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Abstract 

 

Accurate land cover classification using Sentinel-2 satellite imagery remains a critical challenge in remote sensing due to spectral 

complexity and spatial heterogeneity. This study presents a comprehensive evaluation of Multi-Layer Perceptron (MLP) models 

optimized with nature-inspired algorithms for Sentinel-2 image segmentation. We compare five optimization approaches Ant Colony 

Optimization (ACO), Whale Optimization Algorithm (WOA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and 

Artificial Bee Colony (ABC) to enhance MLP performance for classifying five key land cover types: urban areas, agricultural fields, 

sparse vegetation, water bodies, and forests. Our optimized MLP architecture achieves superior performance with 90.8% overall 

accuracy, 90.7% F1-score, 0.883 Cohen’s Kappa, and 0.981 ROC-AUC, representing a 7.2% improvement over the best-performing 

nature-inspired algorithm (GA/WOA at 83.6% accuracy). Class-specific analysis reveals high accuracy for water bodies (94.2% F1-

score) and forests (91.6%), while urban areas (87.4%) and sparse vegetation (82.7%) present greater challenges due to spectral 

similarities. The study demonstrates that hybrid optimization, combining algorithmic tuning with expert refinement, yields the most 

robust results for operational land cover mapping. Key findings highlight GA’s effectiveness in handling class imbalance and 

WOA’s strength in rare class detection. Computational efficiency (2–4 hours training time) further supports the model’s feasibility 

for large-scale applications. This research advances Sentinel-2 segmentation methodologies while providing practical insights for 

environmental monitoring, precision agriculture, and urban planning. 

 

1. Introduction 

Remote sensing technologies have revolutionized our ability to 

monitor and analyze Earth's surface dynamics, providing 

unprecedented opportunities for environmental monitoring, 

urban planning, and natural resource management (Phiri et al., 

2020). Among the various satellite systems available today, the 

Sentinel-2 mission, launched as part of the European Union's 

Copernicus program, has emerged as a cornerstone for land 

cover classification and change detection due to its unique 

combination of spatial, spectral, and temporal resolution (Phiri 

and Morgenroth, 2017). With its 13 spectral bands covering 

wavelengths from visible to shortwave infrared (SWIR) and a 

revisit time of 5 days at the equator, Sentinel-2 provides 

researchers and practitioners with a powerful tool for systematic 

Earth observation (Karaboga and Basturk, 2007). The mission's 

open data policy has further democratized access to high-quality 

satellite imagery, enabling widespread applications in precision 

agriculture, forestry, water resource management, and disaster 

monitoring (Dorigo et al., 2006). 

 

Despite these advancements, accurate segmentation of Sentinel-

2 imagery remains a significant challenge in remote sensing 

research (Mirjalili and Lewis, 2016). The complexity arises 

from several factors: (1) spectral similarity between different 

land cover classes, particularly in agricultural and natural 

vegetation areas (Kennedy and Eberhart, 1995); (2) atmospheric 

effects and cloud contamination that degrade image quality 

(Holland, 1992); (3) seasonal variations in vegetation phenology 

that alter spectral signatures (Gascon et al., 2017); and (4) the 

high dimensionality of multispectral data that increases 

computational demands (Cheng et al., 2017). Traditional image 

segmentation approaches, including thresholding methods, 

region-growing algorithms, and unsupervised clustering 

techniques, often struggle to achieve satisfactory accuracy when 

dealing with these challenges (Wulder et al., 2016). While these 

methods are computationally efficient, they typically fail to 

capture the complex, non-linear relationships present in 

multispectral satellite data (McHugh, 2012). 

 

The advent of machine learning techniques has brought new 

opportunities for addressing these challenges in satellite image 

analysis (Giuliani et al., 2018). Among various machine 

learning approaches, Multi-Layer Perceptron (MLP) networks 

have demonstrated promise for remote sensing applications due 

to their ability to model complex spectral relationships through 

hierarchical feature learning (Defourny et al., 2019). MLPs can 

effectively capture the non-linear interactions between different 

spectral bands, making them well-suited for land cover 

classification tasks (Hansen et al., 2013). However, the 

performance of MLP models is highly dependent on proper 

architecture design and hyperparameter selection, including the 

number of hidden layers, neuron configuration, activation 

functions, and regularization parameters (Maxwell et al., 2018). 

Suboptimal choices in these parameters can lead to poor 

generalization, overfitting, or slow convergence during training 

(Gómez et al., 2016). 

