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Abstract

Mangrove forests play a critical role in carbon sequestration, biodiversity preservation, and coastal resilience, making
their conservation and restoration essential in climate change mitigation. This study uses traditional field evaluations
and remote sensing and geoinformatics (GIS) methods to examine how mangrove ecosystems in the United Arab
Emirates (UAE) have changed over time and space. We used Landsat satellite data from 2001 to 2024 and a set of
vegetation indices, including SMRI, NDVI, GNDVI, EVI, and NDCI, to examine spatial patterns in biomass
distribution, vegetation density, and overall ecosystem health. CO, sequestration is a bit more climate-impact resilient.
Even though the findings from the spatial images indicate a slight decline in healthy mangrove coverage alongside
increased shrub growth, primarily driven by climate change impacts. So, spatially identified areas were considered
vegetative plantations to be recovered and grown, with potential biomass, to avoid future CO, impacts. Some coastal
zones still show lower vegetation density and limited carbon uptake potential. Future efforts should prioritize replanting
and rehabilitation in these sparse or degraded areas, particularly in the southern and inland tidal zones where vegetation
loss was detected. These results highlight the need for targeted conservation strategies to counter the degradation of
mangrove ecosystems.

In addition to evaluating ecosystem health, this study employs computational GIS technigques to identify optimal
locations for mangrove restoration. By leveraging spatial modelling, we pinpoint potential vegetative planting sites that
maximize carbon sequestration stability, enhance biodiversity, and improve coastal protection in the UAE region. This
data-driven approach ensures the effectiveness of reforestation initiatives, addressing gaps in mangrove coverage while
contributing to the UAE’s net-zero carbon emissions target by 2050. The research provides policymakers and
environmental managers with a robust decision-making framework. It also shows how important G1S-based methods are
for planning and managing ecosystems sustainably. Moreover, the methodology can be replicated and adapted across
other regions, offering a time- and cost-efficient solution for large-scale ecosystem restoration and climate action.

1. Introduction

renewable sources whilst reducing carbon emissions by
70%. As part of this strategy, mangroves, considered a
national treasure, are central to conservation and
restoration programs. They are especially important
because the UAE has promised to plant 100 million
mangroves by 2030 to sustenance its broader goal of net-

The world today is going through a crisis: climate
change. Anthropogenic CO: emissions and sequestration
have increased relentlessly over the past century despite
international efforts to mitigate the problem (Dowell et
al., 2017). While engineered solutions such as carbon

capture technologies exist, mangrove forests naturally
sequester carbon and thus represent an essential
ecological ally in addressing climate change. Globally,
mangroves are declining at an alarming rate, although
they play a vital role as coastal wetlands that stabilize
shorelines, support biodiversity, and regulate nutrient
cycles (Vaghela et al., 2018; Gnanappazham et al., 2021).

In response to escalating climate challenges, the
UAE has aligned with global climate agreements,
including the Vienna Convention, the Montreal Protocol,
and the UNFCCC (Clarke et al., 2022). Its Energy Policy
2050 aims to produce 50% of the nation's electricity from

zero carbon emissions by 2050 (Alsumaiti et al., 2015;
Mizen et al., 2024).

Mangroves are salt-tolerant halophytes that thrive in
intertidal, marshy environments. Though they occupy
only 1.9% of tropical and subtropical coastlines, they
account for nearly 30% of global carbon burial in these
regions (Ellison, 2015). They exhibit unique ecological
traits of both terrestrial and marine ecosystems, which
explain their high productivity and carbon storage
efficiency (Alongi & Mukhopadhyay, 2015). Yet they
remain vulnerable to climate change impacts, such as sea-
level rise, salinity shifts, and catastrophic natural events,
alongside human-induced pressures, such as urbanization
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and pollution (Ellison, 2015; Godoy & De Lacerda,
2015).

In the UAE, mangroves are dominated by Avicennia
marina, the gray mangrove, which tolerates high salinities
and temperatures. Approximately 70% of the country’s
mangroves are found in Abu Dhabi, covering about 110
kmz2, providing habitats for fish, birds, and other wildlife
(Alsumaiti & Shahid, 2019). Restoration projects have
planted hundreds of thousands of new mangroves, but
monitoring their health and distribution remains essential.

