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Abstract:

Mobile LiDAR systems are increasingly utilized for high-precision mapping in dynamic environments, yet the presence of moving
objects introduces significant noise and distortions in the resulting point clouds. Addressing this challenge, this study proposes a
novel and efficient method for detecting and removing moving objects from mobile LiDAR point clouds. The approach involves an
initial separation of ground and non-ground points using the Cloth Simulation Filtering (CSF) algorithm, followed by density-based
clustering (DBSCAN) of non-ground points. By analyzing the temporal distribution of LiDAR points (gpstime) within each cluster
relative to ground points, clusters are classified as either static or dynamic. Dynamic clusters, corresponding to moving objects, are
then excluded from the dataset, yielding a refined point cloud that better represents the static environment. The method is
implemented in R using various open-source libraries and validated on high-traffic urban datasets acquired with the Riegl VMX-450
mobile LiDAR system. Experimental results demonstrate that the proposed pipeline effectively detects and removes dynamic
objects, thereby improving the accuracy and reliability of LIDAR-based mapping in complex, real-world scenarios.

1. INTRODUCTION

In recent years, mobile LiDAR (Light Detection and Ranging)
systems have become a cornerstone of 3D environmental map-
ping, supporting a wide array of applications such as autonom-
ous driving, terrain modeling, city planning, and environmental
assessment (Fang, 2014). These systems, equipped with laser
sensors on mobile platforms, can scan their surroundings with
high precision, collecting spatial coordinates and timestamps
for each data point. This results in the rapid generation of de-
tailed 3D point clouds. The efficiency and accuracy of mo-
bile LiDAR make it a superior alternative to traditional survey
methods, especially in dense or difficult-to-navigate urban land-
scapes.

However, significant challenges remain in the processing of
data collected via mobile LiDAR. Chief among these is the
presence of dynamic points caused by moving objects (e.g.,
vehicles, pedestrians, bicycles) encountered during data acquis-
ition. These dynamic points introduce noise and distortions
into the point cloud, potentially leading to errors in mapping
and analysis processes. This issue is particularly pronounced
in urban environments with high traffic density and pedestrian
movement, where dynamic points can substantially degrade
overall data quality, resulting in misclassification, segmentation
errors, or inaccurate modeling outcomes.

In the literature, various methods have been developed for the
detection and separation of dynamic objects in mobile LIDAR
data. In particular, Simultaneous Localization and Mapping
(SLAM)-based systems are widely employed in both academic
research and industrial applications (Peng et al., 2024). How-
ever, SLAM-based approaches often suffer from reduced map-
ping accuracy in highly dynamic environments due to artifacts
caused by moving objects. In addition, the literature includes
scan-comparison-based approaches and occupancy grid-based
methods for detecting dynamic points (Krishtopik and Yudin,

2023, Xiao et al., 2017). These methods rely on analyzing
differences between consecutive scans or on grid-based map-
ping of the point cloud (Schauer and Nuchter, 2018). Nev-
ertheless, such approaches generally require multiple over-
lapping scans and are associated with high computational
costs (Habibiroudkenar et al., 2024).

While techniques like DBSCAN (Ester et al., 1996) offer strong
clustering capabilities, they have rarely been combined with
ground segmentation and timestamp-based analysis in mobile
LiDAR workflows. In this study, we introduce a comprehens-
ive approach that brings these techniques together to automatic-
ally detect and remove dynamic points—particularly from road
surfaces—within point cloud datasets. By integrating ground
classification, density-based clustering, and temporal filtering,
our method delivers significant gains in detection precision and
computational efficiency. This leads to point clouds that are
cleaner and more suitable for tasks such as mapping and urban
modeling, with test results showing reliable performance across
various complex environments.

2. CHARACTERISTICS OF MOBILE LIDAR POINT
CLOUDS

Mobile LiDAR systems generate high-density and irregular
point clouds that represent the spatial position and physical
properties of target surfaces within a unified reference coordin-
ate system. Each point is typically recorded in the standard
LAS format, which includes three-dimensional coordinate data
(X, Y, Z), timestamp (GPS time), return intensity, classifica-
tion label, number of echoes, scan angle, and, if available, RGB
color values. LAS is the industry-standard format commonly
used for storing and processing LiDAR data.

