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Abstract 

 

Hazelnut (Corylus avellana L.) is an economically important crop in Turkey, with Sakarya being a major cultivation region. 

Effective large-scale monitoring of hazelnut orchards can be achieved using remote sensing and machine learning techniques. In this 
study, field surveys were conducted in approximately 150 hazelnut orchards in Sakarya to provide training data. Multi-temporal 

Sentinel-2 imagery from six acquisition dates capturing key phenological stages was stacked for the classification of hazelnut 

orchards and other land use/land cover (LULC) types. Vegetation indices including NDVI, AVI, SAVI, and EVI were applied to 

enhance class separability. Supervised classification was performed using Random Forest (RF) and Extreme Gradient Boosting 
(XGBoost) algorithms, with hyperparameters optimized via RandomizedSearchCV and cross-validation. Both models achieved high 

performance in detecting hazelnut orchards; however, RF yielded better overall results in quantitative metrics and visual 

assessments. These findings demonstrate that integrating multi-temporal Sentinel-2 data, vegetation indices, and machine learning 

enables accurate large-scale mapping of hazelnut orchards in Sakarya. 
 

 

1. Introduction 

Hazelnut (Corylus avellana L.) is a highly preferred agricultural 
product due to their rich nutritional value and widespread use 

across various industries. Turkey, with its climate and 

geography in the Black Sea region, provides ideal conditions for 

hazelnut cultivation and holds a leading position globally. 
According to Food and Agricultural Organization data for 2023, 

Turkey ranked first in both hazelnut production and exports, 

accounting for approximately 58% of global production (FAO, 

2025). This has made hazelnut a valuable economic commodity 
for Turkey, prompting the implementation of various policies 

aimed at increasing productivity. In particular, the increase in 

regularly maintained and newly established orchards in Sakarya 

has significantly improved yield levels, positioning the province 
as the third-largest hazelnut-producing region in the country 

with 12.7% in 2023 (TEPGE, 2024). Due to the vast areas 

involved in hazelnut cultivation, remote sensing technologies 

have not only become a practical tool but also a necessity for 
monitoring and analyzing production areas effectively. 

 

Remote sensing technologies, such as multispectral imagery, 

have brought new opportunities to the sustainable agriculture 
sector and land use/land cover (LULC) classification. To 

effectively analyze the large volume and complexity of remote 

sensing data, advanced computational techniques are required. 
In this context, machine learning methods are commonly used 

to detect agricultural areas and to assess the health and density 

of trees and crops. These advantages not only facilitate large-

scale monitoring but also enhance the ability to distinguish 
specific crop types, such as hazelnut, based on their unique 

spatial and spectral characteristics. Sentinel-2 with 12 spectral 

bands, providing a 10 meters spatial resolution for visible bands 

(Red, Green, Blue), 20 meters for infrared and some other 
bands, and 60 meters for atmospheric bands. This multi-band 

capability, coupled with its high temporal resolution, offering 

acquisition as frequent as 5 days, makes Sentinel-2 particularly 
valuable for multi-temporal analysis (Wang et al., 2016). It is 

highly effective for monitoring agricultural areas, as it captures 

detailed changes over time and allows for precise differentiation 

between various land cover types, including crops like hazelnut. 
Furthermore, Vegetation indices such as NDVI (Altieri et al., 

2022), Soil Adjusted Vegetation Index (SAVI), Enhanced 

Vegetation Index (EVI), and Advanced Vegetation Index (AVI) 

(Nicolás et al., 2023) can highlight differences in spectral 
reflectance, enabling a clearer distinction between target crops 

and other land cover types. 

 

Machine learning methods are widely applied in remote sensing 
tasks such as crop type identification, vegetation health 

monitoring, and land cover classification. In particular, 

algorithms like Random Forest (RF) and Extreme Gradient 

Boosting (XGBoost) are frequently employed in the literature 

for distinguishing between different crop types and mapping 

agricultural areas (Lodato et al., 2024). Moreover, when 

ground-based data is limited due to constraints such as restricted 

fieldwork time or inaccessibility of the region, machine learning 
becomes one of the most suitable approaches for accurate 

analysis. These methods are preferred due to their strong 

performance in handling complex datasets, enabling the 
extraction of valuable information from remote sensing imagery 

(Aksoy et al., 2023; Sasso et al., 2024). 

