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Abstract 

 

Nitrogen dioxide (NO₂), a major non-greenhouse gas, significantly impacts air quality and human health, particularly in regions affected 

by large-scale forest fires. The subsequent dispersion of NO₂ plumes is critically influenced by atmospheric conditions and underlying 

terrain, yet the specific role of topography remains under-explored, particularly in post-fire scenarios. This preliminary study 

investigates the influence of topographic features on NO₂ dispersion following the major 2021 Manavgat forest fire in Türkiye, utilizing 

satellite-derived NO₂ concentrations from Sentinel-5P TROPOMI observed during 28th July - 4 August 2021. Topographic variables—

elevation, slope, and aspect—were derived from NASA’s SRTM Digital Elevation Model (DEM - 30 m) to characterize the complex 

terrain. Univariate (UV) Moran’s I was employed to evaluate the spatial autocorrelation of NO₂ concentrations, assessing patterns of 

clustering or dispersion and their relationship with these terrain variables. Results revealed significant positive spatial autocorrelation, 

indicating that higher NO₂ concentrations preferentially accumulated in lower elevations and areas with gentler slopes, while the 

influence of aspect appeared more variable. This suggests that topographic features acted as constraints, potentially trapping the plume 

and enhancing gas retention near the surface in valleys and flatter regions. These initial findings contribute to a deeper understanding 

of terrain-atmosphere interactions governing pollutant behavior in post-fire environments and highlight the importance of incorporating 

topographic parameters into localized air quality monitoring and exposure assessment frameworks. 

 

 
1. Introduction 

Forest fires represent significant natural disturbances 

impacting terrestrial ecosystems globally, particularly in 

Mediterranean regions prone to hot, dry summers (Pausas and 

Fernández-Muñoz, 2012). Beyond devastating vegetation and 

causing biodiversity loss, these events trigger substantial 

emissions of atmospheric pollutants through intense biomass 

combustion (Andreae and Merlet, 2001). Among these 

emissions, NO₂ is a prominent non-greenhouse gas pollutant 

with considerable impacts on environmental quality and 

human health (Wiedinmyer et al., 2006; Kampa and Castanas, 

2008; Jaffe et al., 2020). As a short-lived reactive gas, NO₂ 

plays a crucial role in the formation of tropospheric ozone and 

secondary aerosols like fine particulate matter (PM₂.₅), thereby 

further degrading air quality, especially in fire-affected areas 

(Jaffe and Wigder, 2012; Val Martin et al., 2012). 

 

The concentration and distribution of NO₂ following a wildfire 

are influenced by multiple factors, including fire 

characteristics (e.g., intensity, size, fuel type) and prevailing 

meteorological conditions such as wind speed, atmospheric 

stability, and boundary layer height (Wiedinmyer et al., 2006; 

Jaffe et al., 2020). However, topography often acts as a critical, 

yet sometimes underappreciated, determinant of pollutant 

dispersion and accumulation patterns (Whiteman, 2000). 

Terrain features like elevation, slope, and aspect modulate 

local airflow, influence the formation and persistence of 

thermal inversions, and can create physical barriers or 

channels that either enhance pollutant trapping or facilitate 

dispersion in complex landscapes such as valleys or mountain 

ranges (Zhang et al., 2018). Specifically, elevation affects 

atmospheric pressure and temperature gradients influencing 

vertical mixing; slope impacts near-surface wind dynamics 

and turbulence; and aspect regulates solar radiation, thereby 

influencing surface temperature, fuel moisture, and local 

atmospheric stability, which collectively affect both fire 

behavior and subsequent pollutant transport (Dillon et.al., 

2011; D’Andrea et al., 2016). 

 

The 2021 Manavgat forest fires, among the most destructive 

wildfires recorded in Türkiye in recent decades, represent a 

significant case for examining the relationship between post-

fire NO₂ distribution and topographic variability. Initiated 

almost simultaneously at multiple points within the Manavgat 

district on July 28, 2021, these fires coincided with a period of 

increased surface air temperatures and a prolonged heatwave 

that intensified fire behavior (Acar and Gonencgil, 2023). The 

rapid spread of the fires was further accelerated by extreme 

weather conditions and attributed to several causes, including 

human negligence and possible arson. The event resulted in the 

release of significant amounts of NO₂ and other trace gases and 

provided a unique opportunity to assess how emissions interact 

with the complex topography. Specifically, it allows for the 

investigation of how the region’s complex structure may have 

influenced the transport and accumulation of pollutants, how 

topographic features may have redirected airflow by altering 

wind speed and direction, and whether they facilitated 

pollutant accumulation in topographically enclosed areas 

(Rotach and Zardi, 2007; Soler et al., 2011). 

