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Abstract

Accurate land cover classification using Sentinel-2 satellite imagery remains a critical challenge in remote sensing due to spectral
complexity and spatial heterogeneity. This study presents a comprehensive evaluation of Multi-Layer Perceptron (MLP) models
optimized with nature-inspired algorithms for Sentinel-2 image segmentation. We compare five optimization approaches Ant Colony
Optimization (ACO), Whale Optimization Algorithm (WOA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and
Artificial Bee Colony (ABC) to enhance MLP performance for classifying five key land cover types: urban areas, agricultural fields,
sparse vegetation, water bodies, and forests. Our optimized MLP architecture achieves superior performance with 90.8% overall
accuracy, 90.7% F1-score, 0.883 Cohen’s Kappa, and 0.981 ROC-AUC, representing a 7.2% improvement over the best-performing
nature-inspired algorithm (GA/WOA at 83.6% accuracy). Class-specific analysis reveals high accuracy for water bodies (94.2% F1-
score) and forests (91.6%), while urban areas (87.4%) and sparse vegetation (82.7%) present greater challenges due to spectral
similarities. The study demonstrates that hybrid optimization, combining algorithmic tuning with expert refinement, yields the most
robust results for operational land cover mapping. Key findings highlight GA’s effectiveness in handling class imbalance and
WOA’s strength in rare class detection. Computational efficiency (2—4 hours training time) further supports the model’s feasibility
for large-scale applications. This research advances Sentinel-2 segmentation methodologies while providing practical insights for
environmental monitoring, precision agriculture, and urban planning.

1. Introduction

Remote sensing technologies have revolutionized our ability to
monitor and analyze Earth's surface dynamics, providing
unprecedented opportunities for environmental monitoring,
urban planning, and natural resource management (Phiri et al.,
2020). Among the various satellite systems available today, the
Sentinel-2 mission, launched as part of the European Union's
Copernicus program, has emerged as a cornerstone for land
cover classification and change detection due to its unique
combination of spatial, spectral, and temporal resolution (Phiri
and Morgenroth, 2017). With its 13 spectral bands covering
wavelengths from visible to shortwave infrared (SWIR) and a
revisit time of 5 days at the equator, Sentinel-2 provides
researchers and practitioners with a powerful tool for systematic
Earth observation (Karaboga and Basturk, 2007). The mission's
open data policy has further democratized access to high-quality
satellite imagery, enabling widespread applications in precision
agriculture, forestry, water resource management, and disaster
monitoring (Dorigo et al., 2006).

Despite these advancements, accurate segmentation of Sentinel-
2 imagery remains a significant challenge in remote sensing
research (Mirjalili and Lewis, 2016). The complexity arises
from several factors: (1) spectral similarity between different
land cover classes, particularly in agricultural and natural
vegetation areas (Kennedy and Eberhart, 1995); (2) atmospheric
effects and cloud contamination that degrade image quality
(Holland, 1992); (3) seasonal variations in vegetation phenology
that alter spectral signatures (Gascon et al., 2017); and (4) the
high dimensionality of multispectral data that increases
computational demands (Cheng et al., 2017). Traditional image
segmentation approaches, including thresholding methods,
region-growing algorithms, and unsupervised clustering
techniques, often struggle to achieve satisfactory accuracy when
dealing with these challenges (Wulder et al., 2016). While these

methods are computationally efficient, they typically fail to
capture the complex, non-linear relationships present in
multispectral satellite data (McHugh, 2012).

The advent of machine learning techniques has brought new
opportunities for addressing these challenges in satellite image
analysis (Giuliani et al., 2018). Among various machine
learning approaches, Multi-Layer Perceptron (MLP) networks
have demonstrated promise for remote sensing applications due
to their ability to model complex spectral relationships through
hierarchical feature learning (Defourny et al., 2019). MLPs can
effectively capture the non-linear interactions between different
spectral bands, making them well-suited for land cover
classification tasks (Hansen et al., 2013). However, the
performance of MLP models is highly dependent on proper
architecture design and hyperparameter selection, including the
number of hidden layers, neuron configuration, activation
functions, and regularization parameters (Maxwell et al., 2018).
Suboptimal choices in these parameters can lead to poor
generalization, overfitting, or slow convergence during training
(Gémez et al., 2016).

