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Abstract 

Mangrove forests play a critical role in carbon sequestration, biodiversity preservation, and coastal resilience, making 

their conservation and restoration essential in climate change mitigation. This study uses traditional field evaluations 

and remote sensing and geoinformatics (GIS) methods to examine how mangrove ecosystems in the United Arab 

Emirates (UAE) have changed over time and space. We used Landsat satellite data from 2001 to 2024 and a set of 

vegetation indices, including SMRI, NDVI, GNDVI, EVI, and NDCI, to examine spatial patterns in biomass 

distribution, vegetation density, and overall ecosystem health. CO2 sequestration is a bit more climate-impact resilient. 

Even though the findings from the spatial images indicate a slight decline in healthy mangrove coverage alongside 

increased shrub growth, primarily driven by climate change impacts. So, spatially identified areas were considered 

vegetative plantations to be recovered and grown, with potential biomass, to avoid future CO2 impacts. Some coastal 

zones still show lower vegetation density and limited carbon uptake potential. Future efforts should prioritize replanting 

and rehabilitation in these sparse or degraded areas, particularly in the southern and inland tidal zones where vegetation 

loss was detected. These results highlight the need for targeted conservation strategies to counter the degradation of 

mangrove ecosystems. 

In addition to evaluating ecosystem health, this study employs computational GIS techniques to identify optimal 

locations for mangrove restoration. By leveraging spatial modelling, we pinpoint potential vegetative planting sites that 

maximize carbon sequestration stability, enhance biodiversity, and improve coastal protection in the UAE region. This 

data-driven approach ensures the effectiveness of reforestation initiatives, addressing gaps in mangrove coverage while 

contributing to the UAE’s net-zero carbon emissions target by 2050. The research provides policymakers and 

environmental managers with a robust decision-making framework. It also shows how important GIS-based methods are 

for planning and managing ecosystems sustainably. Moreover, the methodology can be replicated and adapted across 

other regions, offering a time- and cost-efficient solution for large-scale ecosystem restoration and climate action.  

1. Introduction

The world today is going through a crisis: climate 

change. Anthropogenic CO₂ emissions and sequestration 

have increased relentlessly over the past century despite 

international efforts to mitigate the problem (Dowell et 

al., 2017). While engineered solutions such as carbon 

capture technologies exist, mangrove forests naturally 

sequester carbon and thus represent an essential 

ecological ally in addressing climate change. Globally, 

mangroves are declining at an alarming rate, although 

they play a vital role as coastal wetlands that stabilize 

shorelines, support biodiversity, and regulate nutrient 

cycles (Vaghela et al., 2018; Gnanappazham et al., 2021). 

In response to escalating climate challenges, the 

UAE has aligned with global climate agreements, 

including the Vienna Convention, the Montreal Protocol, 

and the UNFCCC (Clarke et al., 2022). Its Energy Policy 

2050 aims to produce 50% of the nation's electricity from  

renewable sources whilst reducing carbon emissions by 

70%. As part of this strategy, mangroves, considered a 

national treasure, are central to conservation and 

restoration programs. They are especially important 

because the UAE has promised to plant 100 million 

mangroves by 2030 to sustenance its broader goal of net-

zero carbon emissions by 2050 (Alsumaiti et al., 2015; 

Mizen et al., 2024). 

Mangroves are salt-tolerant halophytes that thrive in 

intertidal, marshy environments. Though they occupy 

only 1.9% of tropical and subtropical coastlines, they 

account for nearly 30% of global carbon burial in these 

regions (Ellison, 2015). They exhibit unique ecological 

traits of both terrestrial and marine ecosystems, which 

explain their high productivity and carbon storage 

efficiency (Alongi & Mukhopadhyay, 2015). Yet they 

remain vulnerable to climate change impacts, such as sea-

level rise, salinity shifts, and catastrophic natural events, 

alongside human-induced pressures, such as urbanization 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W18-2025 
Symposium on GeoSpatial Technologies: Visions and Horizons 2025 (GeoVisions2025), 8–10 October 2025, Çanakkale, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W18-2025-387-2026 | © Author(s) 2026. CC BY 4.0 License.