In mobile LiDAR, laser pulses are emitted from a moving plat-
form, and the positions of points are determined by detecting
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the returning signals. A single laser pulse may generate mul-
tiple returns, especially in complex urban environments. The
first returns generally correspond to the top surfaces of objects,
while later echoes may come from lower layers or background
objects. This multi-return capability provides significant ad-
vantages in analyzing layered structures such as vegetation and
buildings.

Since point clouds do not form a continuous mathematical sur-
face, relationships between points are typically defined using
geometric and attribute-based methods. Consequently, the clas-
sification and filtering of mobile LiDAR data are often based on
features such as geometric descriptors, return intensity, and the
number of echoes. The resulting datasets are widely applied in
various domains, including urban modeling, infrastructure in-
ventory, dynamic object detection, and mapping.

3. METHODOLOGY
3.1 Data Attributes and Preprocessing

Mobile LiDAR systems typically produce raw point clouds in
which each point is structured to include spatial coordinates (X,
y, z) and the corresponding measurement time, commonly re-
ferred to as gpstime. This structure allows for the acquisition
of a rich, multi-dimensional dataset with both spatial and tem-
poral information.

The first step in processing raw LiDAR data involves data load-
ing and preprocessing. During the preprocessing stage, the fol-
lowing operations are typically performed:

e Data Import: Point cloud data in LAS/LAZ format is
loaded into memory using tools such as /idR (Roussel
and Auty, 2025), PDAL (PDAL Contributors, 2023), or
LAStools (Isenburg, 2023).

e Noise and Duplicate Filtering: Repeated points and out-
liers—often resulting from sensor inaccuracies or envir-
onmental interference—are removed using established fil-
tering techniques (Rusu and Cousins, 2011, Zhang et al.,
2016).

e Coordinate Transformation: The point cloud’s coordin-
ate reference system is converted, if needed, to match the
spatial framework of the study area.

e ROI Extraction: A subset of the data, corresponding to
the region of interest, is extracted to minimize unnecessary
computational load.

Effective preprocessing is fundamental to LiDAR data pro-
cessing pipelines, given the frequent presence of spurious
points caused by sensor-induced noise, GNSS errors, and tran-
sient objects. If such noise is not eliminated, it can propag-
ate significant inaccuracies into subsequent tasks such as seg-
mentation, object classification, and spatial analysis (Vossel-
man, 2004).

A key component of preprocessing involves the preliminary
separation of ground and non-ground points. Common meth-
ods at this stage include height-based thresholding, morpho-
logical operations, and advanced filtering techniques such as
Cloth Simulation Filtering (CSF) (Zhang et al., 2016). Return
intensity (intensity) and related attributes may offer valuable

information for the detection of noise, particularly in multi-
return datasets.

In this study, the preprocessing phase—including data import
and cleaning—was performed rigorously. Both spatial and tem-
poral attributes of each LiDAR point were considered to pre-
pare a high-quality dataset for the subsequent analysis stages,
including density-based clustering and temporal segmentation.

3.2 Ground and Non-Ground Separation

Ground segmentation was performed in the first stage using
the Cloth Simulation Filtering (CSF) algorithm (Zhang et al.,
2016), a robust method recognized in the literature for separ-
ating ground surfaces from buildings and vegetation in com-
plex LiDAR point clouds. CSF operates by inverting the point
cloud and simulating the effect of gravity on a virtual cloth
layer. As the cloth settles onto the lowest sections of the in-
verted surface, it conforms to the terrain, allowing the ground
surface to be approximated. Subsequently, the original point
cloud is thresholded against this surface to classify ground and
non-ground points. Siniflandirma siireci temel olarak asagidaki
sekilde ifade edilebilir:

G =p € P |isGround(p) = True, NG =P\G (1)

In this formulation, P represents the full set of LiDAR points,
G denotes the identified ground points, and NG refers to the
remaining non-ground points, including buildings, vegetation,
and vehicles.