Remote sensing (RS) and geographic information
systems (GIS) are indispensable. Through
electromagnetic radiation, RS acquires data without
physical contact (Gupta, 2017; Roy et al.,, 2017).
Combined with GIS, it allows large-scale, spatiotemporal
analysis of land cover and vegetation trends. These
technologies overcome the limitations of fieldwork in
coastal areas, enabling the mapping of mangrove
dynamics, ecosystem health, and potential restoration
sites (Rondon et al., 2023; Gnanappazham et al., 2021).

This project focuses on assessing the health of
mangrove ecosystems in the UAE and identifying optimal
planting regions using RS and GIS. By integrating
satellite data, field validation, and spatiotemporal
analysis, the study aims to evaluate mangrove distribution
and growth between 2001 and 2024, examine the effects
of CO: and climatic stressors on mangrove health, and
support national restoration strategies that contribute to
net-zero emissions and the SDGs (Wardlow & Egbert,
2010; Abu Dhabi Blue Carbon Report (AGEDI), 2014;
Elmahdy & Ali, 2022; Salem IB, 2025).

Building on this context, the study aims to track the
development of mangrove forests in the UAE between
2001 and 2024 by analysing remotely sensed datasets. It
will map mangrove dispersion, growth trends, and the
activities influencing these ecosystems, while also
evaluating the effects of CO: concentrations and climatic
conditions on mangrove health. Field-based research will
complement this work by classifying mangrove types and
documenting local climate conditions. A further objective
is to identify the causes of delays in mangrove
development, thereby offering insights into the ecological
challenges of these ecosystems.

The research results will contribute to establishing a
rehabilitation strategy aligned with the UAE's goal of
planting 100 million mangroves by 2030 and achieving
zero CO: emissions by 2050. In particular, the study will:
- Analyse remote sensing data to determine the

factors affecting mangrove development and the

potential for expanding vegetative cover in Abu

Dhabi.

- Map mangrove ecosystems' dynamics, growth,

and distribution between 2001 and 2024.

- Assess how CO: concentrations and climatic
stressors influence mangrove health, supported by
field-based validation.

Study Design

In the present study, we selected six regions as addresses
for mangrove sites with vegetation (Table 1). We have
selected the regions to disclose mangrove changes and
growth. The study's chosen areas are shown in Figure 1.
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Figure 1. Location map of the study area

Ground truth data connects the remotely sensed
imagery to actual features and materials on the ground.
This enables scientists to understand what the pixels in an
image truly represent. Ground truth data plays a vital role
in evaluating the accuracy of classification maps
generated from remote sensing data. Comparisons
between the two Landsat images were used to assess
mangrove health and the potential for new mangrove
ecosystems. The field observations ground truth for the
current investigation is displayed in Figure 2.

S.No Area Name Location (Decimal -

Longitude and Latitude)

1. Jubail Mangrove Park 24.5452, 54.4854

2. Saadiyat Mangrove 24.5303, 54.4452
Park
3. Mangrove Marine 24.4567, 54.4251

National Park

4. Bul Sayayeef Marine
Protected Reserve

24.2580, 54.3616

5. Ras Ghanadah 24.7118, 54.6506

6. Ras Al Ghurab 24.6086, 54.5031

Table 1. Selected Mangrove Study Sites and Their Geographic
Coordinates in the UAE
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Saadiyat Island Mangrove

Bul Sayayeef Marine Protected Rese: Ras Ghanadah

Figure 2. The Field Photographs (Ground Truth) of Selected
Locations

2. Materials and Methodology
2.1 Materials

This study aimed to assess the condition of Abu Dhabi's
mangrove ecosystems. The QGIS and ArcMap 10.4
(ArcGIS) geographic information systems were used in
this study. These programs display, modify, and analyse
datasets in the study area. The results for the SMRI,
NDVI, GNDVI, EVI, NDCI, and vegetation biomass
index from Landsat imagery were obtained using the
raster calculator in ArcGIS 10.4 and QGIS.

Using USGS Earth Engine, the Landsat 5 (2001) and 8
(2013, 2024) images were downloaded (Table 2
summarizes the spectral, spatial, and wavelength
specifications for the Landsat 5 and Landsat 8 sensors
used in this study). The raster calculator results were then
obtained using QGIS and ArcGIS 10.4. The two Landsat
pictures compared the potential land for future mangrove
ecosystems and the existing mangrove condition.