 
387



 

and pollution (Ellison, 2015; Godoy & De Lacerda, 

2015). 

 

 In the UAE, mangroves are dominated by Avicennia 

marina, the gray mangrove, which tolerates high salinities 

and temperatures. Approximately 70% of the country’s 

mangroves are found in Abu Dhabi, covering about 110 

km², providing habitats for fish, birds, and other wildlife 

(Alsumaiti & Shahid, 2019). Restoration projects have 

planted hundreds of thousands of new mangroves, but 

monitoring their health and distribution remains essential. 

 

 Remote sensing (RS) and geographic information 

systems (GIS) are indispensable. Through 

electromagnetic radiation, RS acquires data without 

physical contact (Gupta, 2017; Roy et al., 2017). 

Combined with GIS, it allows large-scale, spatiotemporal 

analysis of land cover and vegetation trends. These 

technologies overcome the limitations of fieldwork in 

coastal areas, enabling the mapping of mangrove 

dynamics, ecosystem health, and potential restoration 

sites (Rondon et al., 2023; Gnanappazham et al., 2021). 

 

 This project focuses on assessing the health of 

mangrove ecosystems in the UAE and identifying optimal 

planting regions using RS and GIS. By integrating 

satellite data, field validation, and spatiotemporal 

analysis, the study aims to evaluate mangrove distribution 

and growth between 2001 and 2024, examine the effects 

of CO₂ and climatic stressors on mangrove health, and 

support national restoration strategies that contribute to 

net-zero emissions and the SDGs (Wardlow & Egbert, 

2010; Abu Dhabi Blue Carbon Report (AGEDI), 2014; 

Elmahdy & Ali, 2022; Salem IB, 2025). 

 

 Building on this context, the study aims to track the 

development of mangrove forests in the UAE between 

2001 and 2024 by analysing remotely sensed datasets. It 

will map mangrove dispersion, growth trends, and the 

activities influencing these ecosystems, while also 

evaluating the effects of CO₂ concentrations and climatic 

conditions on mangrove health. Field-based research will 

complement this work by classifying mangrove types and 

documenting local climate conditions. A further objective 

is to identify the causes of delays in mangrove 

development, thereby offering insights into the ecological 

challenges of these ecosystems. 

 

 The research results will contribute to establishing a 

rehabilitation strategy aligned with the UAE's goal of 

planting 100 million mangroves by 2030 and achieving 

zero CO₂ emissions by 2050. In particular, the study will: 

- Analyse remote sensing data to determine the 

factors affecting mangrove development and the 

potential for expanding vegetative cover in Abu 

Dhabi. 

- Map mangrove ecosystems' dynamics, growth, 

and distribution between 2001 and 2024. 

- Assess how CO₂ concentrations and climatic 

stressors influence mangrove health, supported by 

field-based validation. 

 

Study Design 

In the present study, we selected six regions as addresses 

for mangrove sites with vegetation (Table 1). We have 

selected the regions to disclose mangrove changes and 

growth. The study's chosen areas are shown in Figure 1.  

 

Figure 1. Location map of the study area 

 Ground truth data connects the remotely sensed 

imagery to actual features and materials on the ground. 

This enables scientists to understand what the pixels in an 

image truly represent. Ground truth data plays a vital role 

in evaluating the accuracy of classification maps 

generated from remote sensing data. Comparisons 

between the two Landsat images were used to assess 

mangrove health and the potential for new mangrove 

ecosystems. The field observations ground truth for the 

current investigation is displayed in Figure 2. 