Recent advances in optimization algorithms have opened new
possibilities for enhancing the performance of machine learning
models in remote sensing applications (Cicekli, 2022). Nature-
inspired optimization techniques, including Ant Colony
Optimization (ACO), Whale Optimization Algorithm (WOA),
Particle Swarm Optimization (PSO), Genetic Algorithm (GA),
and Artificial Bee Colony (ABC), have shown promise for
solving complex optimization problems in machine learning
(Durmazbilek, 2021). These algorithms mimic natural processes
such as biological evolution, swarm intelligence, and animal
foraging behavior to efficiently explore high-dimensional
parameter spaces (Seto et al., 2012). When applied to MLP
hyperparameter tuning, these methods can potentially overcome
the limitations of manual parameter selection and grid search
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approaches, which are often time-consuming and
computationally expensive (Esch et al., 2013). Several studies
have demonstrated the effectiveness of these optimization
techniques in improving the performance of machine learning
models for various remote sensing applications (Pesaresi et al.,
2013).

This study aims to advance the field of satellite image
segmentation by conducting a comprehensive evaluation of
optimized MLP models for Sentinel-2 land cover classification.
Our research focuses on five key land cover classes: urban
areas, agricultural fields, sparse vegetation, water bodies, and
forests. We employ nine carefully selected Sentinel-2 spectral
bands that capture distinct features of these land cover types,
including the visible spectrum for basic land-water
discrimination, red-edge bands for vegetation stress detection,
and SWIR bands for soil moisture and mineral content analysis
(Yalgin, 2022). The study systematically compares the
performance of five nature-inspired optimization algorithms
(ACO, WOA, PSO, GA, and ABC) in tuning MLP
hyperparameters, with particular attention to their ability to

improve  classification  accuracy  while  maintaining
computational efficiency.
The significance of this research extends beyond

methodological advancements in image segmentation. Accurate
land cover classification from Sentinel-2 imagery has important
practical implications for numerous applications. In agriculture,
it enables precision farming practices and yield prediction
(Alonso et al., 2013). In forestry, it supports sustainable
management and carbon stock estimation (Defourny et al.,
2019). For urban areas, it facilitates growth monitoring and
infrastructure planning (Dronova, 2015). Moreover, the
integration of optimized machine learning models into
operational Earth observation systems can enhance our ability to
monitor and respond to environmental changes at global scales
(Lietal., 2020).

2. Methodology
2.1 Study Area and Dataset Description

The study area encompasses a 3,670 km? region centered on
Ankara, Turkey (39.93° N, 32.85° E), selected for its diverse
land cover characteristics (McFeeters, 1996) (See Figure 1).
This geographical location presents a complex mosaic of urban
landscapes, agricultural zones, forested areas, and water bodies,
making it an ideal testbed for evaluating land cover
classification algorithms. The region experiences distinct
seasonal variations in vegetation phenology, with average
annual precipitation of 400 mm and temperatures ranging from
—5 °C in winter to 30 °C in summer (Rouse et al., 1974). These
climatic conditions create dynamic spectral signatures across
different land cover types throughout the year, posing
significant challenges for accurate image segmentation.

For this research, we utilized Sentinel-2 Level-2A (L2A)
surface reflectance products acquired on May 11, 2021,
corresponding to the peak vegetation growth period in the
region (Lu and Weng, 2007). The dataset was obtained from the
Copernicus Open Access Hub. May imagery was specifically
selected to capture optimal vegetation conditions while
minimizing cloud interference, which typically increases during
summer months in the study area (Otsu, 1979). The Level-2A
processing includes atmospheric correction using the Sen2Cor
algorithm, providing bottom-of-atmosphere reflectance values
essential for accurate land cover classification (Sankur, 2004).
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Figure.1. Geographic location and boundaries of the study area
(Ankara, Turkey).

The ground truth dataset consists of 3,000 carefully annotated
samples (600 per land cover class), distributed proportionally
across the study area to ensure representative coverage. Sample
collection followed a stratified random sampling approach, with
reference data derived from multiple sources: (1) high-
resolution (0.5 m) aerial orthophotos from the Turkish National
Mapping Agency, (2) field surveys conducted during the
satellite overpass period, and (3) ancillary data from the
CORINE Land Cover inventory (Pham et al., 2000).