Spectral Wavelength Resolution Landsat5 | Landsat8
(Microns)

Coastal/aeros | 0.43-0.45 | 30m - Band 1

ol

Band 2-Blue 0.45-0.52 | 30m Band1 | Band 2

Band 3-Green | 0.53-0.59 | 30m Band 2 | Band 3

Band 4-Red 0.64-0.67 | 30m Band 3 | Band 4

Band 5-NIR 0.85-0.88 | 30m Band 4 | Band5

Band 6- | 1.57-1.65 | 30m Band5 | Band 6

Shortwave IR

1)

Band 7- | 2.11-2.29 | 30m Band 7 | Band 7

Shortwave IR

2

Band 8- | 0.5-0.68 15m - Band 8

Panchromatic

Band 9-Cirrus | 1.36-1.38 | 30m - Band 9

Band 10- | 10.6- 100m - Band

Thermal wave | 11.19 10

IR (1)

Band 11- | 11.5- 100m Band 6 | Band
Thermal wave | 12.51 (60m) 11
IR (2)

Table 2. Datasets and their specifications.
2.2 Methods
In this study, we have adopted the following techniques:
Green Normalized Difference  Vegetation Index
(GNDVI), Normalized Difference Vegetation Index

(NDVI), Enhanced Vegetation Index (EVI), Normalized
Difference Chlorophyll Index (NDCI), Submerged
Mangrove Recognition Index (SMRI), and Biomass
Index.

2.2.1 Normalized Difference Vegetation Index
(NDVI)

It assesses and tracks plants' growth, density, and health.

It is calculated by subtracting the reflectance of red

(visible) light from that of near-infrared (NIR) light, as

measured by satellite or remote sensors (Borgogno-

Mondino et al., 2016).

NDVI = (NIR-R) / (NIR + R) 1)

Near-infrared (NIR) and R are the red bands. In Landsat
5, the NIR is band number 4, and the R is band number 3.
However, for the Landsat 8 images, the NIR is band 5,
and the R is band 4.

2.2.2 Green Normalized Difference Vegetation Index
(GNDVI)

It is comparable to the NDVI; however, it analyzes the
green spectrum between 0.54 and 0.57 microns rather
than the red spectrum. When evaluating moisture content
and nitrogen concentration in plant leaves using
multispectral data lacking an extreme red channel, this
indicator of vegetation photosynthetic activity is most
commonly used. It is more sensitive to chlorophyll
content than the NDVI measure. It is used to evaluate old
and depressed vegetation (Chen et al., 2019).

GNDVI = (NIR-GREEN/NIR+GREEN) 2)

2.2.3 Enhanced Vegetation Index (EVI)

It is used to assess vegetation condition and density with
greater sensitivity in densely vegetated areas. It adjusts
for extraneous signals from the soil and atmospheric
conditions. The Enhanced Vegetation Index (EVI) is a
satellite-derived measurement of vegetation greenness
and biomass. It monitors vegetation, assesses exposure to
green space, and evaluates changes across large areas.
Using red, blue, and near-infrared (NIR) bands, EVI is
calculated. It corrects for atmospheric conditions and
canopy background noise using blue light. EVI is
particularly sensitive to thick vegetation (Wardlow &
Egbert, 2010).

EVI=G* (NIR-R)/(NIR+CI*R-C2*B +L)) (3)
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2.2.4 Submerged Mangrove Recognition Index
(SMRI)

A "Submerged Mangrove Recognition Index (SMRI)" is
a specific calculation used in remote sensing to identify
and map mangrove forests that are submerged underwater
during high tide, by analyzing the difference in their
spectral signatures between high and low tide imagery,
essentially allowing researchers to distinguish mangrove
areas even when partially submerged; it typically utilizes
a combination of near-infrared (NIR) and visible bands
from satellite imagery to achieve this differentiation (Xia
et al., 2020). It is a measurement based on remote sensing
technologies used to locate and examine mangrove
regions that are occasionally or permanently submerged.
The primary objective of this measure is to differentiate
the submerged mangroves from the non-submerged
mangroves. An SMRI for mangrove forest classification
was tested. SMRI was compared with existing vegetation
indices and higher- and moderate-resolution RS imagery.
SMRI distinguishes submerged mangrove habitats with
greater precision. SMRI compares NDVI (or other
vegetation indices) values from high-tide satellite imagery
with those from low-tide imagery, highlighting areas
where the vegetation signature changes significantly
between the two conditions, indicating submerged
mangroves (Xia et al., 2020).

