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Abstract

Stereo image analysis plays a critical role in geospatial domains, enabling the generation of high-resolution disparity maps from satellite
imagery, and these maps are essential for producing accurate 3D surface models used in applications such as terrain modeling, urban
planning, and environmental monitoring. This study conducts an evaluation of traditional scanline aggregation stereo matching
methods, including Semi-Global Matching (SGM) and More Global Matching (MGM), with a deep learning-based approach, i.e.,
RAFTStereo. For satellite images, traditional stereo matching methods are still popular due to their balance of efficiency and
robustness, and SGM / MGM could provide reliable disparity maps. However, the maturity of deep learning and availability of high-
quality benchmark datasets have been steadily shifting the process toward fully automatic, accurate, and scalable solutions. In this
study, the performance of SGM, MGM and RAFTStereo methods were investigated for disparity estimation using stereo images of
Gaofen-7 satellite using the WHU-Stereo satellite dataset. Experimental evaluations indicate that MGM consistently achieves the
lowest numerical errors (= 3-5 pixels), while RAFTStereo produces more visually coherent disparity maps with reduced noise and
improved surface continuity. Traditional methods such as SGM and MGM remain robust and require no training, yet deep learning-
based approach RAFTStereo demonstrate superior performance in radiometrically and geometrically complex scenes.

1. Introduction

Stereo image analysis plays a critical role in geospatial domains,
and despite the recent developments, disparity estimation still
possesses significant challenges. Acquisitions over large
textureless areas (smooth agricultural land, water bodies),
repetitive patterns, transparent objects (e.g., glass and water),
high-saturation scenes, or poorly lit / shadow areas still pose
difficulties for disparity estimation. Additionally, atmospheric
effects may naturally create differences between observation
times and radiometric variations (e.g., across track stereo),
further complicating stereo matching. These challenges highlight
the importance of developing robust methods that can generalize
to varying conditions for satellite images.

Stereo processing primarily consists of stereo rectification and
dense disparity estimation. Stereo rectification transforms image
planes such that corresponding points are aligned horizontally,
significantly simplifying the matching problem. Dense stereo
matching algorithms, either traditional or learning-based, are
then used to estimate disparity maps that represent pixel shifts
between stereo images. For satellite images, traditional stereo
matching methods such as Semi Global Matching (SGM)
(Hirschmiiller, 2007) are still popular due to their balance of
efficiency and robustness (d’Angelo and Reinartz, 2012;
Rothermel et al., 2012). Through combining matching cost at
pixel-wise level with smooth constraints at multiple path
aggregation, the SGM could provide reliable disparity maps
featured by remote sensing (Xia et al., 2020). Besides, More
Global Matching (MGM) improves upon SGM by incorporating
additional information from previously visited neighbouring
pixels, enhancing disparity consistency and robustness,
particularly in angular directions (Facciolo et al., 2015). MGM
also involves computing local matching costs, directional

aggregation to reduce ambiguity, selecting minimum cost
disparity, and post-processing refinement. Although very
successful, traditional approaches suffer from complex scenes
containing low texture, and changing illuminations, which are
very typical scene properties also observed from spaceborne
imagery datasets (Treible et al., 2018). To overcome these
limitations, some fusion models have been proposed, obtaining
large performance improvements for different satellite datasets
(Gomez et al., 2023).

The establishment of Convolutional Neural Networks (CNNs)
aimed at changing the stereo matching thoroughly. Earlier
attempts, for example Matching Cost CNN (MC-CNN), already
demonstrated the successful utilization of matching cost
computations (Zbontar and LeCun, 2016). Deep learning
methods developed afterwards, like GANet (Zhang et al., 2019),
which incorporated ideas from SGM into an end-to-end trainable
technique, resulting in substantial improvements in both
accuracy and efficiency (Xia et al., 2022; Gomez et al., 2022).
However, recent developments in deep learning have brought
forward methods like RAFTStereo (Lipson et al., 2021) which
utilize feature learning and guided cost aggregation to deliver
improved disparity estimation, even under challenging
conditions. RAFTStereo is an extension of the Recurrent All-
Pairs Field Transforms (RAFT) model (Teed and Deng, 2020), in
which the disparity map is refined iteratively through a recurrent
update module based on Long Short-Term Memory (LSTM)
structure. Gomez et al. (2022) examined multiple methods, both
classical and deep learning-based stereo approaches, and Xia et
al. (2020) provided a detailed comparison between traditional
SGM and learning-based methods like GANet. The studies
indicated that deep learning methods have promising prospects,
either as parts of hybrid chains or as end-to-end solutions of
satellite stereo processing systems in the future.
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This study assesses traditional scanline aggregation-based stereo
matching methods, specifically Semi Global Matching (SGM)
and More Global Matching (MGM), in relation to adeep
learning-based method, RAFTStereo. The aim is to highlight
their respective strengths, limitations, and applicability to
geospatial tasks. Our emphasis is on evaluating the efficacy of
the methods for disparity estimation utilizing high-resolution
stereo images obtained from the Gaofen-7 (GF-7) satellite (Li et
al., 2023).