 

Several studies have investigated the use of remote sensing and 
machine learning techniques for detecting and monitoring 

hazelnut orchards, employing different data sources and 

classification strategies. The study (Tumer et al., 2024) 

employed object-based classification of very high-resolution 
aerial photographs using Support Vector Machines (SVM), 

Bayesian classifier, Random Forest, and K-Nearest Neighbors 
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to accurately detect hazelnut orchards in Sakarya, Türkiye, 

achieving the highest Hazelnut F1-Score with SVM using the 

Radial Basis Function (RBF) kernel (98.92% in Paralı) and 
Bayes (97.39% in Açmabaşı). In another recent study, Sasso et 

al. (2024) integrated optical and radar remote sensing data from 

Sentinel-1 and Sentinel-2 to map hazelnut orchards in Italy, 

comparing multiple machine learning algorithms and 
identifying Random Forest as the best generalizing model, with 

96% overall accuracy and a 91% Hazelnut F1-Score across 

diverse test areas. Another recent researches on hazelnut 

monitoring highlights different optimal approaches, with 
Morisio et al. (2025) achieving the highest accuracy (66%) and 

lowest false negative rate (13%) using logistic regression on 

UAV-based multispectral indices, Vinci et al. (2023) obtaining 

over 90% accuracy with object-based classification of UAV 
imagery using Random Forest, and Lodato et al. (2024) 

reaching 96% accuracy by integrating multi-source satellite data 

with Random Forest. Collectively, these studies demonstrate 

that both data source selection and algorithm choice play a 
critical role in optimizing classification accuracy for hazelnut 

orchard mapping and monitoring. 

 

In this study, machine learning-based supervised classification 
approaches were applied to identify the spatial distribution of 

hazelnut orchards and optimum hyperparameter settings are 

determined. Furthermore, Stacked Sentinel-2 images were used 

to distinguish between different land use and land cover 
(LULC) classes. The stacked images, which include a total of 

72 bands from six different dates, were selected based on 

fieldwork conducted during various phenological periods, with 

150 hazelnut orchards visited at specific times of the year. In 
particular, the unique phenological stages and spectral 

reflectance characteristics of hazelnut orchards were considered 

to effectively separate them from other land use types. Sample 

polygons for training data were carefully selected from these 
field observations. The classification process and model 

development were performed using the Random Forest (RF) 

and XGBoost algorithms, with the processing carried out on 

platforms such as Google Earth Engine (GEE) and Kaggle. The 
accuracy of the results was evaluated using various performance 

metrics, such as overall accuracy, F1-score and user’s, 

producer’s accuracy. This approach enables more systematic 

and reliable monitoring of large-scale hazelnut cultivation areas. 
 

 

2. Study Area & Fieldwork 

The study area focusing on Sakarya Province, which ranks third 
in hazelnut production in Turkey, with 789,000 decares of land 

and 98,000 tons of production in 2023 (Bars, 2023). During the 

fieldwork, approximately 150 hazelnut orchards, representing 

various phenological stages, were visited and analyzed in 
selected regions of Sakarya (Figure 1). Based on this field data, 

the most optimal temporal intervals for hazelnut cultivation 

were determined by considering the phenological stages and 

biophysical parameters, as examined through vegetation indices 
such as NDVI, SAVI, EVI, and AVI. These indices have proven 

to be particularly effective in differentiating 12 land use and 

land cover (LULC) classes in the study area that are determined 
depending on the CORINE class nomenclature, including the 

hazelnut class (Figure 2). 

 

 

 
 

Figure 1. Sakarya boundry for Sentinel-2 image and distribution 

of fieldwork hazelnut parcels (Basemap: Google Satellite). 

