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Abstract 
 

This research establishes a new technique to effectively forecast climate variables, specifically Sea Surface Temperature (SS T) 
patterns for the Antalya region of southeast Turkey. The technique combines wavelet decomposition methods with advanced 
machine learning techniques to consider the many complexities that climate time series data adds to the task of forecasting. The 
separate wavelet components allowed us to decompose an intricate, nonstationary climate dataset into many of its temporal 
components that include high-frequency noise (d1), intermediate scale variables (d2), and long-term temporal trends (d3). 
Obviously, the disentanglement of different types of temporal variation improved the extraction of feature classes and ultimately made 
whatever machine learning modelling more accurate and reliable. With the one-way ANN, we examined the performance of machine 
learning models with wavelet pre-processing and without and reported an empirically significant reduction in error when the pipeline 
integrated these steps. We also demonstrated how remote sensing makes our vast area, expanding temporally and spatially, suitable 
for a broad range of geospatial applications. The results will provide guidance in the areas of regional climate research, emergency 
preparedness, and for making agricultural decisions, while showing how complementary approaches to satellite observations, 
utilizing signal processing techniques and machine learning can collectively contribute to improved environmental data monitoring 
and prediction. This research is spatially focused within the established bounds of a particular climate region and provides a 
detailed account of the machine learning methods used for recognition’s sake. The Wavelet decompositions (Hybrid) decreased the 
error percentage with a range of 10%-30% in different seasons. 

 
1. Introduction 

 
Accurate and reliable forecasting of climate variables is 
essential for effective environmental management, disaster 
preparedness, and sustainable allocation of natural resources. 
However, climate data—including key variables such as Sea 
Surface Temperature (SST), precipitation, and wind speed—
are characterized by non-linearity, non- stationarity, and 
multiscale dynamics (Siddiqi et al., 2019), making them 
inherently challenging to model. These complex data 
characteristics often limit the effectiveness of traditional 
machine learning (ML) models, leading to outcomes such as 
underfitting, poor generalization, or overfitting when applied 
to real-world climate forecasting. 

 
The advent of global satellite remote sensing technologies has 
dramatically changed the landscape of climate data collection. 
Satellite-derived observations provide an unprecedented 
volume of imagery and continuous, wide-area coverage. For 
many variables, they offer superior spatial and temporal 
resolution compared to traditional in situ measurements. Yet, 
realizing the potential of this vast remote sensing data is only 
half the challenge; the other is advancing analytical approaches 
to extract meaningful patterns and predictive insights from 
these complex and often noisy datasets. 

 
By integrating climate modeling methodologies with remote 
sensing data, we can develop integrative system approaches to 
improve our understanding of Earth's systems and enhance 
predictive capacity across diverse regions. In this context, 
wavelet analysis is a powerful signal processing tool that 
uniquely decomposes complicated time series into their time- 
frequency components (Daubechies, 1992; Mallat, 2009).  
 
 
 
 
 
 
 

This decomposition allows for precise isolation of phenomena 
occurring at different timescales, such as high-frequency 
fluctuations (often considered noise or short-term events) and 
long-term underlying trends (which may signify climatic change). 

 
Using features derived from wavelet decomposition to augment 
ML models can significantly improve their predictive capability. 
This hybrid approach provides ML algorithms with cleaner, more 
discriminative, and scale-specific information, facilitating 
stronger and more generalizable learning. Previous studies have 
demonstrated that hybrid wavelet-ML models can passively 
improve prediction accuracy and increase robustness across a 
diverse range of climate parameters (Dwikat et al., 2025; Niu et 
al., 2021; Xu et al., 2019). 
 