The CSF algorithm is particularly advantageous due to its sens-
itivity to terrain variability, scalability to large datasets, and tun-
able parameters that allow for application across diverse topo-
graphies. Its efficacy has been widely demonstrated in urban,
forest, and complex natural environments (Saritag and Kaplan,
2023). In this study, CSF was employed to isolate ground
points, thereby producing a refined data subset optimized for
the detection of dynamic objects in the point cloud.

3.3 Clustering Non-Ground Points

The non-ground points (NG) were clustered using the DB-
SCAN (Density-Based Spatial Clustering of Applications with
Noise) algorithm (Ester et al., 1996) to detect scene objects and
potentially dynamic entities. DBSCAN is frequently applied in
LiDAR data processing due to its capability to handle complex
and irregular spatial structures. It can automatically identify
dense regions (clusters) in the data while effectively separating
sparse or irrelevant points as noise (Ma et al., 2019).

The core principle of DBSCAN is to group together points
that are within a specified distance threshold (¢) and have at
least a minimum number of neighbors (min Pts). This enables
the identification of high-density areas as meaningful clusters,
whereas boundary or sparsely distributed points are marked as
noise.

In this step, the clustering of non-ground points can be ex-
pressed as follows:

C = cluster(NG), C={C1,Cs,...,Cy} 2)
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Here, C denotes the set of all clusters, and each C; potentially
represents an object or object group within the scene.

The main advantages of using the DBSCAN algorithm on
LiDAR point clouds are as follows:

o It does not require the number of clusters to be specified in
advance; clusters are identified automatically.

e It can successfully distinguish objects with varying dens-
ities and irregular distributions.

e Noise and outlier points can be effectively detected and
excluded, leading to more accurate analysis results.

Density-based clustering algorithms, such as DBSCAN, have
been widely employed for the segmentation and automatic ex-
traction of urban objects including vehicles, pedestrians, and
trees (Ferrara et al., 2018). In this study, DBSCAN was applied
to non-ground points to identify candidate object clusters, each
potentially representing a distinct scene entity. These clusters
were subsequently utilized for temporal analysis aimed at dy-
namic object detection.

3.4 Timestamp-Based Dynamic Point Classification

In LiDAR systems, GPS time is assigned to each LiDAR return
by appending a timestamp to the signal data. The internal clock
of each LiDAR sensor is synchronized with a GPS time source
to ensure temporal accuracy.

In this study, for each cluster C; in the point cloud, the distribu-
tion of the timestamp attribute (gpstime) is analyzed and com-
pared with that of the ground points located within the same 2D
spatial boundary. This comparison plays a critical role in de-
termining whether the object represented by the cluster is static
or dynamic within the scene.

Points reflected from static objects are generally captured
within a time interval similar to that of surrounding ground
points. In contrast, points from moving (dynamic) objects tend
to be concentrated within a shorter or distinct time interval. The
core innovation of the proposed method lies in exploiting this
temporal discrepancy to distinguish dynamic objects from static
ones. The core of this analysis is based on the temporal differ-
ence between the cluster and the ground points, which is for-
mulated as follows:

At; = |max(gpstime(C;)) — min(gpstime(G))|  (3)

Where:

e max(gpstime(C})): the maximum timestamp among the
points in cluster C},

e min(gpstime(G)): the minimum timestamp among the
ground points within the same spatial boundary.

Thus, At; represents the temporal deviation between the cluster
and the surrounding ground points.

The classification of clusters is performed as follows:

e Static: If the value of At; is below a predefined threshold
and the time distribution of the cluster resembles that of
the ground points, the cluster is classified as static.

e Dynamic: Otherwise, the cluster is considered dynamic
(i.e., belonging to a moving object).

