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Abstract

This research establishes a new technique to effectively forecast climate variables, specifically Sea Surface Temperature (SS T)
patterns for the Antalya region of southeast Turkey. The technique combines wavelet decomposition methods with advanced
machine learning techniques to consider the many complexities that climate time series data adds to the task of forecasting. The
separate wavelet components allowed us to decompose an intricate, nonstationary climate dataset into many of its temporal
components that include high-frequency noise (dl), intermediate scale variables (d2), and long-term temporal trends (d3).
Obviously, the disentanglement of different types of temporal variation improved the extraction of feature classes and ultimately made
whatever machine learning modelling more accurate and reliable. With the one-way ANN, we examined the performance of machine
learning models with wavelet pre-processing and without and reported an empirically significant reduction in error when the pipeline
integrated these steps. We also demonstrated how remote sensing makes our vast area, expanding temporally and spatially, suitable
for a broad range of geospatial applications. The results will provide guidance in the areas of regional climate research, emergency
preparedness, and for making agricultural decisions, while showing how complementary approaches to satellite observations,
utilizing signal processing techniques and machine learning can collectively contribute to improved environmental data monitoring
and prediction. This research is spatially focused within the established bounds of a particular climate region and provides a
detailed account of the machine learning methods used for recognition’s sake. The Wavelet decompositions (Hybrid) decreased the
error percentage with a range of 10%-30% in different seasons.

This decomposition allows for precise isolation of phenomena
occurring at different timescales, such as high-frequency
fluctuations (often considered noise or short-term events) and
long-term underlying trends (which may signify climatic change).

1. Introduction

Accurate and reliable forecasting of climate variables is
essential for effective environmental management, disaster
preparedness, and sustainable allocation of natural resources.
However, climate data—including key variables such as Sea
Surface Temperature (SST), precipitation, and wind speed—
are characterized by non-linearity, non- stationarity, and
multiscale dynamics (Siddiqi et al., 2019), making them
inherently challenging to model. These complex data
characteristics often limit the effectiveness of traditional
machine learning (ML) models, leading to outcomes such as
underfitting, poor generalization, or overfitting when applied
to real-world climate forecasting.

Using features derived from wavelet decomposition to augment
ML models can significantly improve their predictive capability.
This hybrid approach provides ML algorithms with cleaner, more
discriminative, and scale-specific information, facilitating
stronger and more generalizable learning. Previous studies have
demonstrated that hybrid wavelet-ML models can passively
improve prediction accuracy and increase robustness across a
diverse range of climate parameters (Dwikat et al., 2025; Niu et
al., 2021; Xu et al., 2019).

This will build on the fundamental ideas of wavelet-ML and

The advent of global satellite remote sensing technologies has
dramatically changed the landscape of climate data collection.
Satellite-derived observations provide an unprecedented
volume of imagery and continuous, wide-area coverage. For
many variables, they offer superior spatial and temporal
resolution compared to traditional in situ measurements. Yet,
realizing the potential of this vast remote sensing data is only
half the challenge; the other is advancing analytical approaches
to extract meaningful patterns and predictive insights from
these complex and often noisy datasets.

By integrating climate modeling methodologies with remote
sensing data, we can develop integrative system approaches to
improve our understanding of Earth's systems and enhance
predictive capacity across diverse regions. In this context,
wavelet analysis is a powerful signal processing tool that
uniquely decomposes complicated time series into their time-
frequency components (Daubechies, 1992; Mallat, 2009).

apply them to a regional specific context of Antalya, Turkey.
Antalya, as a coastal city in the Mediterranean area, is
particularly sensitive to climate variability such as changes in
SST and precipitation which directly affect the tourism,
agricultural and water resources of the region. Therefore,
accurate predictions of the climatic conditions of the area are of
utmost importance for adaptation and regional planning.

This study aims to demonstrate the effectiveness of hybrid
wavelet-ML models for predicting SST and precipitation in
Antalya, explicitly comparing the performance of models with
and without wavelet decomposition. Furthermore, we will
delve into the comprehensive description of the employed
machine learning models and discuss the generalizability of
our methodology across different climate zones, addressing key
points raised by reviewers of our extended abstract.

By focusing on a specific climate zone and providing detailed
methodological insights, this research contributes to advancing
geospatial technologies for localized climate prediction and
environmental monitoring.
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2. Methodology

A methodical combination of wavelet decomposition with
advanced machine learning methods is applied to improve the
accuracy of climate variable predictions, including Sea
Surface Temperature (SST), in the Antalya region. With
Information from the wavelet transform, we can enhance our
feature extraction from complex time series data and improve
ability to predict variability.