SMRI = (NDVI, — NDVI;) NIR-NIR;, / NIRj, 4
Where | is the low tide, and h is the high tide.

2.2.5 Normalized Difference Chlorophyll Index
(NDCI)

The Normalized Difference Chlorophyll Index (NDCI)
has been used for assessments of interior freshwater lakes
since it was first introduced for using satellite remote
sensing data in estuaries and coastal turbid productive
waters to forecast chlorophyll a concentration. (Mishra &
Mishra, 2012).

NDCI= (Red Edge 1- Red)/ (Edge 1+Red) (5)
Where, RedEdgel = Red/NIR.

2.2.6 Biomass Index and CO2 Equivalent Estimation
The Biomass Index estimates the total amount of living
material, including vegetation, in a given location. A
carbon dioxide equivalent (COze or COz-eq) is a
standardized unit used to measure the impact of various
greenhouse gases on global warming, expressed in terms
of the amount of carbon dioxide that would cause the
same amount of warming over a specific period.

The following parameters were adopted to measure total
biomass, carbon biomass, and CO; equivalent.

e Anmo = area of moderate (NDV1 0.10-0.35)
Amod (ha) = (total vegetation pixels - total healthy
vegetation pixels) x 0.09 (6)

o Ancainy = area of healthy (NDVI > 0.35)

Aneany (ha)=total healthy vegetation pixels x 0.09 7
(Note that 0.09 ha was calculated from the Landsat
resolution.)

®  Nmod, Nheaithy= mean NDVI in each class (8)

e Above Ground Biomass density (Mg/ha):
AGBgens mod= 8* Nmod + b (9)
AGBdens_nealthy = 8* Nhealthy + b (10)
(a = open canopy vegetation and b = closed canopy
vegetation)

e Total AGB (t):
AGBtotaI = Amod'AGBdens, mod T+ Ahealthy'AGBdens, healthy (11)

e Total BGB (t):
BG Biotal= RSRxAG Biotal (12)
(such as RSR = Root to Shoot Ratio = 0.42)

e Total Biomass (t):

Total_Biomass = AGBiotal + BGBiotal (13)
(Where BGB is the belowground biomass, AGB is the
aboveground biomass.)

e  Carbon Biomass (tC):
Carbon = Average carbon content x Total Biomass (14)
(Such as the average carbon content = 0.47)

e CO2 equivalent (tCO2):
CO.e = 3.6 x Carbon (15)
(3.6 represents the carbon biomass factor)

Field and aerial-based mangrove counts were
conducted to map CO; associated with the field inventory
data. Fieldwork has been conducted to count mangroves
and verify the ground truth of the selected regions. After
collecting the mangrove count at 20 m x 20 m intervals,
the average has been calculated. Followed by Carbon
dioxide (CO.), which is measured using an averaging
calculation. Furthermore, the carbon analysis indexes
have shown gradual variations across years, such as 2010,
2015, 2020, and 2024 (Aerial-based observations and
Field inventory data).

3. Results and Discussion

The results of this study provide valuable
information for mapping and monitoring mangroves
within and outside the United Arab Emirates (UAE). The
discussion covers key topics, including traditional field
research data and remote sensing and geoinformatics
(GIS). After thoroughly reviewing the strengths and
shortcomings of the aforementioned models, our goal in
this study was to develop an algorithm that outperforms
current models. Two of the most important criteria for a
successful spectral algorithm development include (1)
application to satellite data, and (2) transferability to
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extensively variable geographic regions without creating
significant uncertainties. Additionally, the identification
parameters include the Submerged Mangrove Recognition
Index (SMRI), Normalized Difference Vegetation Index
(NDVI), Green Normalized Difference Vegetation Index
(GNDVI), Enhanced Vegetation Index (EVI),
Normalized Difference Chlorophyll Index (NDCI), and
Biomass Index.