 

Recent advances in optimization algorithms have opened new 

possibilities for enhancing the performance of machine learning 

models in remote sensing applications (Çiçekli, 2022). Nature-

inspired optimization techniques, including Ant Colony 

Optimization (ACO), Whale Optimization Algorithm (WOA), 

Particle Swarm Optimization (PSO), Genetic Algorithm (GA), 

and Artificial Bee Colony (ABC), have shown promise for 

solving complex optimization problems in machine learning 

(Durmazbilek, 2021). These algorithms mimic natural processes 

such as biological evolution, swarm intelligence, and animal 

foraging behavior to efficiently explore high-dimensional 

parameter spaces (Seto et al., 2012). When applied to MLP 

hyperparameter tuning, these methods can potentially overcome 

the limitations of manual parameter selection and grid search 
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approaches, which are often time-consuming and 

computationally expensive (Esch et al., 2013). Several studies 

have demonstrated the effectiveness of these optimization 

techniques in improving the performance of machine learning 

models for various remote sensing applications (Pesaresi et al., 

2013). 

 

This study aims to advance the field of satellite image 

segmentation by conducting a comprehensive evaluation of 

optimized MLP models for Sentinel-2 land cover classification. 

Our research focuses on five key land cover classes: urban 

areas, agricultural fields, sparse vegetation, water bodies, and 

forests. We employ nine carefully selected Sentinel-2 spectral 

bands that capture distinct features of these land cover types, 

including the visible spectrum for basic land-water 

discrimination, red-edge bands for vegetation stress detection, 

and SWIR bands for soil moisture and mineral content analysis 

(Yalçın, 2022). The study systematically compares the 

performance of five nature-inspired optimization algorithms 

(ACO, WOA, PSO, GA, and ABC) in tuning MLP 

hyperparameters, with particular attention to their ability to 

improve classification accuracy while maintaining 

computational efficiency. 

 

The significance of this research extends beyond 

methodological advancements in image segmentation. Accurate 

land cover classification from Sentinel-2 imagery has important 

practical implications for numerous applications. In agriculture, 

it enables precision farming practices and yield prediction 

(Alonso et al., 2013). In forestry, it supports sustainable 

management and carbon stock estimation (Defourny et al., 

2019). For urban areas, it facilitates growth monitoring and 

infrastructure planning (Dronova, 2015). Moreover, the 

integration of optimized machine learning models into 

operational Earth observation systems can enhance our ability to 

monitor and respond to environmental changes at global scales 

(Li et al., 2020). 

 

2. Methodology 

2.1 Study Area and Dataset Description 

The study area encompasses a 3,670 km² region centered on 

Ankara, Turkey (39.93° N, 32.85° E), selected for its diverse 

land cover characteristics (McFeeters, 1996) (See Figure 1). 

This geographical location presents a complex mosaic of urban 

landscapes, agricultural zones, forested areas, and water bodies, 

making it an ideal testbed for evaluating land cover 

classification algorithms. The region experiences distinct 

seasonal variations in vegetation phenology, with average 

annual precipitation of 400 mm and temperatures ranging from 

−5 °C in winter to 30 °C in summer (Rouse et al., 1974). These 

climatic conditions create dynamic spectral signatures across 

different land cover types throughout the year, posing 

significant challenges for accurate image segmentation. 

 

For this research, we utilized Sentinel-2 Level-2A (L2A) 

surface reflectance products acquired on May 11, 2021, 

corresponding to the peak vegetation growth period in the 

region (Lu and Weng, 2007). The dataset was obtained from the 

Copernicus Open Access Hub. May imagery was specifically 

selected to capture optimal vegetation conditions while 

minimizing cloud interference, which typically increases during 

summer months in the study area (Otsu, 1979). The Level-2A 

processing includes atmospheric correction using the Sen2Cor 

algorithm, providing bottom-of-atmosphere reflectance values 

essential for accurate land cover classification (Sankur, 2004). 

 
 

Figure.1. Geographic location and boundaries of the study area 

(Ankara, Turkey). 

 

The ground truth dataset consists of 3,000 carefully annotated 

samples (600 per land cover class), distributed proportionally 

across the study area to ensure representative coverage. Sample 

collection followed a stratified random sampling approach, with 

reference data derived from multiple sources: (1) high-

resolution (0.5 m) aerial orthophotos from the Turkish National 

Mapping Agency, (2) field surveys conducted during the 

satellite overpass period, and (3) ancillary data from the 

CORINE Land Cover inventory (Pham et al., 2000).  

 

Five distinct land cover classes were identified and validated by 

domain experts: Urban/Built-up Areas: Including residential, 

commercial, and industrial zones with characteristic high 

reflectance in visible and SWIR bands (Canny, 1986). 