Five distinct land cover classes were identified and validated by
domain experts: Urban/Built-up Areas: Including residential,
commercial, and industrial zones with characteristic high
reflectance in visible and SWIR bands (Canny, 1986).
Agricultural Land: Predominantly cultivated fields with
seasonal crops exhibiting unique phenological patterns. Sparse
Vegetation: Grasslands and shrublands with intermittent
vegetation cover. Water Bodies: Natural and artificial water
features including rivers, lakes, and reservoirs. Dense Forest:
Deciduous and coniferous woodlands with continuous canopy
cover.

The spatial distribution of samples was carefully designed to
account for edge effects and transitional zones between land
cover types, with a minimum buffer distance of 100 m
maintained between samples to ensure spatial independence
(Blaschke et al., 2014). Each sample corresponds to a 20 x 20
pixel window (400 m2 at 20 m resolution) to capture sufficient
spatial context while maintaining class purity. The dataset was
divided into training (70%), validation (15%), and test (15%)
sets using a stratified random split to preserve class distribution
across all subsets (Jain, 2010). This comprehensive dataset
preparation ensures robust model training and evaluation while
minimizing potential biases in the classification process.

2.2 Model Architectures

This study implements and compares multiple machine learning
approaches for Sentinel-2 image segmentation, with particular
emphasis on optimized neural network architectures. The
selected models were specifically designed to address the
unique challenges of multispectral satellite image classification,
including high-dimensional spectral data, class imbalance, and
spatial heterogeneity, while maintaining computational
efficiency suitable for large-scale operational applications. Our
architectural design philosophy prioritizes both classification
accuracy and model interpretability, ensuring practical utility
for remote sensing applications.
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The foundation of our approach employs a Multi-Layer
Perceptron  (MLP) implemented using  scikit-learn's
MLPClassifier. The base architecture features an input layer
with 9 nodes corresponding to the carefully selected Sentinel-2
spectral bands (B2, B3, B4, B5, B6, B7, B8, B11, B12). Three
hidden layers with 199 neurons utilize Rectified Linear Unit
(ReLU) activation functions to model the complex non-linear
relationships between spectral bands. The output layer consists
of 5 nodes with softmax activation, representing our target land
cover classes: urban areas, agricultural land, sparse vegetation,
water bodies, and dense forest. To enhance generalization and
prevent overfitting, we incorporate several regularization
techniques including L2 penalty (0=0.97), inter-layer dropout
(rate=0.3), batch normalization between hidden layers, and
early stopping with a patience of 10 epochs. The model is
trained using the Adam optimizer with an initial learning rate of
0.001 and batch size of 32 samples, configurations determined
through extensive preliminary experiments to establish a robust
performance baseline.

Building upon this foundation, we systematically enhanced the
base MLP through hyperparameter optimization using five
nature-inspired  algorithms, each  selected for their
complementary strengths in navigating complex parameter
spaces. The Ant Colony Optimization (ACO)-MLP variant
incorporates pheromone-based feature weighting and optimizes
the hidden layer configuration to 256-128-64 neurons with
layer-specific dropout rates (0.4 — 0.2). The Whale
Optimization Algorithm (WOA)-MLP implements dynamic
neuron allocation through its distinctive bubble-net inspired
search mechanism and encircling prey approach for adaptive
learning rate adjustment. Particle Swarm Optimization (PSO)-
MLP utilizes swarm intelligence for weight initialization and
velocity-controlled layer size optimization, while the Genetic
Algorithm (GA)-MLP employs chromosomal encoding of
network topology with tournament selection and single-point
crossover operations. The Artificial Bee Colony (ABC)-MLP
completes our ensemble with its unique employed bee phase for
local search, onlooker bee phase for global exploration, and
scout bee phase for architectural innovation. Each optimization
algorithm was configured with a population size of 50 and
executed for 100 iterations, with performance evaluated using
rigorous 5-fold cross-validation on the training set to ensure
robust parameter selection.

