGBoost+GBM 1.3496 1.9767

Table 2. Performance Metrics of Evaluated Machine Learning
Algorithms.

In comparison with the results of other studies in the literature,
(Sani et al., 2022) has examined two separate data sets and cal-
culated signal path losses at multiple frequencies and in mul-
tiple environments. The study has applied Gradient Boosting
and XGBoost models and obtained RMSE values between 2.75
and 5.48 dB in various 1800 MHz environments.In the study
(Liu et al., 2022), the signal strength at a frequency of 3.5 GHz
has been analyzed using the XGBoost model, and geographical
information has been integrated into the analysis. The results
have been compared with empirical models such as SUI and
ECC. The XGBoost model shows RMSE values between 7 and
8 dB under different circumstances. The CatBoost+XGBoost
stacking model has shown the best performance with 1.19 dB
RMSE, efficiently processing categorical data. Based on pre-
vious research, this study combines GBM, CatBoost, and XG-
Boost models using a stacking method and demonstrates better
performance with lower RMSE values. Table II also highlights
the effectiveness of ensemble learning techniques generated us-
ing the stacking method in improving path loss prediction ac-
curacy. The signal path loss estimation map covering the whole
region with the Kriging method has been given in Figure 6.

According to the signal path loss map shown in Figure 6, which
is generated with synthetic data, it is seen that in the districts
with dense urbanisation, high building height and number, high
population density significantly increase the signal loss (in the
red regions of the map). In addition, other urbanised structures
(e.g. bridges, tunnels) may interfere with the effective transmis-
sion of the signal.

Figure 6. 1800 MHz Signal Path Loss.

6. Conclusions

Path loss models are developed to satisfy specific network re-
quirements. The selection of a suitable path loss model for the
target area is of significant importance in terms of evaluating
coverage quality. In this context, Geographic Information Sys-
tems (GIS) assist in determining spatial variables for coverage

estimation models and play a critical role in network propaga-
tion evaluation.

In this study, signal loss has been visualised by Kriging inter-
polation using Geographic Information Systems (GIS) for path
loss estimation and a comprehensive loss surface has been cre-
ated for the whole area. A stacking ensemble-based method, in-
tegrating a dual combination of three community learning tech-
niques, is proposed. The findings indicate that the proposed ar-
chitecture possesses the capacity to accurately identify and pre-
dict a significant portion of the measured path loss data, while
effectively minimizing the mean square error. These findings
are based on a test conducted on 20% of the measured data-
set. Both the Mean Absolute Error (MAE) and the Root Mean
Square Error (RMSE) have achieved a significant reduction, in-
dicating improved predictive accuracy and enhanced generaliz-
ation performance. Stacking ensemble learning methods have
improved accuracy by combining the predictions of different
models; in particular, CatBoost’s direct processing of categor-
ical data has led to high performance in analyses involving geo-
graphic information. The proposed 2D and 3D based approach
has achieved successful results in terms of accuracy, efficiency,
and scalability, and may make significant contributions to 6G
and beyond 6G network planning.
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