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Abstract 

 

Stereo image analysis plays a critical role in geospatial domains, enabling the generation of high-resolution disparity maps from satellite 

imagery, and these maps are essential for producing accurate 3D surface models used in applications such as terrain modeling, urban 

planning, and environmental monitoring. This study conducts an evaluation of traditional scanline aggregation stereo matching 

methods, including Semi-Global Matching (SGM) and More Global Matching (MGM), with a deep learning-based approach, i.e., 

RAFTStereo. For satellite images, traditional stereo matching methods are still popular due to their balance of efficiency and 

robustness, and SGM / MGM could provide reliable disparity maps. However, the maturity of deep learning and availability of high-

quality benchmark datasets have been steadily shifting the process toward fully automatic, accurate, and scalable solutions. In this 

study, the performance of SGM, MGM and RAFTStereo methods were investigated for disparity estimation using stereo images of 

Gaofen-7 satellite using the WHU-Stereo satellite dataset. Experimental evaluations indicate that MGM consistently achieves the 

lowest numerical errors (≈ 3-5 pixels), while RAFTStereo produces more visually coherent disparity maps with reduced noise and 

improved surface continuity. Traditional methods such as SGM and MGM remain robust and require no training, yet deep learning-

based approach RAFTStereo demonstrate superior performance in radiometrically and geometrically complex scenes. 

 

 

1. Introduction 

Stereo image analysis plays a critical role in geospatial domains, 

and despite the recent developments, disparity estimation still 

possesses significant challenges. Acquisitions over large 

textureless areas (smooth agricultural land, water bodies), 

repetitive patterns, transparent objects (e.g., glass and water), 

high-saturation scenes, or poorly lit / shadow areas still pose 

difficulties for disparity estimation. Additionally, atmospheric 

effects may naturally create differences between observation 

times and radiometric variations (e.g., across track stereo), 

further complicating stereo matching. These challenges highlight 

the importance of developing robust methods that can generalize 

to varying conditions for satellite images.  

 

Stereo processing primarily consists of stereo rectification and 

dense disparity estimation. Stereo rectification transforms image 

planes such that corresponding points are aligned horizontally, 

significantly simplifying the matching problem. Dense stereo 

matching algorithms, either traditional or learning-based, are 

then used to estimate disparity maps that represent pixel shifts 

between stereo images. For satellite images, traditional stereo 

matching methods such as Semi Global Matching (SGM) 

(Hirschmüller, 2007) are still popular due to their balance of 

efficiency and robustness (d’Angelo and Reinartz, 2012; 

Rothermel et al., 2012). Through combining matching cost at 

pixel-wise level with smooth constraints at multiple path 

aggregation, the SGM could provide reliable disparity maps 

featured by remote sensing (Xia et al., 2020). Besides, More 

Global Matching (MGM) improves upon SGM by incorporating 

additional information from previously visited neighbouring 

pixels, enhancing disparity consistency and robustness, 

particularly in angular directions (Facciolo et al., 2015). MGM 

also involves computing local matching costs, directional 

aggregation to reduce ambiguity, selecting minimum cost 

disparity, and post-processing refinement. Although very 

successful, traditional approaches suffer from complex scenes 

containing low texture, and changing illuminations, which are 

very typical scene properties also observed from spaceborne 

imagery datasets (Treible et al., 2018). To overcome these 

limitations, some fusion models have been proposed, obtaining 

large performance improvements for different satellite datasets 

(Gómez et al., 2023). 

 

The establishment of Convolutional Neural Networks (CNNs) 

aimed at changing the stereo matching thoroughly. Earlier 

attempts, for example Matching Cost CNN (MC-CNN), already 

demonstrated the successful utilization of matching cost 

computations (Zbontar and LeCun, 2016). Deep learning 

methods developed afterwards, like GANet (Zhang et al., 2019), 

which incorporated ideas from SGM into an end-to-end trainable 

technique, resulting in substantial improvements in both 

accuracy and efficiency (Xia et al., 2022; Gómez et al., 2022). 

