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Abstract

Hazelnut (Corylus avellana L.) is an economically important crop in Turkey, with Sakarya being a major cultivation region.
Effective large-scale monitoring of hazelnut orchards can be achieved using remote sensing and machine learning techniques. In this
study, field surveys were conducted in approximately 150 hazelnut orchards in Sakarya to provide training data. Multi-temporal
Sentinel-2 imagery from six acquisition dates capturing key phenological stages was stacked for the classification of hazelnut
orchards and other land use/land cover (LULC) types. Vegetation indices including NDVI, AVI, SAVI, and EVI were applied to
enhance class separability. Supervised classification was performed using Random Forest (RF) and Extreme Gradient Boosting
(XGBoost) algorithms, with hyperparameters optimized via RandomizedSearchCV and cross-validation. Both models achieved high
performance in detecting hazelnut orchards; however, RF yielded better overall results in quantitative metrics and visual
assessments. These findings demonstrate that integrating multi-temporal Sentinel-2 data, vegetation indices, and machine learning
enables accurate large-scale mapping of hazelnut orchards in Sakarya.

1. Introduction

Hazelnut (Corylus avellana L.) is a highly preferred agricultural
product due to their rich nutritional value and widespread use
across various industries. Turkey, with its climate and
geography in the Black Sea region, provides ideal conditions for
hazelnut cultivation and holds a leading position globally.
According to Food and Agricultural Organization data for 2023,
Turkey ranked first in both hazelnut production and exports,
accounting for approximately 58% of global production (FAO,
2025). This has made hazelnut a valuable economic commodity
for Turkey, prompting the implementation of various policies
aimed at increasing productivity. In particular, the increase in
regularly maintained and newly established orchards in Sakarya
has significantly improved yield levels, positioning the province
as the third-largest hazelnut-producing region in the country
with 12.7% in 2023 (TEPGE, 2024). Due to the vast areas
involved in hazelnut cultivation, remote sensing technologies
have not only become a practical tool but also a necessity for
monitoring and analyzing production areas effectively.

Remote sensing technologies, such as multispectral imagery,
have brought new opportunities to the sustainable agriculture
sector and land use/land cover (LULC) classification. To
effectively analyze the large volume and complexity of remote
sensing data, advanced computational techniques are required.
In this context, machine learning methods are commonly used
to detect agricultural areas and to assess the health and density
of trees and crops. These advantages not only facilitate large-
scale monitoring but also enhance the ability to distinguish
specific crop types, such as hazelnut, based on their unique
spatial and spectral characteristics. Sentinel-2 with 12 spectral
bands, providing a 10 meters spatial resolution for visible bands
(Red, Green, Blue), 20 meters for infrared and some other
bands, and 60 meters for atmospheric bands. This multi-band

capability, coupled with its high temporal resolution, offering
acquisition as frequent as 5 days, makes Sentinel-2 particularly
valuable for multi-temporal analysis (Wang et al., 2016). It is
highly effective for monitoring agricultural areas, as it captures
detailed changes over time and allows for precise differentiation
between various land cover types, including crops like hazelnut.
Furthermore, Vegetation indices such as NDVI (Altieri et al.,
2022), Soil Adjusted Vegetation Index (SAVI), Enhanced
Vegetation Index (EVI), and Advanced Vegetation Index (AVI)
(Nicolas et al., 2023) can highlight differences in spectral
reflectance, enabling a clearer distinction between target crops
and other land cover types.

Machine learning methods are widely applied in remote sensing
tasks such as crop type identification, vegetation health
monitoring, and land cover classification. In particular,
algorithms like Random Forest (RF) and Extreme Gradient
Boosting (XGBoost) are frequently employed in the literature
for distinguishing between different crop types and mapping
agricultural areas (Lodato et al., 2024). Moreover, when
ground-based data is limited due to constraints such as restricted
fieldwork time or inaccessibility of the region, machine learning
becomes one of the most suitable approaches for accurate
analysis. These methods are preferred due to their strong
performance in handling complex datasets, enabling the
extraction of valuable information from remote sensing imagery
(Aksoy et al., 2023; Sasso et al., 2024).

Several studies have investigated the use of remote sensing and
machine learning techniques for detecting and monitoring
hazelnut orchards, employing different data sources and
classification strategies. The study (Tumer et al., 2024)
employed object-based classification of very high-resolution
aerial photographs using Support Vector Machines (SVM),
Bayesian classifier, Random Forest, and K-Nearest Neighbors
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to accurately detect hazelnut orchards in Sakarya, Tirkiye,
achieving the highest Hazelnut F1-Score with SVM using the
Radial Basis Function (RBF) kernel (98.92% in Parali) and
Bayes (97.39% in Ag¢mabasi). In another recent study, Sasso et
al. (2024) integrated optical and radar remote sensing data from
Sentinel-1 and Sentinel-2 to map hazelnut orchards in Italy,
comparing multiple machine learning algorithms and
identifying Random Forest as the best generalizing model, with
96% overall accuracy and a 91% Hazelnut F1-Score across
diverse test areas. Another recent researches on hazelnut
monitoring highlights different optimal approaches, with
Morisio et al. (2025) achieving the highest accuracy (66%) and
lowest false negative rate (13%) using logistic regression on
UAV-based multispectral indices, Vinci et al. (2023) obtaining
over 90% accuracy with object-based classification of UAV
imagery using Random Forest, and Lodato et al. (2024)
reaching 96% accuracy by integrating multi-source satellite data
with Random Forest. Collectively, these studies demonstrate
that both data source selection and algorithm choice play a
critical role in optimizing classification accuracy for hazelnut
orchard mapping and monitoring.