 

S.No Area Name Location (Decimal - 

Longitude and Latitude) 

1. Jubail Mangrove Park 24.5452, 54.4854 

 2. Saadiyat Mangrove 

Park 

24.5303, 54.4452 

 3. Mangrove Marine 

National Park 

24.4567, 54.4251 

 4. Bul Sayayeef Marine 

Protected Reserve 

24.2580, 54.3616 

 5. Ras Ghanadah 24.7118, 54.6506 

 6. Ras Al Ghurab 24.6086, 54.5031 

Table 1. Selected Mangrove Study Sites and Their Geographic 

Coordinates in the UAE 
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Figure 2. The Field Photographs (Ground Truth) of Selected 

Locations 

2. Materials and Methodology 

2.1 Materials 

This study aimed to assess the condition of Abu Dhabi's 

mangrove ecosystems. The QGIS and ArcMap 10.4 

(ArcGIS) geographic information systems were used in 

this study. These programs display, modify, and analyse 

datasets in the study area. The results for the SMRI, 

NDVI, GNDVI, EVI, NDCI, and vegetation biomass 

index from Landsat imagery were obtained using the 

raster calculator in ArcGIS 10.4 and QGIS.  

 

Using USGS Earth Engine, the Landsat 5 (2001) and 8 

(2013, 2024) images were downloaded (Table 2 

summarizes the spectral, spatial, and wavelength 

specifications for the Landsat 5 and Landsat 8 sensors 

used in this study). The raster calculator results were then 

obtained using QGIS and ArcGIS 10.4. The two Landsat 

pictures compared the potential land for future mangrove 

ecosystems and the existing mangrove condition.  

 

Spectral  Wavelength  

(Microns) 

Resolution  Landsat 5 Landsat 8  

Coastal/aeros

ol 

0.43-0.45 30m - Band 1 

Band 2-Blue 0.45-0.52 30m Band 1 Band 2 

Band 3-Green 0.53-0.59 30m Band 2 Band 3 

Band 4-Red 0.64-0.67 30m Band 3 Band 4 

Band 5-NIR 0.85-0.88 30m Band 4 Band 5 

Band 6-

Shortwave IR 

(1) 

1.57-1.65 30m Band 5 Band 6 

Band 7-

Shortwave IR 

(2 

2.11-2.29 30m Band 7 Band 7 

Band 8-

Panchromatic 

 

0.5-0.68 15m - Band 8 

Band 9-Cirrus 1.36-1.38 30m - Band 9 

Band 10-

Thermal wave 

IR (1) 

10.6-

11.19 

100m - Band 

10 

Band 11-

Thermal wave 

IR (2) 

11.5-

12.51 

100m Band 6 

(60m) 

Band 

11 

Table 2. Datasets and their specifications. 

 

2.2 Methods 

In this study, we have adopted the following techniques: 

Green Normalized Difference Vegetation Index 

(GNDVI), Normalized Difference Vegetation Index 

(NDVI), Enhanced Vegetation Index (EVI), Normalized 

Difference Chlorophyll Index (NDCI), Submerged 

Mangrove Recognition Index (SMRI), and Biomass 

Index.  

 

2.2.1 Normalized Difference Vegetation Index 

(NDVI) 

It assesses and tracks plants' growth, density, and health. 

It is calculated by subtracting the reflectance of red 

(visible) light from that of near-infrared (NIR) light, as 

measured by satellite or remote sensors (Borgogno-

Mondino et al., 2016).  

 

NDVI = (NIR – R) / (NIR + R)                                     (1) 

 

Near-infrared (NIR) and R are the red bands. In Landsat 

5, the NIR is band number 4, and the R is band number 3. 

However, for the Landsat 8 images, the NIR is band 5, 

and the R is band 4. 

 

2.2.2 Green Normalized Difference Vegetation Index 

(GNDVI) 

It is comparable to the NDVI; however, it analyzes the 

green spectrum between 0.54 and 0.57 microns rather 

than the red spectrum. When evaluating moisture content 

and nitrogen concentration in plant leaves using 

multispectral data lacking an extreme red channel, this 

indicator of vegetation photosynthetic activity is most 

commonly used. It is more sensitive to chlorophyll 

content than the NDVI measure. It is used to evaluate old 

and depressed vegetation (Chen et al., 2019).  