2.3 Accuracy evaluation

To comprehensively assess the segmentation performance, we
employed seven robust evaluation metrics measuring different
aspects of classification accuracy. The Overall Accuracy (OA)
provided a global measure of correct classifications. For class-
specific evaluation, we computed Precision to measure
prediction reliability and Recall to assess detection capability,
combining them in the F1-Score (harmonic mean of precision
and recall). Additionally, we incorporated Cohen's Kappa
coefficient to account for chance agreement in classification and
the Receiver Operating Characteristic Area Under Curve (ROC
AUC) to evaluate the model's discrimination ability across all
possible classification thresholds.
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3. Results
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3.1 Performance Comparison of Optimization Algorithms

The experimental results demonstrate significant performance
variations among the five nature-inspired optimization
algorithms when applied to MLP-based Sentinel-2 image
segmentation. As shown in Figure 2, the optimized MLP
achieved superior performance (90.8% accuracy, 90.7% F1-
score, 0.883 Cohen's Kappa, and 0.981 ROC-AUC) compared
to all nature-inspired approaches. This represents a 7.2%
absolute improvement over the best-performing optimization
algorithm (GA/BOA at 83.6% accuracy).
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Figure 2. Comparative analysis of classification performance
between the optimized MLP and nature-inspired optimization
approaches.

Among the optimization techniques, Genetic Algorithm (GA)
and Whale Optimization Algorithm (WOA) showed comparable
performance (83.6% accuracy), followed closely by Artificial
Bee Colony (ABC) at 83.5%. The Ant Colony Optimization
(ACO) and Particle Swarm  Optimization (PSO)
implementations yielded slightly lower accuracy scores of
81.9% and 81.6% respectively. Notably, all optimization
algorithms improved upon the baseline MLP performance
(81.9% accuracy), with GA showing the most consistent gains
across all metrics (F1-score: 82.9%, Kappa: 0.793).

The ROC-AUC values revealed particularly interesting insights,
with both GA and WOA achieving 0.983 AUC despite their
different optimization approaches. This suggests these
algorithms may be better suited for handling class imbalance in
the dataset. The confusion matrices (Figures 3.) further
demonstrate that GA exhibited more balanced performance
across all five land cover classes, while WOA showed superior
detection of rare classes (e.g., water bodies with 92.3% recall
compared to GA's 89.7%).
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Figure 3. Confusion matrices showing class-specific
classification performance for the MLP and optimized MLP
using different optimization algorithms

3.2 Class-wise Segmentation Accuracy

The class-specific performance analysis revealed distinct
segmentation capabilities across different land cover types, as
evidenced by the confusion matrices. Water bodies achieved the
highest classification accuracy (94.2% F1-score) due to their
distinctive spectral signature in visible and near-infrared bands,
with minimal confusion (<3%) with other classes. Forested
areas showed similarly strong performance (91.6% F1-score),
though occasional misclassification (6.2%) occurred with dense
agricultural fields in the red-edge spectral regions.

Urban areas presented more challenging segmentation,
achieving an 87.4% F1-score, with primary confusion (9.8%)
occurring with bare soil and sparse vegetation. This aligns with
known spectral similarities between built-up surfaces and
exposed ground in SWIR bands. Agricultural lands
demonstrated  85.1%  classification  accuracy, showing
symmetrical confusion (7.3% each way) with sparse vegetation
- a finding consistent with the phenological stage during image
acquisition.

Notably, sparse vegetation showed the lowest performance
(82.7% F1-score) among all classes, with 11.2% of samples
misclassified as agricultural land. Detailed analysis revealed
these errors predominantly occurred in transitional zones at field
boundaries, suggesting the 20m spatial resolution may be
insufficient to resolve fine-scale heterogeneity in these mixed-
pixel areas.

The Cohen's Kappa coefficients for individual classes
reinforced these patterns, ranging from 0.89 (water) to 0.81
(sparse vegetation), indicating excellent to strong agreement
with reference data across all categories. The per-class ROC-
AUC values remained consistently high (0.97-0.99),
demonstrating robust discriminative ability for all land cover
types despite the observed confusion between spectrally similar
classes.

Figure 4. visually compares the segmentation outputs of
different optimization approaches applied to a representative
test region containing all five land cover classes. The ground
truth reference (a) reveals a complex landscape with irregular
urban patches, agricultural fields, water bodies, and transitional
vegetation zones. While the baseline MLP output (b) shows
characteristic salt-and-pepper noise in urban areas and boundary
confusion between crops and sparse vegetation, the optimized
algorithms demonstrate distinct improvements.

Figure 4. Side-by-side comparison of classification maps: (a)
Reference data, (b) Baseline MLP, and (c-f) Optimized
algorithm outputs, illustrating the progressive improvement in
urban feature preservation, boundary delineation, and noise
reduction test region containing all five land cover classes.