However, recent developments in deep learning have brought 

forward methods like RAFTStereo (Lipson et al., 2021) which 

utilize feature learning and guided cost aggregation to deliver 

improved disparity estimation, even under challenging 

conditions. RAFTStereo is an extension of the Recurrent All-

Pairs Field Transforms (RAFT) model (Teed and Deng, 2020), in 

which the disparity map is refined iteratively through a recurrent 

update module based on Long Short-Term Memory (LSTM) 

structure. Gómez et al. (2022) examined multiple methods, both 

classical and deep learning-based stereo approaches, and Xia et 

al. (2020) provided a detailed comparison between traditional 

SGM and learning-based methods like GANet. The studies 

indicated that deep learning methods have promising prospects, 

either as parts of hybrid chains or as end-to-end solutions of 

satellite stereo processing systems in the future. 
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This study assesses traditional scanline aggregation-based stereo 

matching methods, specifically Semi Global Matching (SGM) 

and More Global Matching (MGM), in relation to a deep 

learning-based method, RAFTStereo. The aim is to highlight 

their respective strengths, limitations, and applicability to 

geospatial tasks. Our emphasis is on evaluating the efficacy of 

the methods for disparity estimation utilizing high-resolution 

stereo images obtained from the Gaofen-7 (GF-7) satellite (Li et 

al., 2023).  

 

The remainder of this paper is organized as follows: Section 2 

introduces the three stereo matching methods under 

investigation, namely SGM, MGM, and RAFTStereo, and the 

pipeline framework utilised. Section 3 introduces the GF-7 

dataset and pre-processing steps, including stereo rectification 

and ground truth. Section 4 presents the experimental setup, and 

discusses the comparative results, emphasizing the strengths and 

weaknesses of each approach. Finally, Section 5 concludes the 

paper with a summary of findings and directions for future 

research. 

 

2. Methods Evaluated for Stereo Matching 

Stereo matching, also referred to as correspondence matching, 

involves estimating a disparity map for rectified stereo image 

pairs that show positional shift of objects between two image 

views as a proxy for depth/elevation information. A multi-stage 

optimization pipeline that consists of matching cost computation, 

cost aggregation, disparity optimization and post-processing is 

typically used to mitigate the problem of stereo matching. 

Traditional methods use low-level features extracted from local 

image patches around each pixel to estimate disparities 

(Hirshmuller and Scharstein, 2008). The effectiveness of 

traditional stereo matching methods is often limited by the use of 

manually generated features in matching cost functions. To get 

around these limitations, several deep learning-based methods 

have been introduced. The accuracy of depth estimation from 

stereo image pairs can be greatly enhanced by these novel 

techniques. However, because deep models require a lot of 

memory, they are frequently challenging to use in practice, 

especially when dealing with very-high-resolution satellite/aerial 

imagery. This is especially true when the graphics processing 

unit (GPU) memory needs to hold a large amount of 3D matching 

volumes. For this reason, traditional stereo algorithms continue 

to be useful, especially when dealing with large sized datasets. 

Even though deep learning is becoming more and more popular 

in many domains, this trend has not yet fully reached satellite 

stereo pipelines, which are still largely based on classical 

algorithms (Gómez et al., 2022). 

 

Recent years have seen the emergence of deep learning-based 

techniques for determining matching costs; CNNs have 

demonstrated superior performance by improving their ability to 

assess patch similarity (Žbontar & LeCun, 2016). In general, 

deep learning models have been utilized either for aggregating 

matching costs using classical techniques like cost filtering and 

SGM or for separating the processes of cost computation and 

disparity estimation (Albanwan & Qin, 2022; Patil, 2022). 

Although these methods sometimes outperform traditional 

matching, they still encounter difficulties in accurately 

estimating disparity in ill-posed regions such as textureless or 

occluded areas. Despite reaching state-of-the-art performance, 

these hybrid frameworks are still limited by the drawbacks of 

conventional cost aggregation techniques, which frequently lead 

to imprecise disparity estimations, especially along object 

boundaries, in reflective regions, low-texture surfaces and 

occluded areas. 