The results of this study offer valuable information
for mapping and monitoring mangroves within and
outside the UAE. The field research assessments are
combined with remote sensing and GIS. The NDVI for
the Landsat 8 (2024) image was much lower than for the
Landsat 5 image, indicating much less vegetation than in
2001. The NDVI range results differ greatly because the
images were taken 24 years apart (2001-2024). The
NDVI ranges were categorized into low vegetation (Dark
green), mangroves (Light green), shallow water bodies
(Light blue), land (Orange), deep water (Dark blue), and
barren land (Red), which are shown in Figure 3.

Figure 3. Normalized Difference Vegetation Index (NDVI) map
of the study area for 2001, 2013, and 2024.

The differences in NDVI results across the overall
ranges of both Landsat images were closer to -1 with
Landsat 5 images (close to 1) than with Landsat 8 images
(much less than 1). These results show that the variance in
Landsat 5 NDVI is higher. The NDVI values range from -
1.0 to 1.0. Negative NDVI values indicate clouds and
water; soil is indicated by positive values closer to zero;
and dense vegetation (>0.6) is indicated by higher
positive NDVI values (Borgogno-Mondino et al., 2016).
Moreover, the Landsat 8 data from 2024 shows a large
area of land that could be a potential site for planting
more mangrove forests, such as on Saadiyat Island. Also,
negative to low values indicate water, bare soil, sand, or
built-up areas. Deep spatial analysis shows that healthy
vegetation is reduced year by year, whereas low
vegetation and shrubs are increasing, especially in
southern and coastal regions (also in central regions). The
northern coastal regions are also affected by mangrove
growth.

Figure 4. Green Normalized Difference Vegetation Index
(GNDVI) map of the study area for 2001, 2013, and 2024.

The Landsat GNDVI imagery from 2001, 2013, and
2024 (which fully reveals greenery, as shown in Figure 4)
highlights a common vegetation pattern; however, the
2013 and 2024 imagery showed drastic changes in
mangroves and vegetation. The values for 2001 and 2013,
more or less as shown, were low vegetation (-0.987um - -
0.250pum), land (-0.250pum - -0.025pum), mangroves (-
0.025um - 0.138um), shallow water body (0.138um -
0.410pm), deep water (0.410pum - 0.728um), and barren
land (0.728pum - 0.992um). On the contrary, the values
for Landsat 8, as shown in Figure 5, were low vegetation
(-0.459um - -0.067pm), land (-0.067pum - -0.036um),
mangroves (-0.036pum - 0.011pm), shallow water body
(0.011um - 0.050pm), deep water (0.050um - 0.073pm),
and barren land (0.073um - 0.539um). GNDVI indicates
that 2001 was less vegetated, and the northern parts of the
mangroves were richer in the southern coastal areas.

2001 2013

Figure 5. The Submerged Mangrove Recognition Index (SMRI)
map of the study area for 2001, 2013, and 2024.

SMRI produced images showing anthropogenic
activities that also disturbed healthy vegetation, as
reflected in the 2013 and 2024 images. The SMRI of the
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Landsat 5 image, as shown in Figure 5, had a maximum
value of 1.975977 and a minimum value of -1.974601.
The Landsat 5 image results showed a much larger
difference between the maximum and minimum values.
On the contrary, the SMRI of the Landsat 8 image had a
maximum value of 0.300439 and a minimum value of -
1.605316. The Landsat 8 image results had a much lower
maximum value than the Landsat 5 image. This indicates
much less vegetation than in the Landsat 5 image.

Furthermore, non-mangrove regions, including open
water, bare soil, sand, or built-up areas, are indicated by
negative to low values (-1 - 0.2) (Xia et al., 2020). These
values occur in areas with little moisture retention and
minimal vegetation. Transition zones or deteriorated
mangroves are represented by moderate numbers (0.2 -
0.5), including areas in rehabilitative zones at the initial
phase of mangrove development or with patchy mangrove
cover (Xia et al., 2020). Healthy mangrove forests are
characterized by high positive values (0.5-1), indicating
living mangrove ecosystems with high vegetation density
and moisture levels (Xia et al., 2020). So that 2001 has
moderate mangrove depth but less in the northern parts,
and is rich in mangroves southwestern region. The 2013
and 2024 show that the southern and western parts
dominate vegetated areas, including mangrove, but with
less mangrove density loss, so those areas need careful
consideration.