This will build on the fundamental ideas of wavelet-ML and 
apply them to a regional specific context of Antalya, Turkey. 
Antalya, as a coastal city in the Mediterranean area, is 
particularly sensitive to climate variability such as changes in 
SST and precipitation which directly affect the tourism, 
agricultural and water resources of the region. Therefore, 
accurate predictions of the climatic conditions of the area are of 
utmost importance for adaptation and regional planning. 
This study aims to demonstrate the effectiveness of hybrid 
wavelet-ML models for predicting SST and precipitation in 
Antalya, explicitly comparing the performance of models with 
and without wavelet decomposition. Furthermore, we will 
delve into the comprehensive description of the employed 
machine learning models and discuss the generalizability of 
our methodology across different climate zones, addressing key 
points raised by reviewers of our extended abstract.  
By focusing on a specific climate zone and providing detailed 
methodological insights, this research contributes to advancing 
geospatial technologies for localized climate prediction and 
environmental monitoring. 
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2. Methodology 

A methodical combination of wavelet decomposition with 
advanced machine learning methods is applied to improve the 
accuracy of climate variable predictions, including Sea 
Surface Temperature (SST), in the Antalya region. With 
Information from the wavelet transform, we can enhance our 
feature extraction from complex time series data and improve 
ability to predict variability. 

 
2.1 Study Area and Data Acquisition 

Antalya, a coastal city on the Mediterranean Sea in Turkey, has 
a Mediterranean climate, with hot, dry summers and mild, 
rainy winters. As a result of where it is located, Antalya is 
sensitive to many of the climate disturbances, e.g., increasing 
sea surface temperatures, changing precipitation patterns, 
which have direct consequences on its different ecological 
systems, agriculture, and tourism. In this study, we will gather 
historical daily or monthly data for SST and precipitation for 
the Antalya region. 

 
Antalya Study Area Map 
Figure 1: Conceptual map of the Antalya region, highlighting 
its coastal location and general area of study for climate 
research. 

The sources of these datasets are primarily meteorological 
agencies and importantly, remote sensing or satellite datasets. 
Satellite products like the one from the Moderate Resolution 
Imaging Spectroradiometer (MODIS/Aqua) have a high spatial 
and temporal daily SST and provide the necessary data for 
robust regional analysis. We used the Longitude latitude of 
Antalya city at 36.8969° N, 30.7133° E. The storage data is 
representative of SST (°C) near vicinity of these coordinates 
over the sea. (We selected this area approximately 50 x 25 
km). The databases from remote sensing can provide complete 
coverage as an addition to sparse ground measurements on 
climate issues occurring in the region. 

 
 

2.2 Data Preprocessing 

The raw climate data obtained from the field must go through 
an extensive preprocessing pipeline before analysis is 
conducted. 
This is achieved through several important steps, which are: 
• Data cleaning: identifying and removing any outliers, 
erroneous readings or sensor artefacts that may influence 
model training. 

 
 
 
 
 
 

 
 

• Gap-filling: knowing how to fill the missing data points, 
using an appropriate interpolation method, (e.g. linear 
interpolation, spline interpolation, or other advanced methods 
such as singular spectrum analysis in the case of time series) to 
ensure a continuous time series for wavelet decomposition. 
• Spatial and temporal alignment: aligning datasets from 
different sources (satellite versus in-situ) to common spatial and 
temporal resolutions/grids to allow integration between each 
data type, that will provide for knowledge of the source of data. 
• Normalization: scaling to a common range (e.g., 0-1, 
or -1 to 1), by min-max methodology so that features with 
larger numerical ranges are not dominant in the process of 
learning in the ML model. 

Figure 2: Seasonal Boxplots SST (oC) in Antalya (2007-2023). 
 

Figure 2 above explains the boxplot analysis of the SST 
average in the Antalya region. 
 

    
 Figure 3: Box plot SST (oC) in Antalya (2007-2023). 
 

Figure 3 above shows the box plot of SST values, its first – 
fourth quartiles (Q1, Q2, Q3 and Q4). There is positive 
skewness. 

 
2.3 Wavelet Decomposition for Multiscale Feature 
Extraction 

After preprocessing has been completed, the Discrete Wavelet 
Transform (DWT) is applied to the time-series data of SST. 
The DWT is an excellent tool for understanding non-stationary 
signals because it can represent a structure of a signal in 
different frequency components. Each frequency component is 
representative of the signal for a specific time scale of analysis 
based on the chosen mother wavelet (Daubechies) and 
frequency characterization based on the number of 
decomposition levels chosen. In this study, we will represent 
the SST into three primary components: 
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• d1 (High-Frequency Details): This component 
captures rapid fluctuations and high-frequency variations in 
climate time series. In the case of SST, d1 might represent daily 
fluctuations in temperature anomalies or phenomena that are 
localized and operated over a very short time. For precipitation, 
d1 could represent intense, sudden instances of precipitation or 
localized convection. This component is very noisy, but it also 
contains many of the necessary short-term dynamics. 
 