2.1 SGM 

SGM was introduced to solve the computational cost of global 

methods (Hirschmüller, 2007). The method requires the 

generation of epipolar images as a prerequisite and consists of 

four main stages: matching cost computation, cost aggregation, 

disparity computation/optimization and refinement. To obtain a 

reliable depth map, a discontinuity preserving energy function is 

minimized. This energy is calculated along one-dimensional 

(1D) paths, not two-dimensional (2D) (e.g., left to right, top to 

bottom, etc.). In this way, data is collected from 8 or 16 different 

directions (Figure 1 - left). The information about each pixel from 

different directions is aggregated and, in the end, the lowest total 

cost is selected (winner-takes-all). This method is fast, but it can 

leave streaking artifacts. This is because aggregation for each 

line/column is seperated from each other. 

 

2.2 MGM 

MGM incorporates 2D contextual information into the 1D path-

wise optimization framework of SGM (Facciolo et al., 2015). 

This is effectively accomplished by utilizing messages passed 

from previously visited pixels along the previous scanline (i.e., 

from pixels above). In the MGM algorithm, the matching 

decision at a given pixel is shaped not only by a few immediate 

neighbors but also by a broader region from the relevant quadrant 

(Figure 1 - right). This represents a major distinction from SGM, 

which only considers information propagated from specific 

directions. 

 

MGM defines a dedicated scanning order for each direction (e.g. 

top-right, bottom-left) and accordingly computes directed cost 

accumulation values for each direction. The costs accumulated 

from all directions are then merged, correcting for redundant 

information. This merging is performed according to formula and 

the final matching is determined using the Winner-Takes-All 

method, selecting the disparity with the minimum total cost.  

 

Figure 1. SGM and MGM approaches (Facciolo et al., 2015) 

 

2.3 RAFTStereo 

RAFTStereo is a deep learning model used for stereo depth 

estimation (Lipson et al., 2021). It is derived from the RAFT 

optical flow algorithm (Teed and Deng, 2020), where optical 

flow refers to the technique of detecting motion between two 

images. RAFTStereo computes the disparity (i.e., the horizontal 

shift) between two images to generate a depth map. Its key 

contributions include the use of multi-level Gated Recurrent 

Units (GRUs), cost volume optimization, and improved real-time 

performance. 

 

RAFTStereo utilizes multi-level GRUs to enable more efficient 

information propagation across different resolutions. Unlike 

previous methods that employed computationally expensive 3D 

convolutional networks to process stereo cost volumes, 

RAFTStereo adopts a lightweight approach using 2D 

convolutions and simpler cost volume computations. Besides, its 

architecture is specifically designed for speed, enabling real-time 
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inference, which makes RAFTStereo suitable for practical 

applications. 

 

RAFTStereo employs a dual-encoder architecture consisting of a 

feature encoder and a context encoder for independent feature 

extraction (Figure 2). The feature encoder processes both the left 

and right input images, generating dense feature maps that are 

subsequently used to build the correlation volume. It is composed 

of a sequence of residual blocks and downsampling layers that 

generate feature maps at a resolution of 1/4 or 1/8 of the original 

image, contingent upon the number of downsampling layers. The 

feature encoder utilizes instance normalization throughout its 

layers. In contrast, the context encoder shares an identical 

architectural design but substitutes instance normalization with 

batch normalization and is exclusively applied to the left input 

image. The hidden state of the update module is initialized using 

context features, which are also fed into the GRU at every time 

step. 

 

Figure 2. RAFTStereo Architecture (Lipson et al., 2021) 

The correlation volume captures the matching information that 

the model uses to find correspondences between pixels in the left 

and right images. For each pixel, visual similarity to pixels in the 

opposite image is measured, generating a volume that helps the 

model predict disparity. To improve efficiency, a correlation 

pyramid is constructed by repeatedly applying average pooling 

to the last dimension, creating four levels of correlation volumes 

at different resolutions. Analyzing images at multiple scales 

enables the model to capture both large structures at lower 

resolutions and finer details at higher resolutions. Updates are 

performed across these different scales to enhance accuracy. 