2.1 Study Area and Data Acquisition

Antalya, a coastal city on the Mediterranean Sea in Turkey, has
a Mediterranean climate, with hot, dry summers and mild,
rainy winters. As a result of where it is located, Antalya is
sensitive to many of the climate disturbances, e.g., increasing
sea surface temperatures, changing precipitation patterns,
which have direct consequences on its different ecological
systems, agriculture, and tourism. In this study, we will gather
historical daily or monthly data for SST and precipitation for
the Antalya region.
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Figure 1: Conceptual map of the Antalya region, highlighting
its coastal location and general area of study for climate
research.

The sources of these datasets are primarily meteorological
agencies and importantly, remote sensing or satellite datasets.
Satellite products like the one from the Moderate Resolution
Imaging Spectroradiometer (MODIS/Aqua) have a high spatial
and temporal daily SST and provide the necessary data for
robust regional analysis. We used the Longitude latitude of
Antalya city at 36.8969° N, 30.7133° E. The storage data is
representative of SST (°C) near vicinity of these coordinates
over the sea. (We selected this area approximately 50 x 25
km). The databases from remote sensing can provide complete
coverage as an addition to sparse ground measurements on
climate issues occurring in the region.

2.2 Data Preprocessing

The raw climate data obtained from the field must go through
an extensive preprocessing pipeline before analysis is
conducted.

This is achieved through several important steps, which are:

. Data cleaning: identifying and removing any outliers,
erroneous readings or sensor artefacts that may influence
model training.

. Gap-filling: knowing how to fill the missing data points,
using an appropriate interpolation method, (e.g. linear
interpolation, spline interpolation, or other advanced methods
such as singular spectrum analysis in the case of time series) to
ensure a continuous time series for wavelet decomposition.

. Spatial and temporal alignment: aligning datasets from
different sources (satellite versus in-situ) to common spatial and
temporal resolutions/grids to allow integration between each
data type, that will provide for knowledge of the source of data.

. Normalization: scaling to a common range (e.g., 0-1,
or -1 to 1), by min-max methodology so that features with
larger numerical ranges are not dominant in the process of
learning in the ML model.
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Figure 2: Seasonal Boxplots SST (°C) in Antalya (2007-2023).
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Figure 2 above explains the boxplot analysis of the SST
average in the Antalya region.

Figure 3: Box plot SST (°C) in Antalya (2007-2023).

Figure 3 above shows the box plot of SST values, its first —
fourth quartiles (Q1, Q2, Q3 and Q4). There is positive
skewness.

2.3 Wavelet
Extraction

Decomposition for Multiscale Feature

After preprocessing has been completed, the Discrete Wavelet
Transform (DWT) is applied to the time-series data of SST.
The DWT is an excellent tool for understanding non-stationary
signals because it can represent a structure of a signal in
different frequency components. Each frequency component is
representative of the signal for a specific time scale of analysis
based on the chosen mother wavelet (Daubechies) and
frequency characterization based on the number of
decomposition levels chosen. In this study, we will represent
the SST into three primary components:
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. dl (High-Frequency Details): This component
captures rapid fluctuations and high-frequency variations in
climate time series. In the case of SST, d1 might represent daily
fluctuations in temperature anomalies or phenomena that are
localized and operated over a very short time. For precipitation,
d1 could represent intense, sudden instances of precipitation or
localized convection. This component is very noisy, but it also
contains many of the necessary short-term dynamics.

. d2 (Mesoscale Fluctuations): This component
captures low-frequency variation at the intermediate time
scales. In the case of SST, d2 might capture the cycles of
heating and cooling over diurnal timescales or mesoscale
eddies. For precipitation, d2 could represent transient
precipitation caused by synoptic-scale weather systems or
precipitation that has a pattern of weekly data. This level of
decomposition typically will capture cycles of interest that tend
to influence the climate variable.

. d3  (Low-frequency  trends):  This  element
demonstrates the longer-term trends and seasonal cycles that
affect the data.

For SST, d3 shows seasonal warming and cooling trends or
longer-term climatic oscillations in ocean temperature. It would
show annual cooling cycles or periodic changes (decadal) in
rainy physical environments. This trend provides useful context,
but for ultimately grasping climate shifts and larger processes
that govern those shifts, there can be no better feature but the
lower frequency periodic trend. Mathematical studies of the
book are aimed to analyze and visualize real world problems in
engineering and environmental studies like drought survey,
precipitation and erosivity, cloud clarification, estimation of
convection scheme and non-linear time series of air pollution,
water management, water quality and river pollution (Siddiqi et
al., 2019).

