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Abstract 

Explainable artificial intelligence (XAI) enables users to interpret the black box of machine learning (ML) algorithms and its 

applicability across various ML algorithms allows for the investigation of feature impacts on the model. Among the ML algorithms, 

Long Short Term Memory (LSTM) deep learning method has become popular in various applications, especially forecasting 

analysis, due to its ability to effectively capture long-range temporal dependencies in sequential data, as is often required when 

analyzing time-series deformation patterns derived from multi-temporal interferometric synthetic aperture radar (MT-InSAR). The 

SHapley Additive exPlanations (SHAP) method, one of the most popular XAI techniques, has been widely used to identify the 

impacts of features on processes. To this end, forecasting analysis of MT-InSAR-based time series surface movements was 

performed using the LSTM method in the two selected case regions at Istanbul Airport. These case regions exhibit different time 

series characteristics (subsidence and stable) and belong to different surface types (runway and building). According to the results 

obtained, the LSTM method showed successful performances with RMSE, MAE, and R values of 1.12 mm, 0.92 mm, 0.672 for case 

1 and 1.37 mm, 1.13 mm, 0.385 for case 2. To assess the impacts of the exogenous variables, including trend, seasonal, and residual 

components of time series data and meteorological parameters gathered from the ERA5-Land dataset, were investigated using the 

SHAP method, and results were evaluated specifically for each case region.

1. Introduction

Deep learning (DL) neural networks have demonstrated 

successful applications; however, their non-linear and complex 

structures make them inherently non-interpretable 

(Kakogeorgiou et al., 2021). With the growing adoption of 

machine learning models, the need to explain these so-called 

“black box” models has become increasingly important. To 

address this challenge, explainable artificial intelligence (XAI) 

methods have been developed to interpret black-box decisions 

and enhance understanding of the machine learning model 

results. These methods enable the users and researchers to 

evaluate models with their explanations not only through 

accuracy metrics but also by providing meaningful explanations 

of the results (Ribeiro et al., 2016). 

DL algorithms have been widely used in remote sensing 

applications such as classification (Kussul et al., 2017; Maxwell 

et al., 2018), soil moisture estimation (Celik et al., 2022; Huang 

et al., 2023), and forecasting (Rhif et al., 2020; Zhu et al., 

2023). To enhance the interpretability of these models, methods 

such as LIME and SHAP (SHapley Additive exPlanations) have 

been developed and have increasingly gained a seat in remote 

sensing applications (Jena et al., 2023; Chen et al., 2023; 

Abdollahi and Pradhan, 2023). However, the use of XAI 

methods in forecasting studies remains limited (Lees et al., 

2022; Zhang et al., 2023), particularly in the context of 

forecasting surface movement.  

Forecasting of surface movements from the multi-temporal 

interferometric synthetic aperture radar (MT-InSAR) data has 

recently gained traction in the literature, with several studies 

conducted in mining areas (Hill et al., 2021), airports (Chen et 

al., 2021; Bayik and Abdikan, 2021; Bao et al., 2022), and 

urban environments (Liu et al., 2021). Yagmur et al. (2024) 

evaluated driving factors on time series forecasting of surface 

movements using permutation feature importance method. 

However, to date, no study has applied XAI methods to 

forecasting analysis, particularly in airport settings, which 

present complex trade-offs between economic development, 

transportation demands, and environmental conservation. 

In this study, surface movement forecasting based on MT-

InSAR analysis was conducted at Istanbul Airport using the 

Long Short-Term Memory (LSTM) DL method. The model was 

enhanced with exogenous variables, including trend, seasonal, 

and residual components of the time series, as well as 

meteorological parameters—air temperature, surface 

temperature, evaporation, and precipitation—obtained from 

ERA5-Land over the study area. The analysis focused on two 

case sites with distinct time series behaviours (subsidence and 

stable) and structural types. To interpret the influence of the 

exogenous variables, the SHAP method was applied to the 

forecasting results, which were then evaluated in relation to the 

time series characteristics and structural context of each site. 

2. Study Area

Istanbul Airport is one of the largest airports in the world in 

terms of total area, located on the European side of Istanbul 

along the Black Sea coast. The vast area of 76.5 km2 was 

allocated for its construction. Ground surveys began in 2014, 

and construction officially started in May 2015. The project was 

planned in four phases, with the first phase completed before 

the airport's official opening at the end of October 2018. 

Initially, the airport operated with two runways—Runways A 
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and B. Subsequently, Runway C was completed in June 2020, 

bringing the total number of runways to three, and the airport is 

scheduled for full completion in 2029. 