During correlation lookup, a one-dimensional grid of integer 

offsets is generated around the current disparity estimate. The 

grid serves as an index for sampling features across multiple 

levels of the correlation pyramid. Due to the continuous nature of 

the grid coordinates, bilinear interpolation is employed during 

sampling. The resulting values are aggregated into a single 

feature map. The network iteratively updates disparity maps at 

multiple resolutions (e.g., 1/8, 1/16, and 1/32 of the input 

resolution). This allows the network to better handle areas with 

large textures and regions containing fine details. 

 

RAFTStereo employs separate backbones for extracting 

correlation features and context features to support GRU updates. 

It was demonstrated that employing a unified backbone for 

extracting both correlation and context features enables faster 

inference while maintaining predictive accuracy. This single-

backbone architecture is utilized in RAFTStereo. 

 

2.4 Stereo Processing Pipelines Utilised 

Recently, stereo processing pipelines including Satellite Stereo 

Pipeline (S2P) and GPU-Accelerated Binocular Stereo Pipeline 

(S2P-HD) have been designed focusing exclusively on satellite 

data, incorporating automation of numerous pre-analysis, 

matching, and triangulation steps with domain-specific 

corrections. S2P is an open-source, modular framework 

developed by École Normale Supérieure Paris-Saclay with 

CNES for automatic Digital Surface Model (DSM) generation 

from high-resolution optical satellite stereo imagery (De Franchis 

et al., 2014). Optimized for pushbroom sensors, it comprises 

geometric pre-processing, epipolar rectification, disparity 

estimation, and 3D triangulation. The framework addresses 

complex epipolar surfaces of pushbroom sensors by 

approximating Rational Function Model (RFM) with local affine 

models from first-order Taylor expansions, followed by dense 

stereo matching using SGM/MGM with Census-based cost 

metrics.  

 

S2P-HD represents a very recent sophisticated evolution of S2P, 

incorporating specialized modifications for concurrent optical 

satellite data processing (Amadei et al., 2025). Key 

improvements include refined disparity range estimation 

leveraging reference models and multi-resolution analysis, 

highly optimized GPU-enhanced SGM techniques, improved 

rectification methods, and strategic tiling strategies for large 

geographic areas. 

 

3. Dataset and Framework 

The WHU-Stereo satellite dataset (Li et al., 2023) is built using 

high-resolution stereo imagery captured by the Chinese GF-7 

satellite, which is equipped with a dual-line array stereoscopic 

camera system. High-quality in-track stereo pairs are ensured by 

the simultaneous capture of the panchromatic images from 

forward and backward viewing angles (−5° and +26°, 

respectively) and a ground sampling distance (GSD) of better 

than 0.8 meters. With the help of the dual-line array camera 

system aboard the GF-7 satellite, there is only a brief temporal 

offset between the forward- and backward-looking images, 

which are taken during the same orbital pass. This temporal 

alignment allows for accurate disparity estimation. 

 

All computational experiments and evaluations presented in this 

study were carried out on a high-performance computing system. 

equipped with an Intel® Xeon® Platinum 8380 CPU running at 

2.30 GHz, featuring 160 logical processors (40 cores per socket 

with 2 threads per core). The system also includes 503 GB of 

RAM and NVIDIA L4 24 GB GPUs, which provided significant 

acceleration for deep learning-based stereo matching and large-

scale DSM generation tasks. 

 

The S2P pipeline provides built-in support for the SGM 

algorithm and its extensions, the MGM framework. In addition 

to these, it incorporates several algorithmic variations (e.g., tvl1, 

msmw, sgbm, mgm_multi) that allow flexible adaptation of 

stereo processing to diverse terrain and radiometric conditions 

(De Franchis et al., 2014). S2P also offers configurable options 

for cost functions, regularization strength, and consistency 

filtering, enabling fine-tuning of disparity estimation accuracy 

and robustness without modifying the core algorithmic structure. 