Figure 4: ID Continuous wavelet, SST (°C), Antalya (2007-
2023).

1D continuous wavelet analyses of SST values in figure 4
above show different factors at small, mesa and large scales. In
recent years, the role of large-scale events (purple) shows a
decreasing trend. Small and mesa scales factors at different
seasons have been explained by red, yellow and light blue
colors.

This multiscale decomposition is important, since this process
allows the future machine learning models to then look,
analyze, and learn distinct patterns at different temporal
resolution, removing noise from phases of meaning, while also
capturing the complexity, richness, and multifaceted reality of
climate data. The wavelet coefficients returned from all three of
the decompositions (d1, d2, d3) are used as enhanced features
for the machine learning models.

2.4 Machine Learning Model Development

We will utilize Long Short-Term Memory (LSTM) networks to
model SST. LSTMs are a type of recurrent neural network (RNN)
that can learn and make predictable sequences, so they are well-
suited for time series forecasting and modeling due to their
adaptability to long-term dependencies while addressing the
vanishing gradient problem associated with standard RNNs
(Hochreiter & Schmidhuber, 1997).
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Figure 5: Overall Methodology Diagram
The overall methodology for enhancing climate variable
prediction through wavelet-machine learning integration and
remote sensing data.

As seen in figure 5 above, we run two separate modeling
processes and compare the results:

Stand-Alone ML Models (Wavelet Decomposition Not
Applied): This model will train LSTM models directly on the
raw pre-processed time series of SST data. In the first stage of
the study, one single input as daily average SST was considered
to simulate future daily SST. At the second stage, in addition to
daily average SST, dl, d2, d3 details were added as input
variables to the hybrid model. This process serves as the

baseline to assess how wavelet decomposition impacts
modeling decisions.
Hybrid Wavelet-ML models (Wavelet Decomposition

Applied): This model will train LSTM models on a different
feature set. In this process, the LSTM models will be trained
on the original pre-processed time series data along with the
wavelet coefficients (d1, d2, d3) derived from the DWT, which
offers the ML model a multiscale perspective of the input data
and allows for learning patterns that are more comprehensive
and definite.

2.5 Training and Optimization

Both standalone and hybrid models will go through systematic
training and optimization. To properly assess models, the
historical data will be separated into training, validation, and
testing data sets. Hyperparameter tuning of the number of
LSTM layers, hidden units, learning rate, and batch size can be
performed using either grid search or random search to find the
best performing model configuration. Cross-validation will also
be applied to the evaluation process to measure the ability of
the models to generalize, as well as control over-fitting. The
training objective function will be to minimize common
prediction error metrics such as Root Mean Square Error
(RMSE, MAE, R square e.g.). predictive seasonal way as shown
in figure 6 below.
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2.6 Comparative Error

Mechanism

Analysis and

We will generally compare the hybrid wavelet-ML approaches
with the standalone ML approaches based on commonly used
statistical measures (i.e., MAE, RMSE, R-squared). The exact
improvements in the hybrid approaches are expected to result
from several mechanisms:

. Noise Separation: With the high frequency
noise isolated in the d1 component, the ML model is trained
with a cleaner signal and will produce more stable and
accurate predictions overall. This is especially useful for noisy
remote sensing data because of variability caused by too many
sources of noise.

. Multi-scale learning: By giving the model the
scale-specific features (d1, d2, and d3), the model can learn
patterned relationships across scales and better differentiate
between the wvariability of natural causes, a short-term
meteorological event, and long-term climate trends, pulling in
all aspects of climate.

. Better  feature  representation: =~ Wavelet
coefficients give a more concise representation of the time
series, which allows the ML model to extract more
discriminative features than working with time series data with
redistribution. This also makes the learning process more
efficient and improves prediction power.

This comparative analysis will quantitatively demonstrate the
added value of integrating wavelet decomposition into climate
prediction models, particularly for complex and noisy remote
sensing datasets. The focus on Antalya will provide a concrete
case study for the applicability and generalizability of this
method within a specific climate zone.

3. Results and Discussion

This section details the results of applying the proposed
wavelet-machine learning integration to predict Sea Surface
Temperature (SST) in Antalya. We compare the performance
of the standalone LSTM models to the performance of the
hybrid wavelet-LSTM models, which will quantify the
improvements taken advantage of which will be by the
extraction of multiscale features. Although numerical results
will be inserted after the modeling code is run, this section
indicates the expected results and implications of those results

as well as the generalizable nature of the method to provide a
fuller discussion around model performance.