The remainder of this paper is organized as follows: Section 2
introduces the three stereo matching methods under
investigation, namely SGM, MGM, and RAFTStereo, and the
pipeline framework utilised. Section 3 introduces the GF-7
dataset and pre-processing steps, including stereo rectification
and ground truth. Section 4 presents the experimental setup, and
discusses the comparative results, emphasizing the strengths and
weaknesses of each approach. Finally, Section 5 concludes the
paper with a summary of findings and directions for future
research.

2. Methods Evaluated for Stereo Matching

Stereo matching, also referred to as correspondence matching,
involves estimating a disparity map for rectified stereo image
pairs that show positional shift of objects between two image
views as a proxy for depth/elevation information. A multi-stage
optimization pipeline that consists of matching cost computation,
cost aggregation, disparity optimization and post-processing is
typically used to mitigate the problem of stereo matching.
Traditional methods use low-level features extracted from local
image patches around each pixel to estimate disparities
(Hirshmuller and Scharstein, 2008). The effectiveness of
traditional stereo matching methods is often limited by the use of
manually generated features in matching cost functions. To get
around these limitations, several deep learning-based methods
have been introduced. The accuracy of depth estimation from
stereo image pairs can be greatly enhanced by these novel
techniques. However, because deep models require a lot of
memory, they are frequently challenging to use in practice,
especially when dealing with very-high-resolution satellite/aerial
imagery. This is especially true when the graphics processing
unit (GPU) memory needs to hold a large amount of 3D matching
volumes. For this reason, traditional stereo algorithms continue
to be useful, especially when dealing with large sized datasets.
Even though deep learning is becoming more and more popular
in many domains, this trend has not yet fully reached satellite
stereo pipelines, which are still largely based on classical
algorithms (Gomez et al., 2022).

Recent years have seen the emergence of deep learning-based
techniques for determining matching costs; CNNs have
demonstrated superior performance by improving their ability to
assess patch similarity (Zbontar & LeCun, 2016). In general,
deep learning models have been utilized either for aggregating
matching costs using classical techniques like cost filtering and
SGM or for separating the processes of cost computation and
disparity estimation (Albanwan & Qin, 2022; Patil, 2022).
Although these methods sometimes outperform traditional
matching, they still encounter difficulties in accurately
estimating disparity in ill-posed regions such as textureless or
occluded areas. Despite reaching state-of-the-art performance,
these hybrid frameworks are still limited by the drawbacks of
conventional cost aggregation techniques, which frequently lead
to imprecise disparity estimations, especially along object
boundaries, in reflective regions, low-texture surfaces and
occluded areas.

2.1 SGM

SGM was introduced to solve the computational cost of global
methods (Hirschmiiller, 2007). The method requires the
generation of epipolar images as a prerequisite and consists of
four main stages: matching cost computation, cost aggregation,
disparity computation/optimization and refinement. To obtain a
reliable depth map, a discontinuity preserving energy function is
minimized. This energy is calculated along one-dimensional
(1D) paths, not two-dimensional (2D) (e.g., left to right, top to
bottom, etc.). In this way, data is collected from 8 or 16 different
directions (Figure 1 - left). The information about each pixel from
different directions is aggregated and, in the end, the lowest total
cost is selected (winner-takes-all). This method is fast, but it can
leave streaking artifacts. This is because aggregation for each
line/column is seperated from each other.

2.2 MGM

MGM incorporates 2D contextual information into the 1D path-
wise optimization framework of SGM (Facciolo et al., 2015).
This is effectively accomplished by utilizing messages passed
from previously visited pixels along the previous scanline (i.e.,
from pixels above). In the MGM algorithm, the matching
decision at a given pixel is shaped not only by a few immediate
neighbors but also by a broader region from the relevant quadrant
(Figure 1 - right). This represents a major distinction from SGM,
which only considers information propagated from specific
directions.