 

RAFTStereo includes iterative updates to the disparity map 

through a multi-level recurrent GRU based architecture. It 

utilizes correlation pyramids to keep the global context and 

works directly with high-resolution images. Training sessions 

(including fine tuning operations) were performed for 

RAFTStereo based on the WHU datasets. In the production of 

disparity maps, 1,222 left and right stereo images and disparity 

images with a resolution of 0.8 meters in the pan band, each 

measuring 1,024 x 1,024 pixels, were used and shared with 

ground truth information for training. In this study, the Shaoguan, 

Kunming, Yingde, and Qichun regions were provided for 

training. For testing, two 1024x1024 images from the Hengyang, 
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and Shaoguan regions that were not included in the training 

process were utilised. 

 

The WHU dataset consisting of 1024×1024 pixels epipolar 

rectified stereo pairs was used without additional preprocessing. 

Configuration was selected to preserve spatial resolution while 

keeping memory consumption within the limits of available 

hardware. Mixed precision training was utilized to accelerate 

computation without degrading numerical stability or 

performance. 

 

4. Results and Discussion 

The performance of stereo matching algorithms has been 

evaluated using both visual analysis and numerical measures. 

Table 1 presents the overall performance of the RAFTStereo 

algorithm on the generated disparity maps.  

 

The comparative analysis between traditional stereo matching 

algorithms (SGM and MGM) and deep learning-based method 

(RAFTStereo) reveals several differences in their performance 

when applied to satellite stereo imagery. Traditional methods, 

particularly MGM, demonstrate robust and consistent 

performance across various datasets, offering reliable disparity 

maps and digital surface models (DSMs) with relatively lower 

computational requirements. MGM’s structured cost aggregation 

approach provides smoother disparity outputs than SGM, 

effectively reducing streaking artefacts and improving disparity 

completeness in moderately challenging scenes. 

 

Figures 2 and 3 present the right and left stereo images (for SG_0 

and HY_6 regions), ground truth and output disparity maps 

produced by traditional and deep learning methods. According to 

the numerical results presented, the RMS distance is computed as 

≈ 3-5 pixels for both the traditional and deep learning methods. 

 

Data 

SGM (S2P) MGM (S2P) 

COMP 

(%) 
RMSE MAE 

COM

P (%) 
RMSE MAE 

GF-7 

HY_6 
53.40 4.78 2.20 64.76 4.34 1.98 

GF-7 

SG_0 
73.59 3.60 1.93 75.51 3.29 1.73 

Data 

SGM-GPU (S2P-HD) RAFTStereo 

COMP 

(%) 
RMSE MAE 

COM

P (%) 
RMSE MAE 

GF-7 

HY_6 
63.69 6.71 2.83 100 4.93 2.54 

GF-7 

SG_0 
76.03 4.02 2.03 100 3.31 1.96 

 

Table 1. The overall performance of the different methods. Best 

RMSE computed are given in bold.  

Our experimental results reveal that MGM achieves high 

geometric accuracy, particularly in moderately textured areas, 

while RAFTStereo demonstrates performance in handling 

radiometric inconsistencies and textureless surfaces, offering 

computational efficiency during the inference stage. 

 

As shown in Table 1, MGM method achieved the lowest error 

values, thus standing out in terms of numerical accuracy. This 

can be associated with MGM producing fewer systematic errors 

in disparity estimation. However, visual inspection revealed that 

the MGM outputs still contained localized noise and 

discontinuities. SGM produced slightly higher error than MGM. 

Nevertheless, it provided a more balanced result in terms of noise 

reduction and surface continuity. SGM was observed to generate 

more stable results in homogeneous regions, although it tended 

to cause detail loss around object boundaries. 

 

Despite having the highest error among the four methods, S2P-

HD SGM stands out with its ability to capture fine details and 

distinguish complex surface transitions. However, this detail- 

preserving property comes along with significant noise and 

reduced surface continuity. In other words, while the algorithm 

makes small structures more distinguishable, it also introduces 

instability and patchy results in homogeneous areas. This 

indicates that S2P-HD has a strong tendency toward detail 

preservation but is weaker in noise suppression. RAFTStereo 

 

  

 

(a) (b)  

   
(c) (d)  

   
(e) (f)  

 

Figure 2. SG_0 region results. (a, 

b) stereo images, (c) ground truth 

disparity map, output disparity 

map using (d) SGM in S2P, (e) 

MGM in S2P, (f) SGM in S2P-

HD, (g) RAFTStereo model 

(g) 
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(a) (b)  

   
(c) (d)  

   
(e) (f)  

 

Figure 3. HY_6 region results. 