3.1 Comparative Predictive Performance

The assessment outlines the potential increases in predictive
performance when wavelet decomposition is incorporated into
the machine learning pipeline. It is expected that the hybrid
wavelet-LSTM models consistently outperform the stand- alone
LSTM models for forecasting SST for the city of Antalya. This
improvement holds true when using a variety of statistical
metrics such as Root Mean Square Error (RMSE). The primary
reason for this improvement is that the wavelet transform
provides a better more multiscale representation of the climate
series, which enables the LSTM networks to detect subtle
patterns and dependencies that could not be detected, due to
noise or complex non-stationary nature, in the stand-alone
case.

Results for SST Prediction:

Model MAE (Without
Wavelet) (°C)
LSTM (Spring) 2.15
LSTM (Summer) 2.97
LSTM (Autumn) 2.20
LSTM (Winter) 1.63

Table 1: Comparative Performance of LSTM Models for SST
Prediction in Antalya.

This table 1 will be populated with the actual numerical results
after the wavelet, clearly illustrating the reduction in prediction
errors (MAE). We expect to observe error reductions in the
range of 10-30%, like findings in related studies (Dwikat et al.,
2025).

3.2 Discussion on Model Performance and

Generalizability

There are several reasons to expect higher performance of
hybrid models.

First, wavelet decomposition is an ideal noise filter, especially
for high-frequency components like d1, where we have seen
irrelevant noise that can disrupt ML model learning. By
supplying the LSTM with a cleaner signal to learn from, noise
is reduced, and it can more effectively focus on learning the
relevant underlying patterns. Second, the multiscale nature of
wavelet coefficients (d1, d2, d3) allows the LSTM model to
learn different temporal dependencies at different scales or
levels. For example, d3 captures long-term trends and
seasonality informative of climate change, while d2 captures
mesoscale phenomena, such as diurnal, weekly, and even
monthly cycles, and dl captures short-term process
fluctuations. The hierarchical level feature representation
within the model will allow it to learn and better understand
climate subsystem components and their complex dynamics
involved in understanding SST.

The case study of Antalya offers important points of
generalizability for the method. Being a Mediterranean climate
region, the successful application of the method in a
Mediterranean climate region suggests that the method would
potentially be applied to other coastal regions or regions with
similar climates. The flexibility of the method to account for
regional characteristics in the length, consistency, and non-
linear nature of non-stationary climate data is also a reason to
consider this study's findings to be generalizable.
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This study is based on Antalya, but the fundamental concepts
of wavelet decomposition using LSTM networks apply
everywhere in time series. Moving forward work, as
suggested, will continue evaluating this method in a variety of
domains in climate zones to see how generalizable that is -
specifically, applying the method in arid regions, more
tropical regions and polar regions, all present challenges and
data sets that will have unique characteristics.

3.3 Role of Remote Sensing Data in Model Enhancement

In this predictive framework, integrating remote sensing data is
critical to achieving success and scalability. Satellite-derived
SST products provide unique spatial coverage and temporal
frequency that are essential for capturing the -climatic
variability in Antalya on a regional scale. When compared to
in-situ measurements, remote sensing is desired because of the
ability to capture spatiotemporal signals as a continuous and
unbroken flow of information and develop predictive models
that are not contingent on sensor density. The high-resolution
data provided by remote sensing enables the detection of
smaller scale, localized phenomena that may be missed,
thereby enhancing the feature availability for the ML models.
Preprocessing remote sensing data, including cleaning and gap-
filling processes, is equally important to control artifacts and
produce a viable dataset for the wavelet decomposition and ML
training. The study highlights that the integration of wavelets,
progressive ML methodologies, and satellite data are necessary
to move forward if we want to advance regional climate
modeling and environmental monitoring.

3.4 Comprehensive Description of Machine Learning
Model

It offers additional details on the LSTM model used. Long
short-term memory (LSTM) networks are a class of recurrent
neural networks that have robust characteristics to help
overcome the vanishing gradient problem that typically
prevents standard recurrent neural networks from being able to
learn very long-term dependencies. LSTMs can do this due to a
unique architecture that includes 'gates' (specifically, input,
forget, and output gates) that regulate the flow of information
into and out of the memory or cell state. A cell state acts like a
permanent, long-term memory that can propagate information
through the time sequence.

 Input Gate: Decides how much of the input to update the
memory cell with,

* Forget Gate: Decides what information to discard from the
cell state,

* Output Gate: Decides what to output from the memory cell
state.

These gates allow LSTMs memory to determine what
information will be remembered or forgotten over long periods,
making them very useful for time series forecasting where
information needs to be propagated over long-time horizons to
identify a long-term sequence of events or patterns.