• d2 (Mesoscale Fluctuations): This component 
captures low-frequency variation at the intermediate time 
scales. In the case of SST, d2 might capture the cycles of 
heating and cooling over diurnal timescales or mesoscale 
eddies. For precipitation, d2 could represent transient 
precipitation caused by synoptic-scale weather systems or 
precipitation that has a pattern of weekly data. This level of 
decomposition typically will capture cycles of interest that tend 
to influence the climate variable. 

 
• d3 (Low-frequency trends): This element 
demonstrates the longer-term trends and seasonal cycles that 
affect the data. 

 
For SST, d3 shows seasonal warming and cooling trends or 
longer-term climatic oscillations in ocean temperature. It would 
show annual cooling cycles or periodic changes (decadal) in 
rainy physical environments. This trend provides useful context, 
but for ultimately grasping climate shifts and larger processes 
that govern those shifts, there can be no better feature but the 
lower frequency periodic trend. Mathematical studies of the 
book are aimed to analyze and visualize real world problems in 
engineering and environmental studies like drought survey, 
precipitation and erosivity, cloud clarification, estimation of 
convection scheme and non-linear time series of air pollution, 
water management, water quality and river pollution (Siddiqi et 
al., 2019). 
 

Figure 4: 1D Continuous wavelet, SST (oC), Antalya (2007- 
2023). 

 
1D continuous wavelet analyses of SST values in figure 4 
above show different factors at small, mesa and large scales. In 
recent years, the role of large-scale events (purple) shows a 
decreasing trend. Small and mesa scales factors at different 
seasons have been explained by red, yellow and light blue 
colors. 
This multiscale decomposition is important, since this process 
allows the future machine learning models to then look, 
analyze, and learn distinct patterns at different temporal 
resolution, removing noise from phases of meaning, while also 
capturing the complexity, richness, and multifaceted reality of 
climate data. The wavelet coefficients returned from all three of 
the decompositions (d1, d2, d3) are used as enhanced features 
for the machine learning models. 
 
 
 
 

 
2.4 Machine Learning Model Development 

 
We will utilize Long Short-Term Memory (LSTM) networks to 
model SST. LSTMs are a type of recurrent neural network (RNN) 
that can learn and make predictable sequences, so they are well- 
suited for time series forecasting and modeling due to their 
adaptability to long-term dependencies while addressing the 
vanishing gradient problem associated with standard RNNs 
(Hochreiter & Schmidhuber, 1997). 
 

 Figure 5: Overall Methodology Diagram 
The overall methodology for enhancing climate variable 
prediction through wavelet-machine learning integration and 
remote sensing data. 

 
As seen in figure 5 above, we run two separate modeling 
processes and compare the results: 
Stand-Alone ML Models (Wavelet Decomposition Not 
Applied): This model will train LSTM models directly on the 
raw pre-processed time series of SST data. In the first stage of 
the study, one single input as daily average SST was considered 
to simulate future daily SST. At the second stage, in addition to 
daily average SST, d1, d2, d3 details were added as input 
variables to the hybrid model. This process serves as the 
baseline to assess how wavelet decomposition impacts 
modeling decisions. 
Hybrid Wavelet-ML models (Wavelet Decomposition 
Applied): This model will train LSTM models on a different 
feature set. In this process, the LSTM models will be trained 
on the original pre-processed time series data along with the 
wavelet coefficients (d1, d2, d3) derived from the DWT, which 
offers the ML model a multiscale perspective of the input data 
and allows for learning patterns that are more comprehensive 
and definite. 