(a, b) stereo images, (c) ground 

truth disparity map, output 

disparity map using (d) SGM in 

S2P, (e) MGM in S2P, (f) SGM 

in S2P-HD, (g) RAFTStereo 

model 

(g) 

 

ranked second in terms of RMSE, but in visual analysis it 

produced one of the least noisy results with the highest surface 

continuity. The lower spatial variance observed in RAFTStereo 

outputs suggests that the method is advantageous in producing 

consistent disparity estimations in homogeneous regions. On the 

other hand, the slightly higher RMSE compared to MGM and 

SGM indicates that the method may introduce systematic shifts 

(bias) in elevation for certain parts. 

 

MGM produced relatively stable results over water surfaces but 

exhibited considerable noise in forested areas. This indicates that 

the stability of MGM may decrease in textured regions. 

RAFTStereo yielded error values close to MGM but stood out in 

terms of visual quality. It produced smoother and more 

continuous surfaces in forested regions, with lower noise levels. 

Over water surfaces, its performance was comparable to MGM. 

This suggests that RAFTStereo can provide more consistent 

performance across both homogeneous and complex regions. 

Visual analysis of SGM revealed fragmented results in forested 

areas, while the method remained more stable in residential zones 

and along roads. Therefore, the performance of SGM appears to 

vary depending on the structural characteristics of the scene. S2P-

HD SGM obtained the highest error among the methods, yet it 

demonstrated advantages in capturing small structural details and 

road boundaries. However, its tendency to generate significant 

noise in forested regions and lack of continuity over water 

surfaces highlight its weaknesses. This indicates that S2P-HD is 

strong in detail preservation but less effective on complex natural 

surfaces. 

 

Overall, MGM and RAFTStereo produced comparable results in 

terms of numerical accuracy, while RAFTStereo showed 

superior visual quality, particularly in natural surfaces. SGM 

provided a balanced but scene-dependent performance, whereas 

S2P-HD SGM performed well in preserving small details but 

remained sensitive to noise in natural regions. 

 

Figures 4 and 5 present the right and left stereo images (for SG_0 

and HY_6 regions), difference output disparity maps produced 

by traditional and deep learning methods.  Note that disparity 

errors exceeding 10 pixels with respect to the ground truth were 

masked out to facilitate clearer visualization and comparison. 

 

In the first dataset (Figure 4 - SG_0 region), which predominantly 

consists of structured urban areas, roads, and rectangular 

agricultural parcels, the difference maps reveal the distinct 

characteristics of each method. SGM demonstrates low error 

magnitudes in an overall sense, yet systematic deviations are 

clearly concentrated along building edges and road boundaries, 

highlighting its limitations in capturing sharp structural 

discontinuities. Conversely, disparities over homogeneous 

agricultural fields are achieved with greater consistency. MGM 

provides a more uniform distribution of errors compared to SGM, 

with reduced concentrations in built-up regions and along roads, 

although residual noise persists in irregular structures and less-

defined areas. S2P-HD SGM shows a stronger ability to preserve 

fine details, such as field boundaries and smaller objects, but this 

advantage comes at the expense of elevated error levels 

surrounding those regions, particularly around structural edges. 

RAFTStereo, on the other hand, produces the most coherent and 

visually smooth difference map, with very low errors across 

homogeneous surfaces and only localized deviations around 

dense building clusters and road intersections, confirming its 

superior capability in maintaining surface continuity. 