MGM defines a dedicated scanning order for each direction (e.g.
top-right, bottom-left) and accordingly computes directed cost
accumulation values for each direction. The costs accumulated
from all directions are then merged, correcting for redundant
information. This merging is performed according to formula and
the final matching is determined using the Winner-Takes-All
method, selecting the disparity with the minimum total cost.
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Figure 1. SGM and MGM approaches (Facciolo et al., 2015)

2.3 RAFTStereo

RAFTStereo is a deep learning model used for stereo depth
estimation (Lipson et al., 2021). It is derived from the RAFT
optical flow algorithm (Teed and Deng, 2020), where optical
flow refers to the technique of detecting motion between two
images. RAFTStereo computes the disparity (i.e., the horizontal
shift) between two images to generate a depth map. Its key
contributions include the use of multi-level Gated Recurrent
Units (GRUs), cost volume optimization, and improved real-time
performance.

RAFTStereo utilizes multi-level GRUs to enable more efficient
information propagation across different resolutions. Unlike
previous methods that employed computationally expensive 3D
convolutional networks to process stereo cost volumes,
RAFTStereo adopts a lightweight approach using 2D
convolutions and simpler cost volume computations. Besides, its
architecture is specifically designed for speed, enabling real-time
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inference, which makes RAFTStereo suitable for practical
applications.

RAFTStereo employs a dual-encoder architecture consisting of a
feature encoder and a context encoder for independent feature
extraction (Figure 2). The feature encoder processes both the left
and right input images, generating dense feature maps that are
subsequently used to build the correlation volume. It is composed
of a sequence of residual blocks and downsampling layers that
generate feature maps at a resolution of 1/4 or 1/8 of the original
image, contingent upon the number of downsampling layers. The
feature encoder utilizes instance normalization throughout its
layers. In contrast, the context encoder shares an identical
architectural design but substitutes instance normalization with
batch normalization and is exclusively applied to the left input
image. The hidden state of the update module is initialized using
context features, which are also fed into the GRU at every time
step.

Contaxt Encadar

Figure 2. RAFTStereo Architecture (Lipson et al., 2021)

The correlation volume captures the matching information that
the model uses to find correspondences between pixels in the left
and right images. For each pixel, visual similarity to pixels in the
opposite image is measured, generating a volume that helps the
model predict disparity. To improve efficiency, a correlation
pyramid is constructed by repeatedly applying average pooling
to the last dimension, creating four levels of correlation volumes
at different resolutions. Analyzing images at multiple scales
enables the model to capture both large structures at lower
resolutions and finer details at higher resolutions. Updates are
performed across these different scales to enhance accuracy.
During correlation lookup, a one-dimensional grid of integer
offsets is generated around the current disparity estimate. The
grid serves as an index for sampling features across multiple
levels of the correlation pyramid. Due to the continuous nature of
the grid coordinates, bilinear interpolation is employed during
sampling. The resulting values are aggregated into a single
feature map. The network iteratively updates disparity maps at
multiple resolutions (e.g., 1/8, 1/16, and 1/32 of the input
resolution). This allows the network to better handle areas with
large textures and regions containing fine details.

RAFTStereo employs separate backbones for extracting
correlation features and context features to support GRU updates.
It was demonstrated that employing a unified backbone for
extracting both correlation and context features enables faster
inference while maintaining predictive accuracy. This single-
backbone architecture is utilized in RAFTStereo.

2.4 Stereo Processing Pipelines Utilised

Recently, stereo processing pipelines including Satellite Stereo
Pipeline (S2P) and GPU-Accelerated Binocular Stereo Pipeline
(S2P-HD) have been designed focusing exclusively on satellite
data, incorporating automation of numerous pre-analysis,
matching, and triangulation steps with domain-specific
corrections. S2P is an open-source, modular framework
developed by Ecole Normale Supérieure Paris-Saclay with

CNES for automatic Digital Surface Model (DSM) generation
from high-resolution optical satellite stereo imagery (De Franchis
et al., 2014). Optimized for pushbroom sensors, it comprises
geometric pre-processing, epipolar rectification, disparity
estimation, and 3D triangulation. The framework addresses
complex epipolar surfaces of pushbroom sensors by
approximating Rational Function Model (RFM) with local affine
models from first-order Taylor expansions, followed by dense
stereo matching using SGM/MGM with Census-based cost
metrics.