Clusters identified as dynamic are removed from the dataset to
obtain a cleaner point cloud that represents only the static en-
vironment. This can be expressed mathematically as:

Patatic = P\ {p € C; | dynamic(C;) = True} 4)

At this stage, the timestamp-based analysis performed for each
cluster enables the automatic and accurate removal of dynamic
objects from the point cloud. As a result, a refined dataset is
obtained that exclusively represents static elements in the scene.

3.5 Algorithmic Implementation

The proposed pipeline in this study consists of two main al-
gorithmic components. The first algorithm covers the prepro-
cessing stage, which includes clustering and spatial alignment
operations. The second algorithm represents the classifica-
tion stage, where cluster classification is performed based on
timestamp density analysis.

In the preprocessing stage, the raw point cloud data is loaded,
duplicate and noisy points are removed, and ground and non-
ground points are separated. Subsequently, clusters are gener-
ated over the non-ground points using the DBSCAN algorithm,
and the spatial boundaries of each cluster are identified and
aligned accordingly. These steps ensure the extraction of mean-
ingful candidate objects for analysis and enhance the accuracy
of subsequent processing.

In the classification stage, the timestamp (gpstime) distribution
of each cluster is analyzed. Based on the distribution pattern of
measurement times within a cluster, it is automatically determ-
ined whether the cluster corresponds to a static (stationary) or
dynamic (moving object) entity.

All processing steps were carried out within the R programming
environment (R Core Team, 2025), utilizing open-source and
robust packages for data loading, processing, clustering, and
visualization tasks.

The main R packages used in this study are listed in Table 1.

Through the use of these packages, it was possible to efficiently
process large-scale LiDAR datasets and present the results in a
clear and visually rich manner. Thanks to the flexibility of the
R environment, the proposed workflow can be easily adapted to
different datasets and offers a practical solution for real-world
applications.

The algorithm for the detection and removal of moving ob-
jects consists of two main steps: the first is pre-processing
(Algorithm 1), and the second is filtering dynamic points (Al-
gorithm 2).

The presented algorithm performs spatio-temporal classifica-
tion of clusters within a mobile LiDAR point cloud using the
gpstime (GPS timestamp) attribute. For each detected non-
ground cluster, it first extracts the associated ground and non-
ground points, merges them, and sorts the combined set by their
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Package  Description

1idR Provides comprehensive functions for
LiDAR data processing, filtering, and
analysis.

sf Enables manipulation and analysis of
vector-based spatial data.

dplyr Facilitates data manipulation and
transformation tasks.

ggplot2 Offers advanced and customizable
data visualizations.

plotly Supports the creation of interactive
and dynamic plots.

dbscan Implements density-based clustering

algorithms for data segmentation.

concaveman Generates concave polygons from
point clusters.

rlas Reads and writes LiDAR data in LAS
format.

RCSF Applies the Cloth Simulation Filtering
(CSF) algorithm for ground point ex-
traction.

Z00 Provides tools for time series data ana-
lysis and management.

pracma Includes mathematical and statistical

analysis functions.

data.table Offers fast and efficient data pro-
cessing for large datasets.

caret Facilitates training, evaluation, and
comparison of machine learning al-
gorithms.

pROC Provides tools for drawing and analyz-

ing ROC curves.

Table 1. Main R packages used in the study and their
functionalities. All packages are available at
https://cran.r-project.org/.

Algorithm 1 Mobile LiDAR Pre-Processing Pipeline

1. Set 1idR threads to
(set_lidr_threads(0))
: Load LAS data; if EPSG missing, assign EPSG:5255
: if RCSF package available then
Remove duplicates
Classify noise using ivf (5,5)
Classify ground using CSF (sloop_smooth=TRUE,
cloth_resolution=1, time_step=0.65, rigidness=3)
: end if
8: Extract non-ground points (Classification==0) and
ground points (Classification==2)
9: Apply DBSCAN to non-ground (eps=0.5, minPts=10);
keep clusters >10 points
10: Save nonground.las and ground.las
11: Compute concave hulls for each
(ratio=0.05)
12: Clip ground points by cluster boundaries and assign
ClusterID
13: Save clipped_ground_clusters.las

maximum available

A

U

valid cluster

timestamps. It then computes rolling statistics (mean and vari-
ance) and estimates density curves for both point types to ana-
lyze their temporal distribution. By detecting the number of
peaks and comparing the time span ranges of ground (g_range)
and non-ground (ng_range) points, the algorithm applies a rule-
based decision system: clusters are classified as dynamic if
their time span is narrower and peak count is lower than the
surrounding ground; as static if both have similar peak struc-
tures; or as unclassified otherwise. The results are saved in CSV