 

The second dataset (Figure 5 - HY-6 region) presents a more 

complex scenario, comprising urban settlements, a water body, 

and dense forested regions. SGM achieves generally low error 

levels, yet suffers from significant deviations in forested areas 

and fragmented inconsistencies over the water surface, reflecting 

its difficulty in textureless and highly irregular regions. Within 

residential areas, however, its performance remains 

comparatively stable. MGM exhibits a more homogeneous error 

distribution and performs reliably over the water surface, though 

noise remains prominent within forested regions; error patterns 

in structured areas are more localized compared to SGM. S2P-

HD SGM continues to preserve fine structural details and road 

boundaries, yet generates higher error magnitudes in natural 

regions, particularly forests and water surfaces. This behavior 

underscores its strength in detail preservation but also its issues 

in homogeneous or low-texture surfaces. RAFTStereo delivers 

the most balanced performance, with minimal errors over the 

water body and noticeably reduced noise in forested areas 

relative to the other methods. The remaining errors are largely 

confined to object boundaries and forest edges, highlighting 

RAFTStereo’s robustness across both homogeneous and 

structurally complex natural environments. 
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(a) (b)  

   
(c) (d)  

   
(e) (f)  

 

Figure 4. SG_0 region disparity difference maps. (a, b) stereo 

images, (c) difference map between GT and SGM output, (d) 

difference map between GT and MGM output, (e) difference 

map between GT and SGM (GPU acceralated) output, and (f) 

difference map between GT and RAFTStereo model output. 

 

5. Conclusion 

In this study, the process of generating disparity maps from high-

resolution satellite stereo images using traditional stereo 

matching methods and a modern deep learning approach is 

examined using the stereo images of Gaofen-7 satellite available 

within the WHU-Stereo satellite dataset. 

 

Traditional stereo matching methods, particularly SGM and 

MGM, continue to provide reliable performance in structured 

urban environments and textured terrains, especially under 

limited computational resources. However, their ability to 

generalize to challenging scenarios such as homogeneous 

surfaces, seasonal variations, and significant radiometric 

inconsistencies remains limited.  Recent advancements in deep 

learning-based stereo matching methods, such as RAFTStereo, 

have demonstrated notable performance in disparity estimation 

accuracy, generalization and robustness across varying satellite 

imagery conditions. Although deep learning methods outperform 

classical techniques in most conditions, their dependency on 

extensive annotated training data and their generalization across 

different satellite platforms without fine-tuning remains a big 

concern. 

 

The RMSE evaluations and difference map analyses presented in 

this study revealed complementary strengths and weaknesses 

among the tested methods. MGM consistently produced the  

  

 

(a) (b)  

   
(c) (d)  

   
(e) (f)  

 

Figure 5. HY_6 region disparity difference maps. (a, b) stereo 

images, (c) difference map between GT and SGM output, (d) 

difference map between GT and MGM output, (e) difference 

map between GT and SGM (GPU acceralated) output, and (f) 

difference map between GT and RAFTStereo model output. 

 

lowest numerical errors, whereas RAFTStereo generated more 

visually coherent disparity maps with reduced noise and 

improved surface continuity, especially across homogeneous 

areas and natural surfaces such as water bodies and forests. SGM 

maintained stable performance in structured regions but showed 

systematic deviations along object boundaries, while S2P-HD 

SGM preserved fine structural details at the expense of increased 

noise and error concentrations in textureless regions. These 

results highlight the importance of jointly considering both 

numerical accuracy and spatial error distribution in the evaluation 

of stereo matching algorithms. 

 

In summary, our analysis suggests that while traditional methods 

remain indispensable for specific conditions, the future of 

satellite stereo matching strongly leans towards deep learning-

based and hybrid approaches, particularly for large-scale, high-

precision disparity generation. Drawing upon the findings of this 

research and recent literature, future investigations should focus 

on designing memory-efficient deep architectures to efficiently 

process large satellite images and using hybrid methods. In 

addition, fine-tuning pre-trained models on satellite-specific 

datasets can significantly improve their ability to handle the 

unique characteristics of satellite imagery, including large 

disparity ranges, pushbroom sensor geometries, and multi-

temporal variations. The availability of publicly available 
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datasets remains essential for unbiased evaluation, and careful 

benchmark design is fundamental to driving progress in satellite-

based disparity generation. 
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