In this study, machine learning-based supervised classification
approaches were applied to identify the spatial distribution of
hazelnut orchards and optimum hyperparameter settings are
determined. Furthermore, Stacked Sentinel-2 images were used
to distinguish between different land use and land cover
(LULC) classes. The stacked images, which include a total of
72 bands from six different dates, were selected based on
fieldwork conducted during various phenological periods, with
150 hazelnut orchards visited at specific times of the year. In
particular, the unique phenological stages and spectral
reflectance characteristics of hazelnut orchards were considered
to effectively separate them from other land use types. Sample
polygons for training data were carefully selected from these
field observations. The classification process and model
development were performed using the Random Forest (RF)
and XGBoost algorithms, with the processing carried out on
platforms such as Google Earth Engine (GEE) and Kaggle. The
accuracy of the results was evaluated using various performance
metrics, such as overall accuracy, Fl-score and user’s,
producer’s accuracy. This approach enables more systematic
and reliable monitoring of large-scale hazelnut cultivation areas.

2. Study Area & Fieldwork

The study area focusing on Sakarya Province, which ranks third
in hazelnut production in Turkey, with 789,000 decares of land
and 98,000 tons of production in 2023 (Bars, 2023). During the
fieldwork, approximately 150 hazelnut orchards, representing
various phenological stages, were visited and analyzed in
selected regions of Sakarya (Figure 1). Based on this field data,
the most optimal temporal intervals for hazelnut cultivation
were determined by considering the phenological stages and
biophysical parameters, as examined through vegetation indices
such as NDVI, SAVI, EVI, and AVI. These indices have proven
to be particularly effective in differentiating 12 land use and
land cover (LULC) classes in the study area that are determined
depending on the CORINE class nomenclature, including the
hazelnut class (Figure 2).

Figure 1. Sakarya boundry for Sentinel-2 image and distribution
of fieldwork hazelnut parcels (Basemap: Google Satellite).
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Figure 2. LULC classes depending on the CORINE
nomenclature and related RGB Codes (Basemap: Google
Satellite)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W18-2025-301-2026 | © Author(s) 2026. CC BY 4.0 License. 302



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/\W18-2025
Symposium on GeoSpatial Technologies: Visions and Horizons 2025 (GeoVisions2025), 8—10 October 2025, Canakkale, Turkiye

3. Sample Collection & Data pre-processing

Considering the phenological stages (Bektas & Cil, 2023) and
the results of the field survey, six acquisition dates were
selected from atmospherically clear and radiometrically stable
Sentinel-2 imagery (25 December 2023, 19 March 2024, 12
June 2024, 22 July 2024, 16 August 2024, 5 October 2024).
Within the Google Earth Engine (GEE) environment, all 12
spectral bands of the Sentinel-2 datasets were resampled to a
uniform spatial resolution of 10 meters. Subsequently, date-
specific images corresponding to the identified phenological
stages were multi-temporally stacked, yielding a 72-band
composite dataset. Based on the CORINE land cover
classification and, in particular, the orchards visited during the
field survey, hazelnut orchards were specifically identified
using index values, and polygons were collected as samples for
each class.

Period
January - February
January - February
January - February

Phenological Stages
Male Flowering
Female Flowering
Pollination

Female Flower Shedding March
Leaf Emergence March - April
Fertilization May -June
Nut Cluster Shedding June
Harvest August - September
Leaf Fall November - December

Table 1. Phenological stages of hazelnut
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Figure 3. Time series of spectral indices in 2025 for hazelnut
orchards (a)NDVI, (b)AVI, (C)EVI, (d)SAVI

The seasonal profiles of NDVI, AVI, EVI, and SAVI for the
hazelnut orchard align well with its phenological stages,
showing low values during winter dormancy, a steady rise from
late February to peaks in May—June during full leaf
development, and a gradual decline through fruit maturation and
harvest. While NDVI and SAVI display smoother trends, EVI
shows greater sensitivity with higher amplitude, and AVI
maintains lower absolute values but follows a similar seasonal
pattern.