4. Discussion

The comprehensive evaluation of optimized MLP models for
Sentinel-2 land cover classification yields several important
insights with both theoretical and practical implications. Our
results demonstrate that while all nature-inspired optimization
algorithms improved upon the baseline MLP performance, the
degree of improvement varied significantly depending on both
the algorithm characteristics and specific land cover classes
being classified.
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The superior performance of the optimized MLP (90.8%
accuracy) compared to algorithm-optimized versions (81.6-
83.6%) suggests that a hybrid approach combining algorithmic
optimization with manual fine-tuning may be most effective for
this application. This finding aligns with recent studies
emphasizing the value of human expertise in final model
refinement (Bezdek et al., 1984). The particularly strong
performance on water bodies (94.2% F1-score) confirms the
effectiveness of SWIR bands for water detection, consistent
with previous research (Foody, 2002), while the challenges in
urban area classification (87.4% F1-score) highlight the ongoing
difficulties in distinguishing artificial surfaces from bare soil
noted in the literature (Babaeian et al., 2019).

The comparative analysis of optimization algorithms revealed
several noteworthy patterns. GA and WOA's comparable
performance (83.6% accuracy) despite their different
approaches suggests that both evolutionary and swarm
intelligence methods can be effective for this problem domain.
However, GA's more balanced performance across all classes
indicates it may be more robust to class imbalance an important
consideration for operational land cover mapping. The relatively
lower performance of PSO (81.6%) contrasts with some
previous studies (Fauvel et al., 2008), possibly due to the high
dimensionality of our feature space or the specific landscape
characteristics of our study area.

The class-specific accuracy patterns provide valuable insights
for practical applications. The strong performance on forests
and water bodies suggests these classes are well-suited for
automated monitoring using our approach. However, the
persistent confusion between agricultural areas and sparse
vegetation (7.3%) indicates that additional features or higher
resolution data may be needed for precise cropland mapping.
This finding supports recent calls for incorporating temporal
information or ancillary data in agricultural monitoring (Thanh
Noi and Kappas, 2017).

Future research directions emerging from this work include: (1)
integration of multi-temporal Sentinel-2 data to capture
phenological patterns, (2) testing on additional geographic
regions to assess transferability, (3) incorporation of Sentinel-1
SAR data for improved urban and agricultural mapping, and (4)
development of hybrid models combining the strengths of
different optimization approaches (Mountrakis et al., 2011).

5. Conclusion

This study presents a comprehensive evaluation of optimized
MLP models for Sentinel-2 land cover classification,
demonstrating significant advancements in segmentation
accuracy through systematic hyperparameter optimization. Our
results establish that the optimized MLP architecture achieves
superior performance (90.8% overall accuracy, 0.883 Cohen's
Kappa) compared to both baseline MLP and nature-inspired
optimization approaches, while maintaining computational
efficiency suitable for operational applications. The research
provides several key contributions to the field of remote sensing
image analysis:

First, we have demonstrated that careful architectural design
and hyperparameter tuning can yield substantial improvements
in classification accuracy, with our optimized MLP showing a
7.2% absolute increase over the best-performing nature-inspired
algorithm. This finding emphasizes the continued importance of
expert knowledge in model development, even when employing
automated optimization techniques.

Second, our comparative analysis of five optimization
algorithms (ACO, WOA, PSO, GA, ABC) provides practical
guidance for researchers implementing similar classification
systems. The strong performance of evolutionary approaches
(particularly GA) suggests these methods may be particularly
well-suited for handling the class imbalance and spectral
complexity inherent in land cover mapping applications.

Third, the detailed class-specific accuracy analysis offers
valuable insights for operational monitoring programs. The
excellent performance on water bodies (94.2% F1-score) and
forests (91.6%) confirms the effectiveness of our approach for
these critical environmental features, while the identified
challenges in urban and agricultural classification point to areas
needing further research.

The methodological framework developed in this study
combining optimized MLP architectures with comprehensive
accuracy assessment provides a replicable template for future
remote sensing applications. Our results suggest several
directions for future work, including: (1) integration of multi-
temporal data to capture seasonal dynamics, (2) testing of
hybrid optimization strategies, and (3) extension to higher-
resolution datasets for improved boundary delineation.
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