Algorithm 2 Cluster Classification via gpstime

1: for each ClusterID in non-ground clusters do

2 Extract corresponding ground and non-ground points

3: Merge; sort by gpstime

4 Compute rolling mean(k=4) and
rolling var (width=4) per type

5: Estimate density curves for ground and non-ground

6: Detect peaks using npeaks=4 for each type

7 Calculate time spans: g_range and ng_range

8: if ng_range < g_range and gp > ngp then

9: Classify as Dynamic Non-Ground

10: else if gp = ngp and g_range > ng_range then
11: Classify as Dynamic Non-Ground

12: else if gp > 2 and ngp > 2 then

13: Classify as Static Non-Ground

14: else

15: Classify as Unclassified

16: end if

17: end for

18: Save cluster classification results to CSV

format for further processing or visualization, enabling effect-
ive filtering of moving objects from the scene.

Step | Parameter Value / Description
1 EPSG Code Assign- | 5255 (TURKEY_ITRF96)
ment
1 Noise Filtering ivf(5, 5)
1 Ground Classification | Cloth Simulation Filtering
Method (CSF)
1 CSF: Slope Smooth TRUE
1 CSF: Class Threshold | 0.1
1 CSF: Cloth Resolution | 1
1 CSF: Time Step 0.65
1 CSF: Rigidness 3
2 DBSCAN eps 0.5 meters
2 DBSCAN minPts 10 points
2 Cluster Filtering Clusters with size > 10
points
3 Concave Hull Ratio 0.05 (5%)
4 gpstime Rolling Mean | 4 points
Window
4 gpstime Rolling Vari- | 4 points
ance Window
4 Density Peak Detec- | npeaks =4
tion
4 Classification Decision | Based on time span
Rule comparison (g-range,
ng-range) and  peak
counts (gp, ngp)
5 LAS Update Classific- | Class 3 = Static Non-
ation Labels Ground, Class 4 = Dy-
namic Non-Ground

Table 2. Parameters Used in the Classification Pipeline by Step
Number

The parameters used in the implementation of the proposed
methods are presented in Table 2.

3.6 Accuracy Metrics for Point Cloud Classification

To quantitatively evaluate the performance of the dynamic ob-
ject detection and classification algorithm, several standard ac-
curacy metrics commonly used in the literature were adopted.
These include:
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e Overall Accuracy (OA): The ratio of correctly classified
points (both static and dynamic) to the total number of
points. It provides a general indication of classification
performance.

e Precision: Indicates how many of the points predicted as
dynamic are actually dynamic. It is calculated as the ratio
of true positives (TP) to all predicted positives (TP + FP).

e Recall: Measures how many of the actual dynamic points
were correctly detected by the algorithm. It is the ratio of
true positives (TP) to all actual positives (TP + FN).

e F1-Score: The harmonic mean of precision and recall; it
provides a balanced measure that considers both false pos-
itives and false negatives.

o Intersection over Union (IoU): The ratio of the intersec-
tion to the union between the predicted and actual dynamic
(or static) point sets. It is frequently used for segmentation
performance assessment.

The following formulas (5-9) were used for the computation of
these metrics:

ON= T P TN T 5)
Precision = Tijl—iPFP ©)
Recall = TPI—;—iPFN o
U= T T EN ©

Where:

e TP (True Positive): Points correctly classified as dynamic,
e TN (True Negative): Points correctly classified as static,

e F'P (False Positive): Static points incorrectly classified as
dynamic,

e I'N (False Negative): Dynamic points incorrectly classi-
fied as static.