 

Advances in remote sensing and spatial analysis have greatly 

enhanced our ability to monitor and model atmospheric 

composition over complex terrains. Earth observation 

instruments, notably the Sentinel-5P TROPOMI 

(Tropospheric Monitoring Instrument) sensor, provide high 

spatial resolution measurements of atmospheric NO₂, enabling 

detailed assessments of fire-induced pollution plumes (Griffin 
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et al., 2021; Veefkind et al., 2007). Concurrently, DEMs, such 

as NASA’s SRTM dataset, allow for the precise derivation of 

terrain metrics essential for environmental modeling and 

understanding landscape influences (Farr et al., 2007). 

 

Understanding the spatial dependencies between pollutant 

concentrations and landscape features requires appropriate 

analytical tools. Given that terrain characteristics can 

significantly impact pollutant dispersion, leading to non-

random spatial patterns, spatial statistical methods are 

essential. This study utilizes Moran's I, a key measure of 

spatial autocorrelation, to investigate these patterns (Moran, 

1948; Goodchild, 1986; Atalay et al., 2025). Moran's I 

quantifies whether the observed spatial distribution of a 

variable, such as NO₂ concentration, exhibits clustering (high 

values near high values, low values near low values), 

dispersion (high values near low values), or spatial 

randomness. Specifically, UV Moran’s I is employed to assess 

the spatial autocorrelation inherent within the NO₂ 

concentration data captured during the fire event itself 

(Anselin, 1995; Griffith, 2003; Atalay et al., 2025). Using this 

approach, it can be statistically tested whether the observed 

NO₂ distribution significantly deviates from spatial 

randomness. Detecting significant spatial clustering (a positive 

Moran's I) would lend support to the hypothesis that 

underlying factors, potentially including topographic features 

like valleys acting as traps or slopes influencing local airflows, 

are systematically structuring the NO₂ distribution rather than 

it being randomly scattered. Therefore, the primary objective 

of this research is to apply UV Moran’s I to satellite-derived 

NO₂ data from the 2021 Manavgat wildfires to quantify the 

degree of spatial autocorrelation. Through the analysis of these 

spatial patterns, the study aims to provide an quantitative 

insights into how complex terrain features may have 

influenced the accumulation and dispersion of NO₂ during this 

major fire event, ultimately contributing to a better 

understanding of pollutant dynamics in fire-prone, 

topographically diverse regions. 

 

2. Study Area and Data  

2.1   Study Area  

 

This study focuses on the Manavgat district, situated in the 

southern Mediterranean region of Türkiye (Figure 1). The 

region experiences a typical Mediterranean climate 

characterized by hot and arid summers, making it prone to 

wildfires. Reflecting this vulnerability, Manavgat was among 

the areas most severely affected during the extensive 2021 

wildfire season. The fires resulted in a total burned area of 

approximately 54,8 ha, primarily within Manavgat but also 

extending into the adjacent districts of Ibradı and Akseki. In 

this fire-affected region, there are three large reservoirs - 

Naras, Manavgat and Oymapinar - which are crucial water 

sources for firefighting operations (Atalay et al., 2025). 

Ecologically, the area belongs to the Mediterranean forest 

biome, dominated by fire-prone coniferous species such as 

Black Pine (Pinus nigra) and Calabrian Pine (Pinus brutia).  

 

Critically for this research, the Manavgat region exhibits 

significant topographic variability. Elevation ranges from 2 m 

near the coast to 1657 m in the mountainous interior (mean: 

396 m), while slope angles vary widely from nearly flat (0°) to 

very steep (up to 80°, mean: 15°). Specifically, the terrain 

transitions from low-lying coastal plains near sea level in the 

south to mountainous regions exceeding 1000 meters in 

elevation toward the north and northeast. The central and 

eastern portions of the area display particularly steep elevation 

gradients, featuring deeply incised valleys and fragmented hill 

systems (Figure 2). This complex and rugged terrain, 

combined with the occurrence of a major fire event generating 

substantial NO₂ emissions, makes the Manavgat district a 

particularly suitable location for investigating the role of 

topography in influencing atmospheric pollutant dispersion. 