2013
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[ad [ e
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Figure 6. Enhanced Vegetation Index (EVI) map of the study
area for 2001, 2013, and 2024.

When the entire green space area is zero, the EVI is
expected to be 0.24. This is comparable to the average
EVI of 0.28. EVI indicates that 2001 has fewer
mangroves but is rich in mangroves in the southern
regions, whereas vegetative cover is lower in quantity.
2013 and 2024 show that the southern parts are dominant
in vegetation, radiating north-north-eastward in Figure 6.
In future studies, EVI will be used to indicate biomass, as
places with more biomass are associated with greater
biodiversity. This may be especially important in
providing evidence to assist health policy, as research
suggests that biodiversity may promote pathways
associated with favourable health outcomes. EVI ratings
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do not always reflect greater or lesser access or different
forms of publicly accessible green space, nor do they
capture green space patterns in three dimensions.

We compared a satellite-derived environmental
exposure metric (EVI) with two vector-based access
measures for public and private green space. Our findings
revealed that satellite-derived measures, such as EVI,
provided an objective and uniform way to assess
greenness across populations at wide spatial and temporal
scales. EVI quantifies vegetation greenness and serves as
a biomass indicator. To evaluate incremental variations in
EVI (e.g., 0.1 or the interquartile range) within a 300 m
buffer zone, it's important to keep in mind that these
changes may not always reflect changes in overall
greenness.

2001
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Figure 7. Normalized Difference Chlorophyll Index (NDCI)
map of the study area for 2001, 2013, and 2024.
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Figure 7 shows that 2001 had fewer mangroves in
the northern coastal regions, whereas it was rich in
mangroves in the southwestern coastal regions. We
propose a novel, Normalized Difference Chlorophyll
Index (NDCI), and demonstrate its sensitivity to regional
waters. We validated and verified with NDCI by
investigating three datasets that represent distinct
performance and sensitivity to a wide range of water
optical properties. The calibration and validation results
from Landsat datasets demonstrate their potential use for
a wide range of water types and geographical areas. In
this work, we evaluated both criteria during model
validation. In addition, ground truths via field
observations are silently matched with remote sensing
observations.

To calculate the CO, equivalent for both Landsat 5
and Landsat 8 data, the Overall NDVI pixels (vegetation)
obtained through the moderate vegetative pixels
(threshold) (0.010-0.35) and healthy vegetative pixels
(0.35-0.55) were obtained using equations of 6,7,8.
Further, AGB and BGB were measured (eq.9, 10,
11,12,13,14) using existing canopy values from previous
studies as references, as well as the Moderate and
vegetative area-based threshold values observed from the
NDVI (Elmahdy & Ali, 2022; Abu Dhabi Blue Carbon
Demonstration Report (AGEDI), 2014).
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Mangrove biomass increased from 29.7 t/ha (2001)
to 32.7 t/ha (2024), reflecting improved vegetation
density and productivity. Healthy vegetation cover rose
from 23.8% to 27.7%, indicating successful restoration
and stronger ecosystem health.

Carbon storage capacity grew from 13.9 tC/ha to
15.4 tC/ha, enhancing the mangroves’ role as natural
carbon sinks. CO, sequestration potential increased from
51 tCO,/ha to 56 tCO,/ha, demonstrating greater climate-
mitigation impact. Overall, the NDVI-based biomass
index confirms that Abu Dhabi’s mangroves are
recovering, resilient, and vital for blue-carbon initiatives.

Results indicate that in 2001 (Landsat5), the
proportion of healthy mangrove vegetation was higher
than in 2024 (Landsat8); this may explain why the
vegetative cover was more dominated by mangrove
shrubs or less vegetation, rather than healthy vegetation
(including mangroves) (Figure 2). Although CO:-
equivalent values in the datasets show only slight
variation, they have increased gradually over the 24-year
interval. So overall, the mangroves are showing better
vegetation health and a higher capacity to store carbon,
confirming their important role in supporting the UAE’s
blue-carbon and climate goals. Table 3 shows the Total
Biomass, Healthy Vegetation, Carbon Biomass, and CO,
Equivalent from Landsat images by using GIS techniques.