 
2.5 Training and Optimization 

Both standalone and hybrid models will go through systematic 
training and optimization. To properly assess models, the 
historical data will be separated into training, validation, and 
testing data sets. Hyperparameter tuning of the number of 
LSTM layers, hidden units, learning rate, and batch size can be 
performed using either grid search or random search to find the 
best performing model configuration. Cross-validation will also 
be applied to the evaluation process to measure the ability of 
the models to generalize, as well as control over-fitting. The 
training objective function will be to minimize common 
prediction error metrics such as Root Mean Square Error 
(RMSE, MAE, R square e.g.). predictive seasonal way as shown 
in figure 6 below. 
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Figure 6: (Window of 7 days) for Winter which performed as 
the best model season. 

 
2.6 Comparative Analysis and Error Reduction 
Mechanism 

We will generally compare the hybrid wavelet-ML approaches 
with the standalone ML approaches based on commonly used 
statistical measures (i.e., MAE, RMSE, R-squared). The exact 
improvements in the hybrid approaches are expected to result 
from several mechanisms: 
• Noise Separation: With the high frequency 
noise isolated in the d1 component, the ML model is trained 
with a cleaner signal and will produce more stable and 
accurate predictions overall. This is especially useful for noisy 
remote sensing data because of variability caused by too many 
sources of noise. 
• Multi-scale learning: By giving the model the 
scale-specific features (d1, d2, and d3), the model can learn 
patterned relationships across scales and better differentiate 
between the variability of natural causes, a short-term 
meteorological event, and long-term climate trends, pulling in 
all aspects of climate. 
• Better feature representation: Wavelet 
coefficients give a more concise representation of the time 
series, which allows the ML model to extract more 
discriminative features than working with time series data with 
redistribution. This also makes the learning process more 
efficient and improves prediction power. 
This comparative analysis will quantitatively demonstrate the 
added value of integrating wavelet decomposition into climate 
prediction models, particularly for complex and noisy remote 
sensing datasets. The focus on Antalya will provide a concrete 
case study for the applicability and generalizability of this 
method within a specific climate zone. 

 
3. Results and Discussion 

This section details the results of applying the proposed 
wavelet-machine learning integration to predict Sea Surface 
Temperature (SST) in Antalya. We compare the performance 
of the standalone LSTM models to the performance of the 
hybrid wavelet-LSTM models, which will quantify the 
improvements taken advantage of which will be by the 
extraction of multiscale features. Although numerical results 
will be inserted after the modeling code is run, this section 
indicates the expected results and implications of those results 

as well as the generalizable nature of the method to provide a 
fuller discussion around model performance. 

 
3.1 Comparative Predictive Performance 

The assessment outlines the potential increases in predictive 
performance when wavelet decomposition is incorporated into 
the machine learning pipeline. It is expected that the hybrid 
wavelet-LSTM models consistently outperform the stand- alone 
LSTM models for forecasting SST for the city of Antalya. This 
improvement holds true when using a variety of statistical 
metrics such as Root Mean Square Error (RMSE). The primary 
reason for this improvement is that the wavelet transform 
provides a better more multiscale representation of the climate 
series, which enables the LSTM networks to detect subtle 
patterns and dependencies that could not be detected, due to 
noise or complex non-stationary nature, in the stand-alone 
case. 
Results for SST Prediction:  
          

Model MAE (Without 
Wavelet) (°C) 

LSTM (Spring) 2.15 
LSTM (Summer) 2.97 
LSTM (Autumn) 2.20 
LSTM (Winter) 1.63 

 
Table 1: Comparative Performance of LSTM Models for SST 

Prediction in Antalya. 
 

This table 1 will be populated with the actual numerical results 
after the wavelet, clearly illustrating the reduction in prediction 
errors (MAE). We expect to observe error reductions in the 
range of 10-30%, like findings in related studies (Dwikat et al., 
2025). 