 

Before the construction of the airport, the area had a long 

history of coal mining, industrial sand extraction, and clay 

deposits, dating back to the late 19th century. The open coal 

mines and excavation sites were eventually abandoned 

following a decline in coal consumption after the widespread 

adoption of natural gas in 1992. The land conversion for airport 

construction had significant environmental consequences, 

including the destruction of wetlands that had formed in the 

abandoned mining areas. The drainage and removal of these 

wetlands during construction likely resulted in habitat loss and 

ecosystem disruption (Yagmur et al., 2022). To create a level 

surface for construction, the drained wetlands were 

subsequently filled. 

 

3. Data and Methodology 

3.1 Data Used 

The time series surface movement data for the study region 

were generated using Sentinel-1 Single Look Complex (SLC) 

satellite images, with the sensor specifications provided in 

Table 1. In the study, a total of 211 Sentinel-1 images, covering 

the period from November 5, 2018, to September 3, 2022, were 

processed using the SNAP and StaMPS software packages, with 

the master image dated June 15, 2020. The MT-InSAR 

processing followed the same methodology as described by 

Yagmur et al. (2022). The interferogram generation was carried 

out in SNAP software, while Persistent Scatterer Interferometry 

(PSI) analysis, which has been widely used in the deformation 

monitoring of structure (Halicioglu et al., 2021), was conducted 

in StaMPS through the following steps: phase noise estimation, 

persistent scatterer (PS) selection, PS weeding, phase 

correction, look angle error estimation, and atmospheric 

filtering, respectively. 

 

Properties Data 

Track 58 

Acquisition Mode Ascending 

Image Mode Interferometric Wide 

Wavelength C band 

Polarization Vertical – Vertical (VV) 

Spatial Resolution 5×20 m (range × azimuth) 

Number of images 211 

Temporal range 2018/11/05 - 2022/09/03 

Master image June 15, 2020 

Table 1. The specifications of Sentinel-1 satellite images 

 

Sentinel-1 satellite images have a spatial resolution of 5 × 20 

meters in range and azimuth directions, respectively, and 

initially provided a temporal resolution of 6 days. However, 

following the failure of Sentinel-1B in mid-December 2021, 

data acquisition from this satellite ceased, resulting in a reduced 

temporal resolution of 12 days over Europe. 

 

In this study, MT-InSAR deformation results served as inputs 

for forecasting surface movements and identifying the most 

influential exogenous features. These exogenous features were 

categorized into two groups: data-sourced features and 

meteorological features. The data-sourced features were derived 

by the decomposition of the time series surface movements into 

trend, seasonal, and residual components using an additional 

decomposition method. The meteorological features included 

air temperature (measured 2 meters above ground), surface 

temperature, precipitation, and evaporation, all obtained from 

ERA5-Land meteorological datasets. 

 

The PSI-derived deformation results are presented in Fig. 1. The 

line-of-sight (LOS) deformation velocities range from -18.4 

mm/year to 11.3 mm/year. The red and orange PS points 

indicate subsidence movements, while blue and green points 

represent uplift movements. Yellow points correspond to stable 

areas. For the time series forecasting analysis, two case regions 

with distinct deformation behaviours—one exhibiting 

subsidence and the other stability—were selected. These case 

regions are highlighted with black boxes in Fig. 1. 

 

 
Figure 1. PSI deformation results of the Istanbul Airport.  

 

3.2 Methodology 

Prior to the forecasting analysis, data preparation steps were 

carried out. PS points within the selected regions were filtered 

based on a coherence threshold greater than 0.60. Subsequently, 

the weighted average of the time series surface movements for 

each region was calculated, with weights assigned according to 

the coherence values of the individual PS points. Due to the 

breakdown of the Sentinel-1B satellite in mid-December 2021, 

the temporal resolution of the dataset decreased from 6 days to 

12 days. To maintain consistency and preserve a uniform 6-day 

interval, interpolation was performed for the affected period.  

 

Following data preparation steps, forecasting analysis was 

conducted on the processed time series surface movement data 

for each case region. The time series data, covering the period 

from November 05, 2018 to September 03, 2022, were 

partitioned into training (85%) and testing (15%) subsets to 

ensure effective model training, hyperparameter tuning, and 

performance evaluation, respectively. The overall workflow of 

the study is illustrated in Fig. 2. 
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Figure 2. The flowchart of the study. 

 

In the time series forecasting step, the LSTM method was 

applied to the LOS time series InSAR surface movements. 

Introduced by Hochreiter and Schmidhuber (1997), LSTM is a 

specialized type of recurrent neural network designed to 

effectively capture long-term dependencies in sequential data. It 

consists of three main components: memory cells, gates, and 

activation functions. The memory cell retains relevant 

information over long sequences, while the three gates—forget, 

input, and output—regulate the flow of information into and out 

of the cell. Activation functions control the updates and outputs 

of the memory cell, helping the network focus on important 

features (Liu et al., 2020). LSTM and its variants have become 

fundamental in deep learning for processing sequential data. 