These metrics allow for a quantitative assessment of the al-
gorithm’s ability to both accurately detect dynamic objects and
preserve static scene elements. In particular, metrics such as
F1-Score and IoU provide a more comprehensive evaluation in
cases of class imbalance and during object segmentation tasks.

4. CASE STUDY

4.1 Study Area and Application Scenario

In this study, to evaluate the performance of the proposed al-
gorithm, a test site was selected in the city center of Konya,
Tiirkiye—an area representative of typical urban morphology.
The selected test area covers an urban region approximately 70
meters in length and 3776 m? in size, and includes a variety

of object types and urban elements (Figure 1). The study area
meets the requirements of a typical urban mapping application
in terms of object diversity, moving object density, and land use
variation. Since the analysis primarily focuses on road surfaces,
the presence of moving vehicles in the dataset was particularly
important.

As part of the project, the data collected from the field enabled
the creation of a digital model of the roadway and surround-
ing urban surface. In particular, the study provided a valuable
framework for evaluating advanced filtering techniques aimed
at road surface analysis and integration with urban Geographic
Information Systems (GIS).

+ a)

Figure 1. a) Location of the study area on the map (Leaflet) and
the raw point cloud data visualized in grayscale based on
intensity values.

A summary of the LiDAR data specifications used in this study
is presented in Table 3.

Property Value

File Format LAS v1.2 (Point Data Format: 1)
Coordinate System TUREF / TM33 (EPSG:5255)
Area 3,776 m*

Total Number of Points 5,198,227

Point Density 1,376.65 points/m?

Pulse Density 1,349.38 pulses/m*

Scanning Type Terrestrial (Mobile)

Height (Z) Range 1082.99 m - 1107.341 m

X Coordinate Range 457524.6 — 457586.5

Y Coordinate Range 4205192 — 4205269

GPS Time Type GPS Week Time

Scale Factors X:0.00025, Y: 0.00025, Z: 0.00025
Offset Values X: 457543, Y: 4205208, Z: 0

Number of Returns 1st: 5,095,277 2nd: 94,813
289

Day 211/ Year 2025
LASzip DLL 3.4 r3 (191111)

3rd: 7,848  4th:

Date of Data Creation
Generating Software

Table 3. Basic Properties of the LAS Dataset Used
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4.2 3D Measurement and Data Acquisition Process

A mobile mapping system (MMS) equipped with a 3D LiDAR
sensor and integrated camera was deployed on a vehicle to
enable efficient acquisition of high-density point cloud data
at urban-compliant speeds (20-30 km/h). Each LiDAR point
included spatial coordinates along with attributes such as
timestamp (gpstime) and return intensity. The proposed dy-
namic object detection algorithm was applied to this dataset
through a three-stage process: ground filtering, density-based
clustering, and timestamp-based classification. This workflow
produced a refined point cloud representing only static urban
elements, suitable for applications in digital mapping, urban
planning, and infrastructure management.

The classification of points in the LAS (LASer Format) files
follows the standard class codes defined by the ASPRS (Amer-
ican Society for Photogrammetry and Remote Sensing). How-
ever, there is no predefined standard class code for “dynamic
objects”. For the purposes of this study, static objects were
labeled as Class 3, and dynamic objects as Class 4, to en-
sure clarity and ease of processing.

4.2.1 RIEGL VMX-450 Mobile LiDAR System The
RIEGL VMX-450 is an advanced mobile mapping system with
high precision and fast data acquisition capabilities. It is spe-
cifically designed for capturing detailed three-dimensional (3D)
point cloud and image data in large and complex environments
such as urban areas, highways, railways, and major infrastruc-
ture projects. Further details about the system are provided in
Table 4.

This system was chosen for the study due to its ability to gen-
erate dense and high-quality point cloud data efficiently.