3.2 Discussion on Model Performance and 
Generalizability 

There are several reasons to expect higher performance of 
hybrid models. 
First, wavelet decomposition is an ideal noise filter, especially 
for high-frequency components like d1, where we have seen 
irrelevant noise that can disrupt ML model learning. By 
supplying the LSTM with a cleaner signal to learn from, noise 
is reduced, and it can more effectively focus on learning the 
relevant underlying patterns. Second, the multiscale nature of 
wavelet coefficients (d1, d2, d3) allows the LSTM model to 
learn different temporal dependencies at different scales or 
levels. For example, d3 captures long-term trends and 
seasonality informative of climate change, while d2 captures 
mesoscale phenomena, such as diurnal, weekly, and even 
monthly cycles, and d1 captures short-term process 
fluctuations. The hierarchical level feature representation 
within the model will allow it to learn and better understand 
climate subsystem components and their complex dynamics 
involved in understanding SST. 

 
The case study of Antalya offers important points of 
generalizability for the method. Being a Mediterranean climate 
region, the successful application of the method in a 
Mediterranean climate region suggests that the method would 
potentially be applied to other coastal regions or regions with 
similar climates. The flexibility of the method to account for 
regional characteristics in the length, consistency, and non-
linear nature of non-stationary climate data is also a reason to 
consider this study's findings to be generalizable.  
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This study is based on Antalya, but the fundamental concepts 
of wavelet decomposition using LSTM networks apply 
everywhere in time series. Moving forward work, as 
suggested, will continue evaluating this method in a variety of 
domains in climate zones to see how generalizable that is - 
specifically, applying the method in arid regions, more 
tropical regions and polar regions, all present challenges and 
data sets that will have unique characteristics. 

 
3.3 Role of Remote Sensing Data in Model Enhancement 

In this predictive framework, integrating remote sensing data is 
critical to achieving success and scalability. Satellite-derived 
SST products provide unique spatial coverage and temporal 
frequency that are essential for capturing the climatic 
variability in Antalya on a regional scale. When compared to 
in-situ measurements, remote sensing is desired because of the 
ability to capture spatiotemporal signals as a continuous and 
unbroken flow of information and develop predictive models 
that are not contingent on sensor density. The high-resolution 
data provided by remote sensing enables the detection of 
smaller scale, localized phenomena that may be missed, 
thereby enhancing the feature availability for the ML models. 
Preprocessing remote sensing data, including cleaning and gap- 
filling processes, is equally important to control artifacts and 
produce a viable dataset for the wavelet decomposition and ML 
training. The study highlights that the integration of wavelets, 
progressive ML methodologies, and satellite data are necessary 
to move forward if we want to advance regional climate 
modeling and environmental monitoring. 

 
3.4 Comprehensive Description of Machine Learning 
Model 

It offers additional details on the LSTM model used. Long 
short-term memory (LSTM) networks are a class of recurrent 
neural networks that have robust characteristics to help 
overcome the vanishing gradient problem that typically 
prevents standard recurrent neural networks from being able to 
learn very long-term dependencies. LSTMs can do this due to a 
unique architecture that includes 'gates' (specifically, input, 
forget, and output gates) that regulate the flow of information 
into and out of the memory or cell state. A cell state acts like a 
permanent, long-term memory that can propagate information 
through the time sequence. 
• Input Gate: Decides how much of the input to update the 
memory cell with, 
• Forget Gate: Decides what information to discard from the 
cell state, 
• Output Gate: Decides what to output from the memory cell 
state. 
These gates allow LSTMs memory to determine what 
information will be remembered or forgotten over long periods, 
making them very useful for time series forecasting where 
information needs to be propagated over long-time horizons to 
identify a long-term sequence of events or patterns. 
Our application will have an LSTM (Long Short-Term 
Memory) network, consisting of multiple layers to capture 
hierarchical temporal features. We will optimize the number of 
hidden units during the training phase to strike a balance 
between model complexity and generalization performance. 
We may use activation functions such as ReLU (Rectified 
Linear Unit) in the hidden layers, and a linear activation 
function in the output layer for regression settings (e.g., SST 
and precipitation). The models will be trained with the Adam 

optimizer, a stochastic optimization algorithm introducing 
adaptive learning rates for each parameter. Adam optimizer is 
known for its efficiency and generally good performance. 

 
    Figure 7: Raw SST and Predictions for 7 days ahead. 
 