Agricultural Land: Predominantly cultivated fields with 

seasonal crops exhibiting unique phenological patterns. Sparse 

Vegetation: Grasslands and shrublands with intermittent 

vegetation cover. Water Bodies: Natural and artificial water 

features including rivers, lakes, and reservoirs. Dense Forest: 

Deciduous and coniferous woodlands with continuous canopy 

cover. 

 

The spatial distribution of samples was carefully designed to 

account for edge effects and transitional zones between land 

cover types, with a minimum buffer distance of 100 m 

maintained between samples to ensure spatial independence 

(Blaschke et al., 2014). Each sample corresponds to a 20 × 20 

pixel window (400 m² at 20 m resolution) to capture sufficient 

spatial context while maintaining class purity. The dataset was 

divided into training (70%), validation (15%), and test (15%) 

sets using a stratified random split to preserve class distribution 

across all subsets (Jain, 2010). This comprehensive dataset 

preparation ensures robust model training and evaluation while 

minimizing potential biases in the classification process. 

 

2.2 Model Architectures 

This study implements and compares multiple machine learning 

approaches for Sentinel-2 image segmentation, with particular 

emphasis on optimized neural network architectures. The 

selected models were specifically designed to address the 

unique challenges of multispectral satellite image classification, 

including high-dimensional spectral data, class imbalance, and 

spatial heterogeneity, while maintaining computational 

efficiency suitable for large-scale operational applications. Our 

architectural design philosophy prioritizes both classification 

accuracy and model interpretability, ensuring practical utility 

for remote sensing applications. 
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The foundation of our approach employs a Multi-Layer 

Perceptron (MLP) implemented using scikit-learn's 

MLPClassifier. The base architecture features an input layer 

with 9 nodes corresponding to the carefully selected Sentinel-2 

spectral bands (B2, B3, B4, B5, B6, B7, B8, B11, B12). Three 

hidden layers with 199 neurons utilize Rectified Linear Unit 

(ReLU) activation functions to model the complex non-linear 

relationships between spectral bands. The output layer consists 

of 5 nodes with softmax activation, representing our target land 

cover classes: urban areas, agricultural land, sparse vegetation, 

water bodies, and dense forest. To enhance generalization and 

prevent overfitting, we incorporate several regularization 

techniques including L2 penalty (α=0.97), inter-layer dropout 

(rate=0.3), batch normalization between hidden layers, and 

early stopping with a patience of 10 epochs. The model is 

trained using the Adam optimizer with an initial learning rate of 

0.001 and batch size of 32 samples, configurations determined 

through extensive preliminary experiments to establish a robust 

performance baseline. 

 

Building upon this foundation, we systematically enhanced the 

base MLP through hyperparameter optimization using five 

nature-inspired algorithms, each selected for their 

complementary strengths in navigating complex parameter 

spaces. The Ant Colony Optimization (ACO)-MLP variant 

incorporates pheromone-based feature weighting and optimizes 

the hidden layer configuration to 256-128-64 neurons with 

layer-specific dropout rates (0.4 → 0.2). The Whale 

Optimization Algorithm (WOA)-MLP implements dynamic 

neuron allocation through its distinctive bubble-net inspired 

search mechanism and encircling prey approach for adaptive 

learning rate adjustment. Particle Swarm Optimization (PSO)-

MLP utilizes swarm intelligence for weight initialization and 

velocity-controlled layer size optimization, while the Genetic 

Algorithm (GA)-MLP employs chromosomal encoding of 

network topology with tournament selection and single-point 

crossover operations. The Artificial Bee Colony (ABC)-MLP 

completes our ensemble with its unique employed bee phase for 

local search, onlooker bee phase for global exploration, and 

scout bee phase for architectural innovation. Each optimization 

algorithm was configured with a population size of 50 and 

executed for 100 iterations, with performance evaluated using 

rigorous 5-fold cross-validation on the training set to ensure 

robust parameter selection. 

 

2.3 Accuracy evaluation 

To comprehensively assess the segmentation performance, we 

employed seven robust evaluation metrics measuring different 

aspects of classification accuracy. The Overall Accuracy (OA) 

provided a global measure of correct classifications. For class-

specific evaluation, we computed Precision to measure 

prediction reliability and Recall to assess detection capability, 

combining them in the F1-Score (harmonic mean of precision 

and recall). Additionally, we incorporated Cohen's Kappa 

coefficient to account for chance agreement in classification and 

the Receiver Operating Characteristic Area Under Curve (ROC 

AUC) to evaluate the model's discrimination ability across all 

possible classification thresholds. 
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3. Results 

Type text single-spaced, with one blank line between 

paragraphs and following headings. Start paragraphs flush with 

left margin. 