 
 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
Figure 2. LULC classes depending on the CORINE 

nomenclature and related RGB Codes (Basemap: Google 

Satellite) 

 

Hazelnut 
238-128- 005 

Forest 
128-255-000 

Perm. Cropland 
242-166-077 

Grassland 
204-242-077 

Sparsely Veg. Areas 
204-255-204 Arable Land 

255-255-168 

Discontinuous Urban Fabric 
255-000-000 

Road and rail networks… 
204-000-000 

Water Courses 
000-204-242 

Water Bodies  
128-242-230 

Wetland 
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Greenhouse 
204-077-242 
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3. Sample Collection & Data pre-processing 

Considering the phenological stages (Bektaş & Çil, 2023) and 

the results of the field survey, six acquisition dates were 
selected from atmospherically clear and radiometrically stable 

Sentinel-2 imagery (25 December 2023, 19 March 2024, 12 

June 2024, 22 July 2024, 16 August 2024, 5 October 2024). 

Within the Google Earth Engine (GEE) environment, all 12 

spectral bands of the Sentinel-2 datasets were resampled to a 

uniform spatial resolution of 10 meters. Subsequently, date-

specific images corresponding to the identified phenological 

stages were multi-temporally stacked, yielding a 72-band 
composite dataset. Based on the CORINE land cover 

classification and, in particular, the orchards visited during the 

field survey, hazelnut orchards were specifically identified 

using index values, and polygons were collected as samples for 
each class. 

 

Phenological Stages Period 

Male Flowering January - February 

Female Flowering January - February 

Pollination January - February 

Female Flower Shedding March 

Leaf Emergence March - April 

Fertilization May -June 

Nut Cluster Shedding June 

Harvest August - September 

Leaf Fall November - December 
 

Table 1. Phenological stages of hazelnut 
 

 
                         (a)                                                             (b) 
 

 
                         (c)                                                            (d) 

Figure 3. Time series of spectral indices in 2025 for hazelnut 

orchards (a)NDVI, (b)AVI, (c)EVI, (d)SAVI 

 
The seasonal profiles of NDVI, AVI, EVI, and SAVI for the 

hazelnut orchard align well with its phenological stages, 

showing low values during winter dormancy, a steady rise from 

late February to peaks in May–June during full leaf 
development, and a gradual decline through fruit maturation and 

harvest. While NDVI and SAVI display smoother trends, EVI 

shows greater sensitivity with higher amplitude, and AVI 

maintains lower absolute values but follows a similar seasonal 
pattern. 

 

4. Methodology 

4.1 Machine Learning Algorithms 

Two widely used supervised machine learning algorithms 

Extreme Gradient Boosting (XGBoost), and Random Forest 

(RF) are employed to perform the classification task. Extreme 

Gradient Boosting (XGBoost) is an advanced gradient boosting 
algorithm that efficiently handles sparse data, incorporates 

weighted quantile computation, and uses memory and disk 

access optimizations to scale to very large datasets while 

maintaining high accuracy and efficiency (Chen & Guestrin, 
2016). In this study, XGBoost is employed due to its scalability, 

ability to manage high-dimensional data, and strong predictive 

performance. Its further benefits from built-in regularization 

mechanisms that help prevent overfitting and allow for more 
effective hyperparameter optimization (Aksoy et al., 2023). 

Random Forest, on the other hand, is an ensemble machine 

learning method that combines many decision trees built from 

randomly selected input variables, and determines the final class 
of a sample based on majority voting (Ustuner & Simsek, 2025; 

Rodriguez-Galiano et al. 2012; Akar and Güngör 2015). Its 

robustness and ease of implementation make it a widely adopted 

algorithm in various classification and regression tasks. 
 

4.2 Accuracy Assessment 

Accuracy assessment is essential for evaluating the performance 

and reliability of classification methods and for guiding the 
selection of the most appropriate approach for specific 

applications. Compared to point-based approaches, polygon-

based accuracy assessment offers advantages by better 

representing the actual shape and variability of agricultural 
fields, thereby providing results that are more consistent with 

real-world conditions. Common accuracy metrics such as 

overall accuracy (OA), user’s accuracy (UA), producer’s 

accuracy (PA), and the F1-score are derived from the confusion 
matrix, which summarizes how well predicted classes 

correspond to actual ones. To enhance the robustness of 

evaluations, it is common to integrate diverse reference data 

sources, including field surveys and high-resolution imagery. 
However, interpreting these metrics requires careful 

consideration of factors such as class imbalance and data 

quality. In this study, we applied the method proposed by 

Olofsson et al. (2013), which uses stratified random sampling to 
calculate OA, UA, and PA while adjusting area estimates to 

reduce bias from classification errors (Karimi et al., 2025). A 

comprehensive accuracy assessment ensures that classification 

outcomes are both scientifically sound and practically 
applicable for decision-making. 