 

 
Figure 1. Study area. (Top) Map showing the location of 

Manavgat within Türkiye. (Bottom) Digital Elevation Model  

of the Manavgat fire-affected zone. 

 

2.2. Data 

2.2.1  NO₂ Concentration Data 

 

Tropospheric NO₂ vertical column consantrations were 

obtained from the Sentinel-5P TROPOMI sensor. TROPOMI 

provides daily global observations with a nominal spatial 

resolution of approximately 3.5 × 5.5 km at nadir, suitable for 

monitoring pollution plumes from large events (Ialongo et al., 

2020; Veefkind et al., 2012). To specifically capture the 

impact of the fire on atmospheric composition during its most 

intense phase, satellite data corresponding to the period of 

peak fire activity (primarily July–August 2021) were selected 

for this study. These data were then temporally organized to 

generate representative NO₂ distribution maps for the main fire 

event duration.  

 

2.2.2 Topographic Data and Terrain Derivatives 

 

Given the potential influence of terrain on atmospheric 

transport processes outlined previously, topographic variables 

were incorporated into the analysis. These variables were 

derived from the Shuttle Radar Topography Mission (SRTM) 

1 Arc-Second Global DEM, provided by NASA. This dataset 

offers a spatial resolution of approximately 30 meters and 

provides sufficient vertical accuracy for regional-scale 

environmental studies (Farr et al., 2007). Using standard 

Geographic Information System (GIS) terrain analysis tools 

(e.g., within QGIS software), three primary topographic 

parameters were extracted from the DEM (Figure 2): 

(i) Elevation (m): Represents the height above mean sea level. 
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(ii) Slope (°): Quantifies the steepness or the rate of elevation 

change per unit distance. 

(iii) Aspect (°): Indicates the directional orientation of the 

slope (e.g., North-facing, South-facing), typically measured 

clockwise in degrees from North (0° to 360°). These terrain 

derivatives served as key spatial variables for assessing 

potential terrain-induced variability in NO₂ distribution 

patterns during the fire event. 

 

 
Figure 2. Primary topographic parameters extracted from 

NASA’s 30 m SRTM DEM for the Manavgat fire-affected 

region: (a) Elevation map. (b) Slope map. (c) Aspect map. 

 

As shown in Figure 2, the study area exhibits a diverse 

topographic structure characterized by variations in elevation, 

slope, and aspect. According to the DEM, elevations range 

from approximately 0 to over 1657 meters. Higher elevations 

are predominantly concentrated in the northern and 

northwestern sections of the study area, whereas the southern 

and southeastern parts are generally characterized by lower 

elevations approaching sea level. The slope analysis reveals 

that the majority of the region features moderate slopes, 

primarily between 6° and 20°. Steeper slopes (greater than 30°) 

are particularly concentrated in the northern zones, 

corresponding to higher elevation areas. Flat or gently sloping 

terrains (≤ 2°) are more commonly observed in the southern 

and coastal portions of the study area. The aspect map further 

highlights the directional orientation of the terrain. The study 

area shows a heterogeneous distribution of aspects; however, 

south-facing (157.5°–202.5°) and southwest-facing (202.5°–

247.5°) slopes are notably prominent. This orientation could 

influence microclimatic conditions, solar radiation exposure, 

and consequently, the behavior of pollutant dispersion and 

vegetation recovery following fire events. 

 

3.  Methodology 

 

The analytical methodology employed in this study followed 

three main stages: (1) Data preparation and preprocessing, (2) 

Spatial autocorrelation analysis, and (3) Evaluation, as 

illustrated in the workflow diagram (Figure 3). Each stage is 

detailed in the subsequent subsections. 

 

 
Figure 3. Flowchart of the study. 

 

3.1 Data Preparation and Preprocessing 

 

This initial stage focused on preparing the datasets described 

in Section 2 (Sentinel-5P NO₂ and SRTM DEM derivatives) 

for the spatial analysis. Key steps included: 

 

― Processing Sentinel-5P NO₂ data: This was performed 

within Google Earth Engine (GEE). To ensure data 

reliability and exclude observations potentially affected by 

cloud cover or retrieval errors, pixels not meeting the 

recommended Quality Assurance threshold (QA value > 

50%) were filtered out, following standard operational 

guidelines. 