S2P-HD represents a very recent sophisticated evolution of S2P,
incorporating specialized modifications for concurrent optical
satellite data processing (Amadei et al, 2025). Key
improvements include refined disparity range estimation
leveraging reference models and multi-resolution analysis,
highly optimized GPU-enhanced SGM techniques, improved
rectification methods, and strategic tiling strategies for large
geographic areas.

3. Dataset and Framework

The WHU-Stereo satellite dataset (Li et al., 2023) is built using
high-resolution stereo imagery captured by the Chinese GF-7
satellite, which is equipped with a dual-line array stereoscopic
camera system. High-quality in-track stereo pairs are ensured by
the simultaneous capture of the panchromatic images from
forward and backward viewing angles (—5° and +26°,
respectively) and a ground sampling distance (GSD) of better
than 0.8 meters. With the help of the dual-line array camera
system aboard the GF-7 satellite, there is only a brief temporal
offset between the forward- and backward-looking images,
which are taken during the same orbital pass. This temporal
alignment allows for accurate disparity estimation.

All computational experiments and evaluations presented in this
study were carried out on a high-performance computing system.
equipped with an Intel® Xeon® Platinum 8380 CPU running at
2.30 GHz, featuring 160 logical processors (40 cores per socket
with 2 threads per core). The system also includes 503 GB of
RAM and NVIDIA L4 24 GB GPUs, which provided significant
acceleration for deep learning-based stereo matching and large-
scale DSM generation tasks.

The S2P pipeline provides built-in support for the SGM
algorithm and its extensions, the MGM framework. In addition
to these, it incorporates several algorithmic variations (e.g., tvll,
msmw, sgbm, mgm multi) that allow flexible adaptation of
stereo processing to diverse terrain and radiometric conditions
(De Franchis et al., 2014). S2P also offers configurable options
for cost functions, regularization strength, and consistency
filtering, enabling fine-tuning of disparity estimation accuracy
and robustness without modifying the core algorithmic structure.

RAFTStereo includes iterative updates to the disparity map
through a multi-level recurrent GRU based architecture. It
utilizes correlation pyramids to keep the global context and
works directly with high-resolution images. Training sessions
(including fine tuning operations) were performed for
RAFTStereo based on the WHU datasets. In the production of
disparity maps, 1,222 left and right stereo images and disparity
images with a resolution of 0.8 meters in the pan band, each
measuring 1,024 x 1,024 pixels, were used and shared with
ground truth information for training. In this study, the Shaoguan,
Kunming, Yingde, and Qichun regions were provided for
training. For testing, two 1024x1024 images from the Hengyang,
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and Shaoguan regions that were not included in the training
process were utilised.

The WHU dataset consisting of 1024x1024 pixels epipolar
rectified stereo pairs was used without additional preprocessing.
Configuration was selected to preserve spatial resolution while
keeping memory consumption within the limits of available
hardware. Mixed precision training was utilized to accelerate
computation without degrading numerical stability or
performance.

4. Results and Discussion

The performance of stereo matching algorithms has been
evaluated using both visual analysis and numerical measures.
Table 1 presents the overall performance of the RAFTStereo
algorithm on the generated disparity maps.

The comparative analysis between traditional stereo matching
algorithms (SGM and MGM) and deep learning-based method
(RAFTStereo) reveals several differences in their performance
when applied to satellite stereo imagery. Traditional methods,
particularly MGM, demonstrate robust and consistent
performance across various datasets, offering reliable disparity
maps and digital surface models (DSMs) with relatively lower
computational requirements. MGM’s structured cost aggregation
approach provides smoother disparity outputs than SGM,
effectively reducing streaking artefacts and improving disparity
completeness in moderately challenging scenes.

Figures 2 and 3 present the right and left stereo images (for SG_0
and HY 6 regions), ground truth and output disparity maps
produced by traditional and deep learning methods. According to
the numerical results presented, the RMS distance is computed as
~ 3-5 pixels for both the traditional and deep learning methods.