Feature Description

Dual LiDAR | Two RIEGL VQ-450 laser scanners en-

Scanners abling wide scan angle and high-density
data collection

High Scan Rate | Up to 1.1 million points per second

Positioning Integrated GNSS/IMU system for ac-

curate georeferencing

Camera Integ- | High-resolution RGB panoramic ima-

ration ging

Modular Easy mounting on various vehicles,

Design quick field setup

Software Sup- | Compatible with RiPROCESS, RiPRE-

port CISION, and RiACQUIRE for pro-
cessing and QA/QC

Table 4. Key Features of the RIEGL VMX-450 Mobile LiDAR
System

5. RESULTS

The classification performance of the proposed method is sum-
marized in Tables 5 and 6. The confusion matrix (Table 5)
demonstrates a balanced and effective classification capability,
with the model correctly identifying 85,285 static and 74,726
dynamic instances. Misclassifications were relatively limited,
with 9,223 static points incorrectly labeled as dynamic and
7,185 dynamic points misclassified as static. As detailed in
Table 6, both classes achieved high performance metrics. The

static class obtained a precision of 92.23%, recall of 90.24%,
and Fl1-score of 91.22%, while the dynamic class achieved a
precision of 89.01%, recall of 91.23%, and F1-score of 90.11%.
Additionally, the Intersection over Union (IoU) values reached
83.87% for static and 82.00% for dynamic classes, indicating
strong spatial reliability. The overall classification accuracy of
90.70% further underscores the robustness and generalizability
of the proposed approach.

Actual / Predicted Static Dynamic
Static 85285 9223
Dynamic 7185 74726

Table 5. Confusion Matrix of Classification Results

Metric Static Class (%) Dynamic Class (%)
Precision 92.23 89.01
Recall 90.24 91.23
F1-Score 91.22 90.11
ToU 83.87 82.00

Overall Accuracy 90.70 %

Table 6. Classification accuracy metrics for the proposed method

The results clearly indicate that the model performs in a well-
balanced and reliable manner across both static and dynamic
categories. The relatively high IoU values further reflect
the spatial coherence of the predictions, which is particularly
commendable given the inherent challenges of time-dependent
point cloud classification. Achieving over 90% performance re-
inforces the potential of the proposed method for real-world de-
ployment scenarios and practical applications in dynamic scene
understanding.

Figure 2 illustrates the three-stage classification pipeline ap-
plied to LiDAR point cloud data. In Figure 2a, the ground ex-
traction step is shown. Points classified as ground (Class = 2)
are visualized in blue, while non-ground points (Class = 1) are
rendered in grayscale. The Cloth Simulation Filtering (CSF)
method successfully distinguished ground surfaces from elev-
ated objects. Notably, features such as trees, vehicles, lamp
posts, and the overpass are clearly identified as non-ground ele-
ments.

Figure 2b presents the DBSCAN clustering results, where non-
ground points are segmented into discrete clusters, each de-
noted by a unique ClusterID and represented in distinct col-
ors. Ground points remain visible in the background in gray-
scale for contextual reference. The DBSCAN algorithm effect-
ively grouped semantically meaningful objects such as trees,
vehicles, traffic signs, lamp posts, and the overpass into separate
clusters. Noise and minor irrelevant components were filtered
out during post-processing.

Finally, Figure 2c shows the dynamic vs. static object classific-
ation. Here, points are assigned to the following classes based
on the Classification attribute: 1 — Unclassified/Other, 2
— Ground, 3 — Static Non-Ground (e.g., fixed structures),
and 4 — Dynamic Non-Ground (e.g., moving vehicles, ped-
estrians). Trees and infrastructure elements such as lamp
posts and signs were predominantly classified as static, while
vehicles were accurately identified as dynamic. The timestamp-
based density and variance analysis employed in this final stage
proved highly effective in distinguishing between dynamic and
static entities.
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Figure 2. Three-stage classification workflow applied to LIDAR
point cloud data. (a) Initial ground classification using the CSF
(Cloth Simulation Filtering) algorithm. Blue indicates ground
points (Class 2). (b) Object segmentation of non-ground points
using the DBSCAN clustering algorithm. Clusters are
color-coded based on their ClusterID, with each cluster
representing a potential object group (e.g., trees, vehicles, lamp
posts). (c) Final classification based on gpstime-based density
and variance analysis. Green: ground (Class 2), red: dynamic
objects (Class 3), orange: static objects (Class 4), blue:
other/unclassified points.