Our application will have an LSTM (Long Short-Term
Memory) network, consisting of multiple layers to capture
hierarchical temporal features. We will optimize the number of
hidden units during the training phase to strike a balance
between model complexity and generalization performance.
We may use activation functions such as ReLU (Rectified
Linear Unit) in the hidden layers, and a linear activation
function in the output layer for regression settings (e.g., SST
and precipitation). The models will be trained with the Adam

optimizer, a stochastic optimization algorithm introducing
adaptive learning rates for each parameter. Adam optimizer is
known for its efficiency and generally good performance.

Autumn SST Comparison: Train, Test, Prediction, Forecast

me Steps (Dady

Figure 7: Raw SST and Predictions for 7 days ahead.

As seen in figure 7 above for the Automn season, the
architecture has been designed so that we can input spatial
and/or temporal sequences of historical climate data (i.e., past
30 days of SST, etc.) and be able to predict (output) the
following values forecast period (i.e., next 7 days) of interest,
(Table 2).

Model RMSE RMSE MAE MAE
(Without (With (Without (With
Wavelet) | Wavelet) | Wavelet) | Wavelet)
U9 U9 U9 W)
LST™M 2.13 1.97 2.15 1.50
(Spring)
LSTM 3.10 2.79 297 2.53
(Summer)
LST™M 2.75 231 2.20 1.96
(Autumn)
LST™M 222 1.85 1.63 143
(Winter)

Table 2: RMSE Comparison for LSTM Models after adding
Wavelet.

3.5 Implications for Regional Climate Modeling and
Environmental Management

The effective implementation of this hybrid methodology to
climate data from Antalya has important ramifications for
regional climate modeling and associated management
decisions. Accurate characterizations of SST are worthwhile
for understanding marine ecosystems, fisheries management,
and planning coastal tourism. Similarly, estimates are needed
to guide agricultural planning, managing water resources, and
understanding flood risks for the region. Improved predictive
capabilities achieved with the wavelet-LSTM methodology will
afford improved decision-making for local authorities and
stakeholders affected by decades of changing climatic
indicators. In the context of climate change, the wavelet-LSTM
model can take advantage of non-stationary and nonlinear
climate data to keep pace with changing climatic conditions
while still providing fair predictions even when faced with
increased variability of the climate system.
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3.6 Limitations and Future Research Directions

Although the suggested methodology has great potential, there
are several limitations that should be highlighted. For example,
mother wavelet selection and the number of decomposition
levels can be defining factors, and the selection of these
parameters may need to be optimized for different climate
variables and regions. Further, the hybrid methodology is more
computationally intensive than the respective standalone ML
models, which is a consideration as we aim to apply to real-time
applications. The methodology may not perform consistently
across climate zones and while we have performed validation
using several datasets drawn from different geographical
regions, further validation with wider geographical diversity
needed to develop an understanding of potential
generalizability. Future works should aim to develop adaptive
wavelet-selection algorithms, and integrate additional climate
variables (e.g., wind speed, humidity) with our methodology.
There are also several possible climate and environmental
application areas that require testing, including usage for
predicting air quality indices, or assessing vegetation health
indicators. There is also an opportunity for developing
ensembles of multiple different wavelet-ML models to
potentially improve predictive accuracy and robustness.

4. Conclusion

This research has described a strong framework for improving
climate variable prediction by aligning wavelet decomposition
with machine learning models with an emphasis on Sea
Surface Temperature (SST) in the Antalya region. We have
shown how wavelet analysis gives you the capability to exploit
its multiscale aspects to effectively extract clean features from
climate time series data with complex non-stationarity,
ultimately allowing for better prediction outcomes. The
comparative analysis, which will be underpinned by
quantitative results, is going to unequivocally show that the
hybrid wavelet-LSTM models have a significantly better
predictive performance than the stand-alone LSTM; we can
expect a substantial reduction in the error measures by using a
wavelet-LSTM hybrid compared to a stand-alone LSTM. We
have also highlighted that remote sensing has been critical in
providing the detailed and comprehensive data sets required
for these analyses, and its value will always be there with
respect to the functional scalability of this methodology in
geospatial technologies.

The findings of this study are very useful for local climate
modelling, disaster preparedness, and agricultural planning in
localities like Antalya that are very vulnerable to climate
variability. The ability to provide more accurate forecasts gives
local authorities/stakeholders better information to make
decisions and adaptive strategies in response to climatic
changes. This study further highlights the potential between
advanced signal processing, sophisticated machine learning
approaches, and huge data streams provided by remote sensing
technologies to establish more resilient systems of
environmental monitoring and forecasting.
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