 

GNDVI = (NIR-GREEN/NIR+GREEN)                       (2) 

 

2.2.3 Enhanced Vegetation Index (EVI) 

It is used to assess vegetation condition and density with 

greater sensitivity in densely vegetated areas. It adjusts 

for extraneous signals from the soil and atmospheric 

conditions. The Enhanced Vegetation Index (EVI) is a 

satellite-derived measurement of vegetation greenness 

and biomass. It monitors vegetation, assesses exposure to 

green space, and evaluates changes across large areas. 

Using red, blue, and near-infrared (NIR) bands, EVI is 

calculated. It corrects for atmospheric conditions and 

canopy background noise using blue light. EVI is 

particularly sensitive to thick vegetation (Wardlow & 

Egbert, 2010). 

 

EVI = G* ((NIR – R) / (NIR + C1*R – C2* B + L))     (3) 
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2.2.4 Submerged Mangrove Recognition Index 

(SMRI) 

A "Submerged Mangrove Recognition Index (SMRI)" is 

a specific calculation used in remote sensing to identify 

and map mangrove forests that are submerged underwater 

during high tide, by analyzing the difference in their 

spectral signatures between high and low tide imagery, 

essentially allowing researchers to distinguish mangrove 

areas even when partially submerged; it typically utilizes 

a combination of near-infrared (NIR) and visible bands 

from satellite imagery to achieve this differentiation (Xia 

et al., 2020). It is a measurement based on remote sensing 

technologies used to locate and examine mangrove 

regions that are occasionally or permanently submerged. 

The primary objective of this measure is to differentiate 

the submerged mangroves from the non-submerged 

mangroves. An SMRI for mangrove forest classification 

was tested. SMRI was compared with existing vegetation 

indices and higher- and moderate-resolution RS imagery. 

SMRI distinguishes submerged mangrove habitats with 

greater precision. SMRI compares NDVI (or other 

vegetation indices) values from high-tide satellite imagery 

with those from low-tide imagery, highlighting areas 

where the vegetation signature changes significantly 

between the two conditions, indicating submerged 

mangroves (Xia et al., 2020).  

 

SMRI = (NDVII – NDVIh) NIRl−NIRh / NIRh              (4) 

 

Where l is the low tide, and h is the high tide. 

 

2.2.5 Normalized Difference Chlorophyll Index 

(NDCI) 

The Normalized Difference Chlorophyll Index (NDCI) 

has been used for assessments of interior freshwater lakes 

since it was first introduced for using satellite remote 

sensing data in estuaries and coastal turbid productive 

waters to forecast chlorophyll a concentration. (Mishra & 

Mishra, 2012).  

 

NDCI= (Red Edge 1- Red)/ (Edge 1+Red)                    (5) 

 

Where, RedEdge1 = Red/NIR. 

 

2.2.6 Biomass Index and CO2 Equivalent Estimation 

The Biomass Index estimates the total amount of living 

material, including vegetation, in a given location. A 

carbon dioxide equivalent (CO2e or CO2-eq) is a 

standardized unit used to measure the impact of various 

greenhouse gases on global warming, expressed in terms 

of the amount of carbon dioxide that would cause the 

same amount of warming over a specific period.  

 

The following parameters were adopted to measure total 

biomass, carbon biomass, and CO2 equivalent.  

  

• Amod = area of moderate (NDVI 0.10-0.35)     

Amod (ha) = (total vegetation pixels - total healthy 

vegetation pixels) × 0.09                                                (6)                                          

• Ahealthy = area of healthy (NDVI ≥ 0.35)   

Ahealthy (ha)=total healthy vegetation pixels × 0.09        (7) 

(Note that 0.09 ha was calculated from the Landsat 

resolution.)   