 

5. Experiments & Results 

Model training was conducted on the Kaggle platform using 
scikit-learn and XGBoost libraries. The dataset was split into 

70% training, 20% validation, and 10% test sets through 

stratified sampling. Owing to the large study area (11,998 × 

9,915 pixels) and high feature dimensionality, 
RandomizedSearchCV was applied to a subset of 50,000 

training samples for efficient hyperparameter optimization. For 

both Random Forest (RF) and XGBoost (XGB), optimal 

parameters were identified via 3-fold cross-validation with the 
macro-averaged F1-score as the selection criterion. The best 

XGB model incorporated 400 trees, depth 8, learning rate 0.1, 

subsample ratio 1.0, and column subsample ratio 0.7, while the 

optimal RF employed 300 trees, depth 40, and a balanced class 
weight strategy. Using these parameters, the final models were 

trained and evaluated with overall accuracy, precision, recall, 

F1-score, and weighted IoU. The trained RF and XGB models 
were subsequently applied to the full scene, and prediction 

masks were exported as GeoTIFFs for further spatial analysis. 

Both models achieved robust performance in detecting hazelnut 

orchards, with RF demonstrating marginally superior results 
across all classes. 
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Overall, Random Forest delivers stronger performance than 

XGBoost both globally and on the key hazelnut class. Overall 

accuracy is 96.32% for Random Forest versus 80.74% for 
XGBoost, and weighted IoU is 97.45% versus 87.69%. For the 

hazelnut class, Random Forest attains 98.24% producer’s 

accuracy, 97.52% user’s accuracy, and a 98.36% F1 score, 

while XGBoost reaches 93.22%, 94.92%, and 94.06%, 
respectively (Table 2). The hazelnut class likely scores well in 

both models because it is the most prevalent class, whereas 

several less represented classes are harder and appear to pull 

XGBoost’s overall accuracy down. Random Forest not only 
keeps hazelnut performance high but also handles the rarer 

classes more reliably, which explains its higher OA and 

weighted IoU and suggests it generalizes better under class 

imbalance. As shown in the prediction masks (Figure 4), 
although both models yield comparable outcomes for Hazelnut 

and Forest classes, RF demonstrates clear superiority over 

XGB, particularly in discontinuous urban fabric and arable land 

areas. 
Random Forest Prediction Mask 

 
XGBoost Prediction Mask 

 

Hazelnut Disc. Urban Fabric Perm. Copland Forest 

Grassland Sparsely Veg. Areas Arable Land Greenhouse 

Water 

Courses 

Road and rail 

networks.. 
Water Bodies Wetland 

 

     Figure 4. Prediction masks for RF and XGBoost with legend. 

Metric Random Forest XGBoost 

OA (%) 96.32 80.74 

Weighted IoU (%) 97.45 87.69 

Hazelnut producer’s 

accuracy (%) 

98.24 93.22 

Hazelnut user’s 

accuracy (%) 

97.52 94.92 

Hazelnut F1-score 

(%) 

98.36 94.06 

 

Table 2. Accuracy Assessment 

 

 

6. Conclusion 

This study demonstrates the effectiveness of combining field 

surveys, vegetation indices, and multi-temporal Sentinel-2 

imagery for mapping hazelnut orchards in Sakarya. Fieldwork 
allowed detailed sampling for the hazelnut class, and the use of 

key phenological periods enabled the creation of stacked 

imagery capturing critical growth stages. Optimal 

hyperparameters were determined for both Random Forest and 
XGBoost, enabling RF to outperform XGB in overall 

classification, particularly for hazelnut and other minority 

classes. While dominant classes such as hazelnut and forest 

were reliably classified, classes with limited spatial distribution, 
including permanent cropland, remain challenging due to 

spectral similarities. Future studies incorporating higher-

resolution imagery and targeted analysis of underrepresented 

classes could further improve classification accuracy and 
support sustainable agricultural monitoring. 
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