4. Methodology
4.1 Machine Learning Algorithms

Two widely used supervised machine learning algorithms
Extreme Gradient Boosting (XGBoost), and Random Forest
(RF) are employed to perform the classification task. Extreme
Gradient Boosting (XGBoost) is an advanced gradient boosting
algorithm that efficiently handles sparse data, incorporates

weighted quantile computation, and uses memory and disk
access optimizations to scale to very large datasets while
maintaining high accuracy and efficiency (Chen & Guestrin,
2016). In this study, XGBoost is employed due to its scalability,
ability to manage high-dimensional data, and strong predictive
performance. Its further benefits from built-in regularization
mechanisms that help prevent overfitting and allow for more
effective hyperparameter optimization (Aksoy et al., 2023).
Random Forest, on the other hand, is an ensemble machine
learning method that combines many decision trees built from
randomly selected input variables, and determines the final class
of a sample based on majority voting (Ustuner & Simsek, 2025;
Rodriguez-Galiano et al. 2012; Akar and Giingér 2015). Its
robustness and ease of implementation make it a widely adopted
algorithm in various classification and regression tasks.

4.2 Accuracy Assessment

Accuracy assessment is essential for evaluating the performance
and reliability of classification methods and for guiding the
selection of the most appropriate approach for specific
applications. Compared to point-based approaches, polygon-
based accuracy assessment offers advantages by better
representing the actual shape and variability of agricultural
fields, thereby providing results that are more consistent with
real-world conditions. Common accuracy metrics such as
overall accuracy (OA), user’s accuracy (UA), producer’s
accuracy (PA), and the F1-score are derived from the confusion
matrix, which summarizes how well predicted classes
correspond to actual ones. To enhance the robustness of
evaluations, it is common to integrate diverse reference data
sources, including field surveys and high-resolution imagery.
However, interpreting these metrics requires careful
consideration of factors such as class imbalance and data
quality. In this study, we applied the method proposed by
Olofsson et al. (2013), which uses stratified random sampling to
calculate OA, UA, and PA while adjusting area estimates to
reduce bias from classification errors (Karimi et al., 2025). A
comprehensive accuracy assessment ensures that classification
outcomes are both scientifically sound and practically
applicable for decision-making.

5. Experiments & Results

Model training was conducted on the Kaggle platform using
scikit-learn and XGBoost libraries. The dataset was split into
70% training, 20% validation, and 10% test sets through
stratified sampling. Owing to the large study area (11,998 x
9,915 pixels) and high  feature  dimensionality,
RandomizedSearchCV was applied to a subset of 50,000
training samples for efficient hyperparameter optimization. For
both Random Forest (RF) and XGBoost (XGB), optimal
parameters were identified via 3-fold cross-validation with the
macro-averaged Fl-score as the selection criterion. The best
XGB model incorporated 400 trees, depth 8, learning rate 0.1,
subsample ratio 1.0, and column subsample ratio 0.7, while the
optimal RF employed 300 trees, depth 40, and a balanced class
weight strategy. Using these parameters, the final models were
trained and evaluated with overall accuracy, precision, recall,
F1-score, and weighted loU. The trained RF and XGB models
were subsequently applied to the full scene, and prediction
masks were exported as GeoTIFFs for further spatial analysis.
Both models achieved robust performance in detecting hazelnut
orchards, with RF demonstrating marginally superior results
across all classes.
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Overall, Random Forest delivers stronger performance than
XGBoost both globally and on the key hazelnut class. Overall
accuracy is 96.32% for Random Forest versus 80.74% for
XGBoost, and weighted loU is 97.45% versus 87.69%. For the
hazelnut class, Random Forest attains 98.24% producer’s
accuracy, 97.52% user’s accuracy, and a 98.36% F1 score,
while XGBoost reaches 93.22%, 94.92%, and 94.06%,
respectively (Table 2). The hazelnut class likely scores well in
both models because it is the most prevalent class, whereas
several less represented classes are harder and appear to pull
XGBoost’s overall accuracy down. Random Forest not only
keeps hazelnut performance high but also handles the rarer
classes more reliably, which explains its higher OA and
weighted loU and suggests it generalizes better under class
imbalance. As shown in the prediction masks (Figure 4),
although both models yield comparable outcomes for Hazelnut
and Forest classes, RF demonstrates clear superiority over
XGB, particularly in discontinuous urban fabric and arable land
areas.
Random Forest Prediction Mask
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Figure 4. Prediction masks for RF and XGBoost with legend.

Metric Random Forest XGBoost

OA (%) 96.32 80.74
Weighted loU (%) 97.45 87.69
Hazelnut producer’s 98.24 93.22
accuracy (%)

Hazelnut user’s 97.52 94.92
accuracy (%)

Hazelnut  F1-score 98.36 94.06
(%)

Table 2. Accuracy Assessment

6. Conclusion

This study demonstrates the effectiveness of combining field
surveys, vegetation indices, and multi-temporal Sentinel-2
imagery for mapping hazelnut orchards in Sakarya. Fieldwork
allowed detailed sampling for the hazelnut class, and the use of
key phenological periods enabled the creation of stacked
imagery  capturing  critical growth stages. Optimal
hyperparameters were determined for both Random Forest and
XGBoost, enabling RF to outperform XGB in overall
classification, particularly for hazelnut and other minority
classes. While dominant classes such as hazelnut and forest
were reliably classified, classes with limited spatial distribution,
including permanent cropland, remain challenging due to
spectral similarities. Future studies incorporating higher-
resolution imagery and targeted analysis of underrepresented
classes could further improve classification accuracy and
support sustainable agricultural monitoring.
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