― Temporal consistency: The analysis utilized the 

temporally organized NO₂ data corresponding to the peak 

fire activity period (July-August 2021), as mentioned in 

Section 2.2.1. 

― Spatial harmonization: All spatial data layers (NO₂ and 

DEM derivatives) were projected to a common coordinate 

system (UTM Zone 36N) to ensure spatial consistency. 

― Data Resolution: The analysis used the Sentinel-5P NO₂ 

data from GEE at its provided spatial resolution of 1.1 km. 

This dataset was used to create the primary input variable 

map. 

 

3.2 Spatial Autocorrelation Analysis 

 

To investigate the spatial patterns of NO₂ concentrations 

during the fire event, spatial autocorrelation analysis was 

performed using the UV Moran's I statistic. This statistic 

quantifies the degree to which NO₂ values at nearby locations 

are similar or dissimilar, indicating clustering, dispersion, or 

spatial randomness (Moran, 1948; Anselin, 1995). 

Computations were carried out using the PySAL (Python 

Spatial Analysis Library) (Rey and Anselin, 2007). 

 

Two forms of UV Moran's I were calculated, as detailed in 

Table 1: 

― Global Moran's I: Provides a single value summarizing the 

overall degree of spatial autocorrelation across the entire 

study area. 

― Anselin's Local Moran's I (LISA - Local Indicators of 

Spatial Association): Detects statistically significant 
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spatial clusters and spatial outliers. It identifies High-High 

(HH) clusters (areas where high NO₂ concentrations are 

surrounded by other high values) and Low-Low (LL) 

clusters (areas where low concentrations are surrounded 

by low values), as well as spatial outliers, including High-

Low (HL - high values surrounded by low values) and 

Low-High (LH - low values surrounded by high values) 

patterns. 

 

Statistic Explanation Equation 

Global 

Moran’s I 

Summarizes 

the overall 

spatial 

autocorrelation 

across the 

entire study 

area. 

 

Anselin’s 

Local 

Moran’s I 

(LISA) 

Identifies 

localized 

clusters and 

spatial 

outliers. 
 

In both equations, x represents the variable, and 𝑥̅   
denotes its mean. The term 𝑥𝑖  signifies the value of the 
variable at a specific spatial unit (e.g., pixel), while 𝑥𝑗 
represents the value of at another unit. Here, n refers to 
the total number of spatial units, and 𝑤𝑖𝑗 is the row-
standardized weight matrix. 

Table 1. UV Moran’s I statistics used. 

 

A crucial step in calculating Moran’s I is the definition of 

spatial proximity through a spatial weights matrix (wij). In this 

study, a first-order Queen contiguity weights matrix was 

adopted, where adjacent grid cells sharing either an edge or a 

corner are considered neighbors. To ensure comparability 

across observations, the weights matrix was row-standardized, 

assigning equal total influence to each spatial unit. 

 

4. Results 

Figure 4 shows dynamic day-to-day variations in the spatial 

distribution and intensity of NO2 concentrations from July 

28th to August 4th. Starting with low levels across the region 

on July 28th, a dramatic increase occurred on July 29th, 

leading to widespread high concentrations (approaching or 

exceeding 0.0002 mol/m²) primarily across the western and 

central areas, a pattern which largely persisted through August 

1st. A notable shift occurred on August 2nd and 3rd, where the 

highest NO2 levels became distinctly localized in the 

northwestern sector, closely corresponding to the indicated fire 

activity in that zone, while concentrations elsewhere 

decreased. By August 4th, a general reduction in NO2 was 

evident across the monitored area, with only moderate 

concentrations remaining in the north-central region. Overall, 

the highest NO2 concentrations consistently appeared near the 

active fire zones, but the specific location and extent of the 

plume varied significantly daily, underscoring the dynamic 

influence of fire behavior and likely transport patterns. 

 

 
Figure 4. Daily NO2 concentrations derived from Sentinel-5P 

satellite data. 

 

As the next step, spatial autocorrelation analysis was 

conducted by calculating the UV Global Moran’s I values for 

NO₂ concentrations during the study period (Figure 5). The 

results reveal a strong spatial autocorrelation, with Moran’s I 

values consistently ranging from 0.90 to 0.94 across the entire 

observation period. While slight variations are observed on 

different days, the spatial association of NO₂ concentrations 

remains robust, as evidenced by values consistently exceeding 

0.90. 