 

3.1 Performance Comparison of Optimization Algorithms 

The experimental results demonstrate significant performance 

variations among the five nature-inspired optimization 

algorithms when applied to MLP-based Sentinel-2 image 

segmentation. As shown in Figure 2, the optimized MLP 

achieved superior performance (90.8% accuracy, 90.7% F1-

score, 0.883 Cohen's Kappa, and 0.981 ROC-AUC) compared 

to all nature-inspired approaches. This represents a 7.2% 

absolute improvement over the best-performing optimization 

algorithm (GA/BOA at 83.6% accuracy). 

 

 
 

Figure 2. Comparative analysis of classification performance 

between the optimized MLP and nature-inspired optimization 

approaches. 

 

Among the optimization techniques, Genetic Algorithm (GA) 

and Whale Optimization Algorithm (WOA) showed comparable 

performance (83.6% accuracy), followed closely by Artificial 

Bee Colony (ABC) at 83.5%. The Ant Colony Optimization 

(ACO) and Particle Swarm Optimization (PSO) 

implementations yielded slightly lower accuracy scores of 

81.9% and 81.6% respectively. Notably, all optimization 

algorithms improved upon the baseline MLP performance 

(81.9% accuracy), with GA showing the most consistent gains 

across all metrics (F1-score: 82.9%, Kappa: 0.793). 

 

The ROC-AUC values revealed particularly interesting insights, 

with both GA and WOA achieving 0.983 AUC despite their 

different optimization approaches. This suggests these 

algorithms may be better suited for handling class imbalance in 

the dataset. The confusion matrices (Figures 3.) further 

demonstrate that GA exhibited more balanced performance 

across all five land cover classes, while WOA showed superior 

detection of rare classes (e.g., water bodies with 92.3% recall 

compared to GA's 89.7%). 
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Figure 3. Confusion matrices showing class-specific 

classification performance for the MLP and optimized MLP 

using different optimization algorithms 

 

3.2 Class-wise Segmentation Accuracy 

The class-specific performance analysis revealed distinct 

segmentation capabilities across different land cover types, as 

evidenced by the confusion matrices. Water bodies achieved the 

highest classification accuracy (94.2% F1-score) due to their 

distinctive spectral signature in visible and near-infrared bands, 

with minimal confusion (<3%) with other classes. Forested 

areas showed similarly strong performance (91.6% F1-score), 

though occasional misclassification (6.2%) occurred with dense 

agricultural fields in the red-edge spectral regions. 

 

Urban areas presented more challenging segmentation, 

achieving an 87.4% F1-score, with primary confusion (9.8%) 

occurring with bare soil and sparse vegetation. This aligns with 

known spectral similarities between built-up surfaces and 

exposed ground in SWIR bands. Agricultural lands 

demonstrated 85.1% classification accuracy, showing 

symmetrical confusion (7.3% each way) with sparse vegetation 

- a finding consistent with the phenological stage during image 

acquisition. 

Notably, sparse vegetation showed the lowest performance 

(82.7% F1-score) among all classes, with 11.2% of samples 

misclassified as agricultural land. Detailed analysis revealed 

these errors predominantly occurred in transitional zones at field 

boundaries, suggesting the 20m spatial resolution may be 

insufficient to resolve fine-scale heterogeneity in these mixed-

pixel areas. 

 

The Cohen's Kappa coefficients for individual classes 

reinforced these patterns, ranging from 0.89 (water) to 0.81 

(sparse vegetation), indicating excellent to strong agreement 

with reference data across all categories. The per-class ROC-

AUC values remained consistently high (0.97-0.99), 

demonstrating robust discriminative ability for all land cover 

types despite the observed confusion between spectrally similar 

classes. 

 

Figure 4. visually compares the segmentation outputs of 

different optimization approaches applied to a representative 

test region containing all five land cover classes. The ground 

truth reference (a) reveals a complex landscape with irregular 

urban patches, agricultural fields, water bodies, and transitional 

vegetation zones. While the baseline MLP output (b) shows 

characteristic salt-and-pepper noise in urban areas and boundary 

confusion between crops and sparse vegetation, the optimized 

algorithms demonstrate distinct improvements. 

 

 
 

 

Figure 4. Side-by-side comparison of classification maps: (a) 

Reference data, (b) Baseline MLP, and (c-f) Optimized 

algorithm outputs, illustrating the progressive improvement in 

urban feature preservation, boundary delineation, and noise 

reduction test region containing all five land cover classes. 