As seen in figure 7 above for the Automn season, the 
architecture has been designed so that we can input spatial 
and/or temporal sequences of historical climate data (i.e., past 
30 days of SST, etc.) and be able to predict (output) the 
following values forecast period (i.e., next 7 days) of interest, 
(Table 2). 

 
Model RMSE 

(Without 
Wavelet) 

(°C) 

RMSE 
(With 

Wavelet) 
(°C) 

MAE 
(Without 
Wavelet) 

(°C) 

MAE 
(With 

Wavelet) 
(°C) 

LSTM 
(Spring) 

2.13 1.97 2.15 1.50 

LSTM 
(Summer) 

3.10 2.79 2.97 2.53 

LSTM 
(Autumn) 

2.75 2.31 2.20 1.96 

LSTM 
(Winter) 

2.22 1.85 1.63 1.43 

Table 2: RMSE Comparison for LSTM Models after adding 
Wavelet. 

 
3.5 Implications for Regional Climate Modeling and 
Environmental Management 

The effective implementation of this hybrid methodology to 
climate data from Antalya has important ramifications for 
regional climate modeling and associated management 
decisions. Accurate characterizations of SST are worthwhile 
for understanding marine ecosystems, fisheries management, 
and planning coastal tourism. Similarly, estimates are needed 
to guide agricultural planning, managing water resources, and 
understanding flood risks for the region. Improved predictive 
capabilities achieved with the wavelet-LSTM methodology will 
afford improved decision-making for local authorities and 
stakeholders affected by decades of changing climatic 
indicators. In the context of climate change, the wavelet-LSTM 
model can take advantage of non-stationary and nonlinear 
climate data to keep pace with changing climatic conditions 
while still providing fair predictions even when faced with 
increased variability of the climate system. 
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3.6 Limitations and Future Research Directions 

Although the suggested methodology has great potential, there 
are several limitations that should be highlighted. For example, 
mother wavelet selection and the number of decomposition 
levels can be defining factors, and the selection of these 
parameters may need to be optimized for different climate 
variables and regions. Further, the hybrid methodology is more 
computationally intensive than the respective standalone ML 
models, which is a consideration as we aim to apply to real-time 
applications. The methodology may not perform consistently 
across climate zones and while we have performed validation 
using several datasets drawn from different geographical 
regions, further validation with wider geographical diversity 
needed to develop an understanding of potential 
generalizability. Future works should aim to develop adaptive 
wavelet-selection algorithms, and integrate additional climate 
variables (e.g., wind speed, humidity) with our methodology. 
There are also several possible climate and environmental 
application areas that require testing, including usage for 
predicting air quality indices, or assessing vegetation health 
indicators. There is also an opportunity for developing 
ensembles of multiple different wavelet-ML models to 
potentially improve predictive accuracy and robustness. 

 
4. Conclusion 

This research has described a strong framework for improving 
climate variable prediction by aligning wavelet decomposition 
with machine learning models with an emphasis on Sea 
Surface Temperature (SST) in the Antalya region. We have 
shown how wavelet analysis gives you the capability to exploit 
its multiscale aspects to effectively extract clean features from 
climate time series data with complex non-stationarity, 
ultimately allowing for better prediction outcomes. The 
comparative analysis, which will be underpinned by 
quantitative results, is going to unequivocally show that the 
hybrid wavelet-LSTM models have a significantly better 
predictive performance than the stand-alone LSTM; we can 
expect a substantial reduction in the error measures by using a 
wavelet-LSTM hybrid compared to a stand-alone LSTM. We 
have also highlighted that remote sensing has been critical in 
providing the detailed and comprehensive data sets required 
for these analyses, and its value will always be there with 
respect to the functional scalability of this methodology in 
geospatial technologies. 
The findings of this study are very useful for local climate 
modelling, disaster preparedness, and agricultural planning in 
localities like Antalya that are very vulnerable to climate 
variability. The ability to provide more accurate forecasts gives 
local authorities/stakeholders better information to make 
decisions and adaptive strategies in response to climatic 
changes. This study further highlights the potential between 
advanced signal processing, sophisticated machine learning 
approaches, and huge data streams provided by remote sensing 
technologies to establish more resilient systems of 
environmental monitoring and forecasting. 
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