 

The accuracy assessment of the forecasting analysis was 

evaluated using three accuracy metrics: Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), and the Pearson 

Correlation Coefficient (R) value. These metrics were 

calculated by comparing the forecasted values with the test data. 

The equations for each metric are provided below: 

 

    (1) 

 

    (2) 

 

   (3) 

 

where xi is the measured value,  is the forecasted value, and n 

is the time step of the data. The xm and  represent the average 

of measured and forecasted values, respectively. 

 

To examine the influence of exogenous features—including 

trend, seasonal effect, residuals, and meteorological parameters 

(air temperature, surface temperature, evaporation, and 

precipitation)—on the forecasting of time series surface 

movements, the SHAP (SHapley Additive exPlanations) 

method was employed. SHAP is a robust tool for interpreting 

machine learning models, offering insights into the contribution 

of each input feature to the model's predictions. Developed by 

Lundberg and Lee (2017), SHAP values are based on 

cooperative game theory and the concept of Shapley values, 

ensuring a fair distribution of feature importance across 

predictions. 

 

4. Results and Discussion 

Forecasting analysis using the LSTM method was conducted 

with exogenous variables including components of the time 

series data and meteorological parameters. The accuracy results 

of the two cases are presented in Table 2. It is important to note 

that the test data were not used at any stage during model 

training, ensuring an unbiased evaluation of model 

performance. 

 

Accuracy Metrics Case 1 Case 2 

RMSE (mm) 1.12 1.37 

MAE (mm) 0.92 1.13 

R 0.671 0.385 

Table 2. Accuracy assessment results of forecasting analysis for 

two cases 

 

According to Table 2, the RMSE and MAE values were found 

to be around 1 mm, indicating that the LSTM method 

effectively forecasted the test values. The model performed 

better in Case 1, with lower RMSE (1.12 mm) and MAE (0.92 

mm) values and a higher correlation coefficient (R = 0.671), 

compared to Case 2, where R was lower (0.385) due to the 

nature of the stable time series.  

 

The results obtained from the time series forecasting analysis 

are presented in Fig. 3. The green and red lines represent the 

training and test data, respectively. The black dashed line 

represents the LSTM forecast, which closely follows the test 

data, indicating that the model effectively learned and extended 

the trend. The LSTM model effectively captured the subsidence 

trend in Case 1 (Fig. 3a), while it demonstrated reasonable 

performance in tracking the stable pattern with minor 

fluctuations in Case 2 (Fig. 3b), despite the lower correlation 

coefficient. Overall, the LSTM model successfully captured the 

overall trends in both cases, as supported by the visual 

forecasting results.  
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Figure 3. The forecasting results of a) Case 1 subsidence movement and b) Case 2 stable movement. The x-axis indicates the duration 

of the time series, and the y-axis indicates the LOS surface movements (mm). 

 

To investigate the effects of exogenous variables on the 

forecasting of different time series patterns, the SHAP method 

was applied to both cases. Figure 4 presents the variables 

ranked by their impact values. In Case 1, which exhibits 

subsidence movement over Runway B, the trend component 

was identified as the most influential feature, followed by air 

temperature and surface temperature. In contrast, precipitation 

was found to have the least impact. In Case 2, representing a 

relatively stable region over the terminal building, the seasonal 

component was the most impactful, followed by surface 

temperature, evaporation, and the residual component. Notably, 

the trend had minimal influence in this case, likely due to the 

absence of a dominant long-term trend. Overall, these findings 

suggest that temperature-related and residual parameters are 

important in forecasting MT-InSAR-based surface movements, 

while the trend component plays a more significant role in areas 

exhibiting consistent deformation patterns, such as Case 1. 

 

 

 
 

Figure 4. The forecasting results of a) Case 1 subsidence movement and b) Case 2 stable movement. 

 

 

5. Conclusion 

 

In this study, the influence of exogenous variables on the 

forecasting of time series with different characteristics was 

investigated. To this end, time series forecasting was conducted 

using the LSTM deep learning algorithm, and the contribution 

of exogenous variables to the forecasting performance was 

evaluated using the SHAP method. Both methods yielded 

promising results. The LSTM model successfully forecasted 

both time series with error values around 1 mm (RMSE and 

MAE). In Case 1, where a clear subsidence trend was observed, 

the trend component emerged as the most influential feature. In 

contrast, for Case 2, representing a more stable region, the 

seasonal component was found to be more prominent. Notably, 

surface temperature significantly influenced both time series, 

regardless of their differing temporal behaviors and structural 

contexts.  

 

Overall, the findings emphasize the importance of identifying 

the key factors driving surface movements to enhance the 

reliability of forecasting models. Accurate forecasting of surface 

deformation is vital for early warning systems and risk 

mitigation, particularly in areas with critical infrastructure. 
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