Year NDVI Area of NDVI Area of

S total total (Healthy Healthy
vegetati vegetation Vegetatio (ha)

on (ha) n)

2001 988797 88991.73 235359 21182.3

2013 106285 956565.1 264448 23800.32
02 8

2024 841925 75773.35 232129 20891.61
Healthy Total Carbon CO,
Vegetati Biomass Biomass Equivalent
on (%) (t/ha) (tC/ha) (tCO,/ha)

2001 23.80% 29.66 13.94 51.15

2013 24.88% 30.54 14.35 52.66

2024 27.68% 32.74 15.38 56.44

Table 3. Total Biomass, Healthy Vegetation (ha), Carbon

Biomass, and CO: Equivalent from Landsat Analysis.

According to Field and aerial imagery analysis, the
northern and western regions of Mangrove Marine Park,
Jubail Island, Saadiyat Mangrove Park, and Ras Al
Ghurab have been chosen to count and study because we
observed that those are priority areas for targeted
mangrove and vegetative planting to reduce atmospheric
CO: (Figure 8) from remote sensing observation.
Therefore, the study also shows a similar drastic increase

in CO, year by year, along with a slight decrease in
vegetation, including mangroves. Those are the impacted
areas that need vegetation rejuvenation to avoid CO;
impacts.

$ 12000
g 10000 y=179.58x - 353792
‘E R?=0.9823
‘.E: 8000
% 6000 y=89.792x+ 185371
B4 4000
§ 2000
£
& 0
2005 2010 2015 2020 2025
Years

—a— Mangrove per Hectares (all coverages)
o— (02 Absorption (PPM)

''''' Linear (Mangrove per Hectares (all
coverages))

Figure 8. The Graphical plot of the Mangrove field inventory
observation based on the CO2 estimation

Our findings also confirm that ecological health and
entire greenspace are not linearly associated, and both
should be recognized as distinct exposures to identify the
most promising locations for adopting plantation
(vegetative) measures to reduce carbon. As highlighted by
Friend et al. (2014), it is difficult to develop effective
policies for complex environmental and public health
issues when definitions of exposure to greenness and
access to green space vary. (Figures 2, 7, 8, and Table 3).

4. Conclusion and Recommendations

This study provides significant data on mangrove
mapping and monitoring in the United Arab Emirates
using geoinformatics, remote sensing, and conventional
field assessments. The findings show significant changes
in land use, vegetation health, and mangrove coverage
over 24 years. There were more shrubs and fewer healthy
mangroves, which were probably due to rising
atmospheric CO, levels and related climate effects.
Compared to 2024, data from 2001 showed greater
regions of healthy mangroves, with a decrease in healthy
vegetation and an increase in shrubs. These shifts point to
possible environmental factors that may have altered
growth patterns and ecosystem health, such as rising
atmospheric carbon dioxide levels and climate change.
These results were further supported by the SMRI and
NDVI investigations, which revealed lower vegetation
and density in 2024 than in 2001.

The NDVI and field analyses reveal that Abu
Dhabi’s mangroves have shown steady improvement in
biomass, vegetation health, and CO, sequestration from
2001 to 2024. However, some coastal zones still show
lower vegetation density and limited carbon uptake
potential. Future efforts should prioritize replanting and
rehabilitation in these sparse or degraded areas,
particularly in the southern and inland tidal zones where
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vegetation loss was detected. Expanding mangrove
plantations using native species, improving water
circulation, and applying continuous satellite-based

monitoring will further enhance carbon storage and
ecosystem resilience, supporting the UAE’s Net Zero
2050 goal.

Also, we are concerned and would like to suggest
areas that should be given much consideration in
vegetative planning to reduce CO,. The study further
demonstrated the significance of contemporary remote
sensing capabilities for precise monitoring, finding that
Landsat 8 (2013 and 2024) provided more accurate and
trustworthy data than Landsat 5 imagery. Also, we
suggest that a highly spatially and spectrally available
remotely sensed dataset would be better for future
calculations, and that these calculations should be
detailed, including spatially accurate multispectral and
hyperspectral data. These findings highlight the critical
need for focused conservation and restoration initiatives
to lessen these effects, as they show a two-decade trend in
mangrove health decline. Additional training and practice
are needed to perform this study more accurately, which
may help acquire more data.
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