 

• Nmod, Nhealthy= mean NDVI in each class                 (8) 

• Above Ground Biomass density (Mg/ha):  

                 AGBdens_mod= a* Nmod + b                              (9) 

                 AGBdens_healthy = a* Nhealthy + b                     (10)  

(a = open canopy vegetation and b = closed canopy 

vegetation) 

 

• Total AGB (t): 

AGBtotal = Amod⋅AGBdens, mod  +  Ahealthy⋅AGBdens, healthy    (11) 

 

• Total BGB (t): 

BGBtotal= RSR×AGBtotal                                                                      (12) 

(such as RSR = Root to Shoot Ratio = 0.42)     

       

• Total Biomass (t): 

Total_Biomass  = AGBtotal + BGBtotal                                       (13) 

(Where BGB is the belowground biomass, AGB is the 

aboveground biomass.)  

 

• Carbon Biomass (tC):  

Carbon = Average carbon content × Total Biomass    (14) 

(Such as the average carbon content = 0.47)     

    

• CO2 equivalent (tCO2): 

CO2e = 3.6 × Carbon                                                   (15)                 

(3.6 represents the carbon biomass factor) 

 

 Field and aerial-based mangrove counts were 

conducted to map CO2 associated with the field inventory 

data. Fieldwork has been conducted to count mangroves 

and verify the ground truth of the selected regions. After 

collecting the mangrove count at 20 m x 20 m intervals, 

the average has been calculated. Followed by Carbon 

dioxide (CO2), which is measured using an averaging 

calculation. Furthermore, the carbon analysis indexes 

have shown gradual variations across years, such as 2010, 

2015, 2020, and 2024 (Aerial-based observations and 

Field inventory data).  
 

3. Results and Discussion 

 The results of this study provide valuable 

information for mapping and monitoring mangroves 

within and outside the United Arab Emirates (UAE). The 

discussion covers key topics, including traditional field 

research data and remote sensing and geoinformatics 

(GIS). After thoroughly reviewing the strengths and 

shortcomings of the aforementioned models, our goal in 

this study was to develop an algorithm that outperforms 

current models. Two of the most important criteria for a 

successful spectral algorithm development include (1) 

application to satellite data, and (2) transferability to 
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extensively variable geographic regions without creating 

significant uncertainties. Additionally, the identification 

parameters include the Submerged Mangrove Recognition 

Index (SMRI), Normalized Difference Vegetation Index 

(NDVI), Green Normalized Difference Vegetation Index 

(GNDVI), Enhanced Vegetation Index (EVI), 

Normalized Difference Chlorophyll Index (NDCI), and 

Biomass Index. 

 The results of this study offer valuable information 

for mapping and monitoring mangroves within and 

outside the UAE. The field research assessments are 

combined with remote sensing and GIS. The NDVI for 

the Landsat 8 (2024) image was much lower than for the 

Landsat 5 image, indicating much less vegetation than in 

2001. The NDVI range results differ greatly because the 

images were taken 24 years apart (2001-2024). The 

NDVI ranges were categorized into low vegetation (Dark 

green), mangroves (Light green), shallow water bodies 

(Light blue), land (Orange), deep water (Dark blue), and 

barren land (Red), which are shown in Figure 3. 

 
Figure 3. Normalized Difference Vegetation Index (NDVI) map 

of the study area for 2001, 2013, and 2024. 

   

 The differences in NDVI results across the overall 

ranges of both Landsat images were closer to -1 with 

Landsat 5 images (close to 1) than with Landsat 8 images 

(much less than 1). These results show that the variance in 

Landsat 5 NDVI is higher. The NDVI values range from -

1.0 to 1.0. Negative NDVI values indicate clouds and 

water; soil is indicated by positive values closer to zero; 

and dense vegetation (>0.6) is indicated by higher 

positive NDVI values (Borgogno-Mondino et al., 2016). 