6. DISCUSSION AND LIMITATIONS

The results highlight the robustness and practical applicability
of the proposed method in challenging and dynamic urban scen-
arios. The integration of timestamp analysis with ground filter-
ing and object clustering enables reliable detection of moving
objects and achieves performance levels comparable to widely
used occupancy grid and scan-matching techniques reported in
the literature (Zeng et al., 2024).

The distinction between static and dynamic objects is based on
the analysis of peak values in the timestamp (gpstime) density
distributions. This approach assumes a regular movement pat-
tern during scanning, and its generalizability may be limited in
datasets with irregular trajectories or excessive scan overlap.

The classification process relies on fixed and pre-defined
threshold values (e.g., number of peaks, time range compar-
ison), which may need to be re-calibrated for different envir-
onments, sensor systems, or datasets. Each cluster is evaluated
independently, without considering its spatial or temporal re-
lationship with neighboring clusters. This may result in the
loss of potentially valuable contextual information that could
enhance the detection of dynamic objects.

The accuracy metrics were computed based on a manually
labeled . las file serving as ground truth. However, the quality,
completeness, and object diversity of this reference data should
ideally be more detailed. Incomplete or imbalanced labeling
may impact the reliability of the evaluation. Nevertheless, since
the Balanced Accuracy exceeded 90%), it can be concluded that
the model was not significantly affected by class imbalance in
this particular study.

Clusters containing fewer than 10 points were excluded from
the analysis. This design choice may lead to reduced sensitivity
to small dynamic objects such as pedestrians or bicycles, which
could be missed due to their smaller point cloud footprint.

The current study proposes a fully rule-based method and does
not incorporate statistical modeling or deep learning approaches
capable of learning complex patterns between dynamic and
static objects. Parameters of the DBSCAN algorithm (such as
eps and minPts), as well as those of the CSF ground filtering
method, were manually tuned for this specific dataset. These
parameters may not yield equivalent performance under differ-
ent LiDAR resolutions or scanning speeds.

The implemented method operates as a batch-processing
pipeline and is not yet designed for integration with real-time
SLAM or live LiDAR streaming. However, the framework
could theoretically be adapted for real-time analysis with ap-
propriate architectural modifications.

Currently, the timestamp-based classification uses only peak
count and distribution width. In future work, integrating
more advanced time series analysis techniques—such as Four-
ier transforms, wavelet decomposition, or change-point detec-
tion—could improve robustness and interpretability.

Finally, the current rule-based decision trees used for dynam-
ic/static classification could be extended with supervised ma-
chine learning algorithms or deep learning models to enable
more generalizable and automated labeling systems (Zhang et
al., 2020, Wang et al., 2024).

In future studies, adaptive parameter tuning based on point
density, scene structure, and data variability should be explored
to improve the flexibility and performance of algorithms like
DBSCAN and CSE.

7. CONCLUSION

In this study, an integrated method has been proposed for de-
tecting and removing moving objects from road surfaces in mo-
bile LiDAR point clouds. The approach combines ground clas-
sification, density-based clustering (DBSCAN), and timestamp
density analysis. The proposed workflow involves the separa-
tion of ground and non-ground points using the CSF algorithm,
followed by clustering of non-ground points and temporal dis-
tribution analysis for each cluster.
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Experimental results demonstrated that the method achieved
high accuracy (90.70% OA) and balanced performance (F-
score > 90%, IoU > 82%), indicating its effectiveness in fil-
tering out dynamic objects. The use of GPS time (gpstime) as
a feature proved to be a strong discriminator for dynamic/static
classification, especially in dense and complex urban environ-
ments.

Future work will focus on enhancing the approach with ad-
aptive parameter optimization, advanced time series analysis
techniques, and supervised or deep learning-based classifica-
tion methods. Additionally, integration with real-time mobile
mapping systems will further expand the method’s potential for
field applications.
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