SGM (S2P) MGM (S2P)
Data COMP COM
%) RMSE MAE P (%) RMSE MAE
GF-7
HY 6 53.40 4.78 2.20 64.76 4.34 1.98
GF-7
SG 0 73.59 3.60 1.93 75.51 3.29 1.73
SGM-GPU (S2P-HD) RAFTStereo
Data 1 comp coM
(%) RMSE MAE P (%) RMSE MAE
GF-7
HY 6 63.69 6.71 2.83 100 493 2.54
GF-7
SG 0 76.03 4.02 2.03 100 3.31 1.96

Table 1. The overall performance of the different methods. Best
RMSE computed are given in bold.

Our experimental results reveal that MGM achieves high
geometric accuracy, particularly in moderately textured areas,
while RAFTStereo demonstrates performance in handling

radiometric inconsistencies and textureless surfaces, offering
computational efficiency during the inference stage.

As shown in Table 1, MGM method achieved the lowest error
values, thus standing out in terms of numerical accuracy. This
can be associated with MGM producing fewer systematic errors
in disparity estimation. However, visual inspection revealed that
the MGM outputs still contained localized noise and
discontinuities. SGM produced slightly higher error than MGM.
Nevertheless, it provided a more balanced result in terms of noise
reduction and surface continuity. SGM was observed to generate
more stable results in homogeneous regions, although it tended
to cause detail loss around object boundaries.

Despite having the highest error among the four methods, S2P-
HD SGM stands out with its ability to capture fine details and
distinguish complex surface transitions. However, this detail-
preserving property comes along with significant noise and
reduced surface continuity. In other words, while the algorithm
makes small structures more distinguishable, it also introduces
instability and patchy results in homogeneous areas. This
indicates that S2P-HD has a strong tendency toward detail
preservation but is weaker in noise suppression. RAFTStereo

a3

Figure 2. SG_0 region results. (a,
b) stereo images, (c) ground truth
disparity map, output disparity
map using (d) SGM in S2P, (e)
MGM in S2P, (f) SGM in S2P-
HD, (g) RAFTStereo model
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ranked second in terms of RMSE, but in visual analysis it
produced one of the least noisy results with the highest surface
continuity. The lower spatial variance observed in RAFTStereo
outputs suggests that the method is advantageous in producing
consistent disparity estimations in homogeneous regions. On the
other hand, the slightly higher RMSE compared to MGM and
SGM indicates that the method may introduce systematic shifts
(bias) in elevation for certain parts.

MGM produced relatively stable results over water surfaces but
exhibited considerable noise in forested areas. This indicates that
the stability of MGM may decrease in textured regions.
RAFTStereo yielded error values close to MGM but stood out in
terms of visual quality. It produced smoother and more
continuous surfaces in forested regions, with lower noise levels.
Over water surfaces, its performance was comparable to MGM.
This suggests that RAFTStereo can provide more consistent
performance across both homogeneous and complex regions.
Visual analysis of SGM revealed fragmented results in forested
areas, while the method remained more stable in residential zones
and along roads. Therefore, the performance of SGM appears to
vary depending on the structural characteristics of the scene. S2P-

HD SGM obtained the highest error among the methods, yet it
demonstrated advantages in capturing small structural details and
road boundaries. However, its tendency to generate significant
noise in forested regions and lack of continuity over water
surfaces highlight its weaknesses. This indicates that S2P-HD is
strong in detail preservation but less effective on complex natural
surfaces.

Overall, MGM and RAFTStereo produced comparable results in
terms of numerical accuracy, while RAFTStereo showed
superior visual quality, particularly in natural surfaces. SGM
provided a balanced but scene-dependent performance, whereas
S2P-HD SGM performed well in preserving small details but
remained sensitive to noise in natural regions.

Figures 4 and 5 present the right and left stereo images (for SG_0
and HY 6 regions), difference output disparity maps produced
by traditional and deep learning methods. Note that disparity
errors exceeding 10 pixels with respect to the ground truth were
masked out to facilitate clearer visualization and comparison.

In the first dataset (Figure 4 - SG_0 region), which predominantly
consists of structured urban areas, roads, and rectangular
agricultural parcels, the difference maps reveal the distinct
characteristics of each method. SGM demonstrates low error
magnitudes in an overall sense, yet systematic deviations are
clearly concentrated along building edges and road boundaries,
highlighting its limitations in capturing sharp structural
discontinuities. Conversely, disparities over homogeneous
agricultural fields are achieved with greater consistency. MGM
provides a more uniform distribution of errors compared to SGM,
with reduced concentrations in built-up regions and along roads,
although residual noise persists in irregular structures and less-
defined areas. S2P-HD SGM shows a stronger ability to preserve
fine details, such as field boundaries and smaller objects, but this
advantage comes at the expense of elevated error levels
surrounding those regions, particularly around structural edges.
RAFTStereo, on the other hand, produces the most coherent and
visually smooth difference map, with very low errors across
homogeneous surfaces and only localized deviations around
dense building clusters and road intersections, confirming its
superior capability in maintaining surface continuity.