Moreover, the Landsat 8 data from 2024 shows a large 

area of land that could be a potential site for planting 

more mangrove forests, such as on Saadiyat Island. Also, 

negative to low values indicate water, bare soil, sand, or 

built-up areas. Deep spatial analysis shows that healthy 

vegetation is reduced year by year, whereas low 

vegetation and shrubs are increasing, especially in 

southern and coastal regions (also in central regions). The 

northern coastal regions are also affected by mangrove 

growth.  

 
Figure 4. Green Normalized Difference Vegetation Index 

(GNDVI) map of the study area for 2001, 2013, and 2024. 

 

 The Landsat GNDVI imagery from 2001, 2013, and 

2024 (which fully reveals greenery, as shown in Figure 4) 

highlights a common vegetation pattern; however, the 

2013 and 2024 imagery showed drastic changes in 

mangroves and vegetation. The values for 2001 and 2013, 

more or less as shown, were low vegetation (-0.987μm - -

0.250μm), land (-0.250μm - -0.025μm), mangroves (-

0.025μm - 0.138μm), shallow water body (0.138μm - 

0.410μm), deep water (0.410μm - 0.728μm), and barren 

land (0.728μm - 0.992μm). On the contrary, the values 

for Landsat 8, as shown in Figure 5, were low vegetation 

(-0.459μm - -0.067μm), land (-0.067μm - -0.036μm), 

mangroves (-0.036μm - 0.011μm), shallow water body 

(0.011μm - 0.050μm), deep water (0.050μm - 0.073μm), 

and barren land (0.073μm - 0.539μm).  GNDVI indicates 

that 2001 was less vegetated, and the northern parts of the 

mangroves were richer in the southern coastal areas.  

 
Figure 5. The Submerged Mangrove Recognition Index (SMRI) 

map of the study area for 2001, 2013, and 2024. 

 

 SMRI produced images showing anthropogenic 

activities that also disturbed healthy vegetation, as 

reflected in the 2013 and 2024 images. The SMRI of the 
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Landsat 5 image, as shown in Figure 5, had a maximum 

value of 1.975977 and a minimum value of -1.974601. 

The Landsat 5 image results showed a much larger 

difference between the maximum and minimum values. 

On the contrary, the SMRI of the Landsat 8 image had a 

maximum value of 0.300439 and a minimum value of -

1.605316. The Landsat 8 image results had a much lower 

maximum value than the Landsat 5 image. This indicates 

much less vegetation than in the Landsat 5 image. 

 Furthermore, non-mangrove regions, including open 

water, bare soil, sand, or built-up areas, are indicated by 

negative to low values (-1 - 0.2) (Xia et al., 2020). These 

values occur in areas with little moisture retention and 

minimal vegetation. Transition zones or deteriorated 

mangroves are represented by moderate numbers (0.2 - 

0.5), including areas in rehabilitative zones at the initial 

phase of mangrove development or with patchy mangrove 

cover (Xia et al., 2020). Healthy mangrove forests are 

characterized by high positive values (0.5-1), indicating 

living mangrove ecosystems with high vegetation density 

and moisture levels (Xia et al., 2020). So that 2001 has 

moderate mangrove depth but less in the northern parts, 

and is rich in mangroves southwestern region. The 2013 

and 2024 show that the southern and western parts 

dominate vegetated areas, including mangrove, but with 

less mangrove density loss, so those areas need careful 

consideration. 

 
Figure 6. Enhanced Vegetation Index (EVI) map of the study 

area for 2001, 2013, and 2024. 

  

 When the entire green space area is zero, the EVI is 

expected to be 0.24. This is comparable to the average 

EVI of 0.28. EVI indicates that 2001 has fewer 

mangroves but is rich in mangroves in the southern 

regions, whereas vegetative cover is lower in quantity. 

2013 and 2024 show that the southern parts are dominant 

in vegetation, radiating north-north-eastward in Figure 6. 

In future studies, EVI will be used to indicate biomass, as 

places with more biomass are associated with greater 

biodiversity. This may be especially important in 

providing evidence to assist health policy, as research 

suggests that biodiversity may promote pathways 

associated with favourable health outcomes. EVI ratings 

do not always reflect greater or lesser access or different 

forms of publicly accessible green space, nor do they 

capture green space patterns in three dimensions. 