 

4. Discussion 

The comprehensive evaluation of optimized MLP models for 

Sentinel-2 land cover classification yields several important 

insights with both theoretical and practical implications. Our 

results demonstrate that while all nature-inspired optimization 

algorithms improved upon the baseline MLP performance, the 

degree of improvement varied significantly depending on both 

the algorithm characteristics and specific land cover classes 

being classified. 
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The superior performance of the optimized MLP (90.8% 

accuracy) compared to algorithm-optimized versions (81.6-

83.6%) suggests that a hybrid approach combining algorithmic 

optimization with manual fine-tuning may be most effective for 

this application. This finding aligns with recent studies 

emphasizing the value of human expertise in final model 

refinement (Bezdek et al., 1984). The particularly strong 

performance on water bodies (94.2% F1-score) confirms the 

effectiveness of SWIR bands for water detection, consistent 

with previous research (Foody, 2002), while the challenges in 

urban area classification (87.4% F1-score) highlight the ongoing 

difficulties in distinguishing artificial surfaces from bare soil 

noted in the literature (Babaeian et al., 2019). 

 

The comparative analysis of optimization algorithms revealed 

several noteworthy patterns. GA and WOA's comparable 

performance (83.6% accuracy) despite their different 

approaches suggests that both evolutionary and swarm 

intelligence methods can be effective for this problem domain. 

However, GA's more balanced performance across all classes 

indicates it may be more robust to class imbalance an important 

consideration for operational land cover mapping. The relatively 

lower performance of PSO (81.6%) contrasts with some 

previous studies (Fauvel et al., 2008), possibly due to the high 

dimensionality of our feature space or the specific landscape 

characteristics of our study area. 

 

The class-specific accuracy patterns provide valuable insights 

for practical applications. The strong performance on forests 

and water bodies suggests these classes are well-suited for 

automated monitoring using our approach. However, the 

persistent confusion between agricultural areas and sparse 

vegetation (7.3%) indicates that additional features or higher 

resolution data may be needed for precise cropland mapping. 

This finding supports recent calls for incorporating temporal 

information or ancillary data in agricultural monitoring (Thanh 

Noi and Kappas, 2017). 

 

Future research directions emerging from this work include: (1) 

integration of multi-temporal Sentinel-2 data to capture 

phenological patterns, (2) testing on additional geographic 

regions to assess transferability, (3) incorporation of Sentinel-1 

SAR data for improved urban and agricultural mapping, and (4) 

development of hybrid models combining the strengths of 

different optimization approaches (Mountrakis et al., 2011). 

 

5. Conclusion 

This study presents a comprehensive evaluation of optimized 

MLP models for Sentinel-2 land cover classification, 

demonstrating significant advancements in segmentation 

accuracy through systematic hyperparameter optimization. Our 

results establish that the optimized MLP architecture achieves 

superior performance (90.8% overall accuracy, 0.883 Cohen's 

Kappa) compared to both baseline MLP and nature-inspired 

optimization approaches, while maintaining computational 

efficiency suitable for operational applications. The research 

provides several key contributions to the field of remote sensing 

image analysis: 

 

First, we have demonstrated that careful architectural design 

and hyperparameter tuning can yield substantial improvements 

in classification accuracy, with our optimized MLP showing a 

7.2% absolute increase over the best-performing nature-inspired 

algorithm. This finding emphasizes the continued importance of 

expert knowledge in model development, even when employing 

automated optimization techniques. 

 

Second, our comparative analysis of five optimization 

algorithms (ACO, WOA, PSO, GA, ABC) provides practical 

guidance for researchers implementing similar classification 

systems. The strong performance of evolutionary approaches 

(particularly GA) suggests these methods may be particularly 

well-suited for handling the class imbalance and spectral 

complexity inherent in land cover mapping applications. 

 

Third, the detailed class-specific accuracy analysis offers 

valuable insights for operational monitoring programs. The 

excellent performance on water bodies (94.2% F1-score) and 

forests (91.6%) confirms the effectiveness of our approach for 

these critical environmental features, while the identified 

challenges in urban and agricultural classification point to areas 

needing further research. 

 

The methodological framework developed in this study 

combining optimized MLP architectures with comprehensive 

accuracy assessment provides a replicable template for future 

remote sensing applications. Our results suggest several 

directions for future work, including: (1) integration of multi-

temporal data to capture seasonal dynamics, (2) testing of 

hybrid optimization strategies, and (3) extension to higher-

resolution datasets for improved boundary delineation. 
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