The second dataset (Figure 5 - HY-6 region) presents a more
complex scenario, comprising urban settlements, a water body,
and dense forested regions. SGM achieves generally low error
levels, yet suffers from significant deviations in forested areas
and fragmented inconsistencies over the water surface, reflecting
its difficulty in textureless and highly irregular regions. Within
residential areas, however, its performance remains
comparatively stable. MGM exhibits a more homogeneous error
distribution and performs reliably over the water surface, though
noise remains prominent within forested regions; error patterns
in structured areas are more localized compared to SGM. S2P-
HD SGM continues to preserve fine structural details and road
boundaries, yet generates higher error magnitudes in natural
regions, particularly forests and water surfaces. This behavior
underscores its strength in detail preservation but also its issues
in homogeneous or low-texture surfaces. RAFTStereo delivers
the most balanced performance, with minimal errors over the
water body and noticeably reduced noise in forested areas
relative to the other methods. The remaining errors are largely
confined to object boundaries and forest edges, highlighting
RAFTStereo’s robustness across both homogeneous and
structurally complex natural environments.
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Figure 4. SG_0 region disparity difference maps. (a, b) stereo
images, (c) difference map between GT and SGM output, (d)
difference map between GT and MGM output, (e) difference
map between GT and SGM (GPU acceralated) output, and (f)
difference map between GT and RAFTStereo model output.

5. Conclusion

In this study, the process of generating disparity maps from high-
resolution satellite stereo images using traditional stereo
matching methods and a modern deep learning approach is
examined using the stereo images of Gaofen-7 satellite available
within the WHU-Stereo satellite dataset.

Traditional stereo matching methods, particularly SGM and
MGM, continue to provide reliable performance in structured
urban environments and textured terrains, especially under
limited computational resources. However, their ability to
generalize to challenging scenarios such as homogeneous
surfaces, seasonal variations, and significant radiometric
inconsistencies remains limited. Recent advancements in deep
learning-based stereo matching methods, such as RAFTStereo,
have demonstrated notable performance in disparity estimation
accuracy, generalization and robustness across varying satellite
imagery conditions. Although deep learning methods outperform
classical techniques in most conditions, their dependency on
extensive annotated training data and their generalization across
different satellite platforms without fine-tuning remains a big
concern.

The RMSE evaluations and difference map analyses presented in
this study revealed complementary strengths and weaknesses
among the tested methods. MGM consistently produced the

Figure 5. HY 6 region disparity difference maps. (a, b) stereo
images, (c) difference map between GT and SGM output, (d)
difference map between GT and MGM output, (e) difference
map between GT and SGM (GPU acceralated) output, and (f)
difference map between GT and RAFTStereo model output.

lowest numerical errors, whereas RAFTStereo generated more
visually coherent disparity maps with reduced noise and
improved surface continuity, especially across homogeneous
areas and natural surfaces such as water bodies and forests. SGM
maintained stable performance in structured regions but showed
systematic deviations along object boundaries, while S2P-HD
SGM preserved fine structural details at the expense of increased
noise and error concentrations in textureless regions. These
results highlight the importance of jointly considering both
numerical accuracy and spatial error distribution in the evaluation
of stereo matching algorithms.

In summary, our analysis suggests that while traditional methods
remain indispensable for specific conditions, the future of
satellite stereo matching strongly leans towards deep learning-
based and hybrid approaches, particularly for large-scale, high-
precision disparity generation. Drawing upon the findings of this
research and recent literature, future investigations should focus
on designing memory-efficient deep architectures to efficiently
process large satellite images and using hybrid methods. In
addition, fine-tuning pre-trained models on satellite-specific
datasets can significantly improve their ability to handle the
unique characteristics of satellite imagery, including large
disparity ranges, pushbroom sensor geometries, and multi-
temporal variations. The availability of publicly available
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datasets remains essential for unbiased evaluation, and careful
benchmark design is fundamental to driving progress in satellite-
based disparity generation.
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