 We compared a satellite-derived environmental 

exposure metric (EVI) with two vector-based access 

measures for public and private green space. Our findings 

revealed that satellite-derived measures, such as EVI, 

provided an objective and uniform way to assess 

greenness across populations at wide spatial and temporal 

scales. EVI quantifies vegetation greenness and serves as 

a biomass indicator. To evaluate incremental variations in 

EVI (e.g., 0.1 or the interquartile range) within a 300 m 

buffer zone, it's important to keep in mind that these 

changes may not always reflect changes in overall 

greenness. 

 
Figure 7. Normalized Difference Chlorophyll Index (NDCI) 

map of the study area for 2001, 2013, and 2024. 

 

 Figure 7 shows that 2001 had fewer mangroves in 

the northern coastal regions, whereas it was rich in 

mangroves in the southwestern coastal regions. We 

propose a novel, Normalized Difference Chlorophyll 

Index (NDCI), and demonstrate its sensitivity to regional 

waters. We validated and verified with NDCI by 

investigating three datasets that represent distinct 

performance and sensitivity to a wide range of water 

optical properties. The calibration and validation results 

from Landsat datasets demonstrate their potential use for 

a wide range of water types and geographical areas. In 

this work, we evaluated both criteria during model 

validation. In addition, ground truths via field 

observations are silently matched with remote sensing 

observations. 

 To calculate the CO₂ equivalent for both Landsat 5 

and Landsat 8 data, the Overall NDVI pixels (vegetation) 

obtained through the moderate vegetative pixels 

(threshold) (0.010-0.35) and healthy vegetative pixels 

(0.35-0.55) were obtained using equations of 6,7,8. 

Further, AGB and BGB were measured (eq.9, 10, 

11,12,13,14) using existing canopy values from previous 

studies as references, as well as the Moderate and 

vegetative area-based threshold values observed from the 

NDVI (Elmahdy & Ali, 2022; Abu Dhabi Blue Carbon 

Demonstration Report (AGEDI), 2014).  
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 Mangrove biomass increased from 29.7 t/ha (2001) 

to 32.7 t/ha (2024), reflecting improved vegetation 

density and productivity. Healthy vegetation cover rose 

from 23.8% to 27.7%, indicating successful restoration 

and stronger ecosystem health.  

 Carbon storage capacity grew from 13.9 tC/ha to 

15.4 tC/ha, enhancing the mangroves’ role as natural 

carbon sinks. CO₂ sequestration potential increased from 

51 tCO₂/ha to 56 tCO₂/ha, demonstrating greater climate-

mitigation impact. Overall, the NDVI-based biomass 

index confirms that Abu Dhabi’s mangroves are 

recovering, resilient, and vital for blue-carbon initiatives. 

 Results indicate that in 2001 (Landsat5), the 

proportion of healthy mangrove vegetation was higher 

than in 2024 (Landsat8); this may explain why the 

vegetative cover was more dominated by mangrove 

shrubs or less vegetation, rather than healthy vegetation 

(including mangroves) (Figure 2). Although CO₂-

equivalent values in the datasets show only slight 

variation, they have increased gradually over the 24-year 

interval. So overall, the mangroves are showing better 

vegetation health and a higher capacity to store carbon, 

confirming their important role in supporting the UAE’s 

blue-carbon and climate goals. Table 3 shows the Total 

Biomass, Healthy Vegetation, Carbon Biomass, and CO₂ 
Equivalent from Landsat images by using GIS techniques.  

 

Year

s 

NDVI 

total 

vegetati

on 

Area of 

total 

vegetation

(ha) 

NDVI 

(Healthy 

Vegetatio

n) 

Area of 

Healthy 

(ha) 

2001 988797 88991.73 235359 21182.3 

2013 106285

02 

956565.1

8 

264448 23800.32 

2024 841925 75773.35 232129 20891.61 

 

 Healthy 
Vegetati
on (%)  

Total 
Biomass 

(t/ha)  

Carbon 
Biomass 
(tC/ha)  

CO₂ 
Equivalent 
(tCO

2
/ha) 

2001 23.80% 29.66 13.94 51.15 

2013 24.88%  30.54 14.35 52.66 

2024 27.68% 32.74 15.38 56.44 

 
Table 3. Total Biomass, Healthy Vegetation (ha), Carbon 

Biomass, and CO₂ Equivalent from Landsat Analysis.  

 

 According to Field and aerial imagery analysis, the 

northern and western regions of Mangrove Marine Park, 

Jubail Island, Saadiyat Mangrove Park, and Ras Al 

Ghurab have been chosen to count and study because we 

observed that those are priority areas for targeted 

mangrove and vegetative planting to reduce atmospheric 

CO₂ (Figure 8) from remote sensing observation. 

Therefore, the study also shows a similar drastic increase 

in CO2 year by year, along with a slight decrease in 

vegetation, including mangroves. Those are the impacted 

areas that need vegetation rejuvenation to avoid CO2 

impacts.  

 

 

Figure 8. The Graphical plot of the Mangrove field inventory 

observation based on the CO2 estimation 

 Our findings also confirm that ecological health and 

entire greenspace are not linearly associated, and both 

should be recognized as distinct exposures to identify the 

most promising locations for adopting plantation 

(vegetative) measures to reduce carbon. As highlighted by 

Friend et al. (2014), it is difficult to develop effective 

policies for complex environmental and public health 

issues when definitions of exposure to greenness and 

access to green space vary. (Figures 2, 7, 8, and Table 3). 
 

4. Conclusion and Recommendations 

 This study provides significant data on mangrove 

mapping and monitoring in the United Arab Emirates 

using geoinformatics, remote sensing, and conventional 

field assessments. The findings show significant changes 

in land use, vegetation health, and mangrove coverage 

over 24 years. There were more shrubs and fewer healthy 

mangroves, which were probably due to rising 

atmospheric CO2 levels and related climate effects. 

Compared to 2024, data from 2001 showed greater 

regions of healthy mangroves, with a decrease in healthy 

vegetation and an increase in shrubs. These shifts point to 

possible environmental factors that may have altered 

growth patterns and ecosystem health, such as rising 

atmospheric carbon dioxide levels and climate change. 

These results were further supported by the SMRI and 

NDVI investigations, which revealed lower vegetation 

and density in 2024 than in 2001. 

 The NDVI and field analyses reveal that Abu 

Dhabi’s mangroves have shown steady improvement in 

biomass, vegetation health, and CO₂ sequestration from 

2001 to 2024. However, some coastal zones still show 

lower vegetation density and limited carbon uptake 

potential. Future efforts should prioritize replanting and 

rehabilitation in these sparse or degraded areas, 

particularly in the southern and inland tidal zones where 
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vegetation loss was detected. Expanding mangrove 

plantations using native species, improving water 

circulation, and applying continuous satellite-based 

monitoring will further enhance carbon storage and 

ecosystem resilience, supporting the UAE’s Net Zero 

2050 goal.  

 Also, we are concerned and would like to suggest 

areas that should be given much consideration in 

vegetative planning to reduce CO2. The study further 

demonstrated the significance of contemporary remote 

sensing capabilities for precise monitoring, finding that 

Landsat 8 (2013 and 2024) provided more accurate and 

trustworthy data than Landsat 5 imagery. Also, we 

suggest that a highly spatially and spectrally available 

remotely sensed dataset would be better for future 

calculations, and that these calculations should be 

detailed, including spatially accurate multispectral and 

hyperspectral data. These findings highlight the critical 

need for focused conservation and restoration initiatives 

to lessen these effects, as they show a two-decade trend in 

mangrove health decline. Additional training and practice 

are needed to perform this study more accurately, which 

may help acquire more data.  
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