 

 
Figure 5. UV Global Moran’s I values for NO2 from 28 July to 

4 August 2021. 

 

Following the UV Global Moran’s I analysis, which provided 

an overall indication of spatial autocorrelation across the study 

area, the UV Local Moran’s I was applied to identify specific 

regions exhibiting significant clusters of high or low NO₂ 

concentrations (Figure 6). HH clusters were frequently 

observed in low-lying areas. In contrast, LL clusters were more 

prevalent in regions farther from the fire fronts or in areas 

where firefighting interventions may have successfully 

reduced fire intensity. Furthermore, NO₂ plumes appeared to 

remain more localized around the most intense combustion 

zones. The distinct day-to-day fluctuations in NO₂ 

concentration patterns and associated cluster configurations 

highlight the dynamic influence of environmental factors—

including topography, wind speed and direction, and 

proximity to active ignition points—on the spatial distribution 

and temporal evolution of these fire-emitted gases. 
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Figure 6. Daily NO2 cluster patterns calculated using UV 

Local Moran’s I. 

 

As the final step, given that this study focused exclusively on 

the impact of topography, Figure 7 provides insights into the 

topographic characteristics associated with statistically 

significant spatial clustering of NO₂ concentrations, identified 

as HH and LL clusters based on the UV Local Moran's I 

analysis, during the period from 28 July to 4 August. The 

analysis examines the daily distribution of the area (in 

hectares) covered by these clusters across different elevation 

(DEM), slope, and aspect categories. 

 

Elevation (DEM): The Local Moran’s I clustering reveals that 

high fire density clusters (HH) predominantly occurred in low-

altitude zones (0–500 m), particularly during the early fire 

days (28–31 July). This suggests a statistically significant 

spatial concentration of burned areas in lower elevations, 

possibly valleys or plains (Figure 7a). UV-LL clusters, 

indicating areas of low NO2 surrounded by other low values, 

are also most prevalent in the 0-500m range, particularly 

peaking later in the period (e.g., August 3rd). However, LL 

clusters show a more substantial presence in the mid-elevation 

range (500-1000m) compared to HH clusters, and even some 

presence at the highest elevations (>1000m). This implies that 

areas with consistently low NO2 (relative to their 

surroundings) occurred across a wider elevation spectrum, 

potentially representing unburnt areas, regions far from the 

main plume, or zones where fire activity had diminished or 

was suppressed.  
 
Slope: Slope-based LISA analysis indicated that HH clusters 

were mainly concentrated within the 6°–20° slope classes, 

especially during the days with the most extensive high NO2 

concentrations (July 29-31), confirming the critical role of 

moderate slopes in facilitating fire expansion through 

topographically enhanced convection and fuel continuity 

(Figure 7b). Areas with very gentle slopes (< 6 degrees) and 

very steep slopes (> 30 degrees) generally host smaller areas 

of HH clusters. Similarly, UV-LL clusters also peak in the 

moderate slope categories, notably within the 12-20 degree 

range (especially prominent around August 3rd), but also 

significantly in the 6-12 and 20-30 degree ranges. Compared 

to HH clusters, LL clusters seem slightly more distributed 

across the slope spectrum, potentially occupying larger areas 

on both gentler and steeper slopes relative to the HH peaks. 

This suggests that while fire activity leading to high NO2 might 

favor certain moderate slopes, factors leading to low NO2 

concentrations (like distance, wind patterns, or suppression) 

occur across a somewhat broader range of slope steepness. The 

wider slope distribution of UV-LL clusters may reflect areas 

where NO₂ levels remained low due to various factors such as 

distance from active fire zones, local topographic shielding, or 

the presence of firebreaks. These patterns could also be 

influenced by localized atmospheric conditions that limited 

pollutant accumulation, although further analysis would be 

needed to confirm such effects. 
 

 
Figure 7. Daily distribution of UV Local Moran’s I HH and 

LL NO2-based clusters across different elevation, slope and 

aspect ranges.  

 

Aspect: Compared to elevation and slope, the influence of 

aspect (slope direction) appears more variable and less 

decisive, suggesting that atmospheric circulation and fire 

behavior dynamics exert greater control over the observed 

spatial clusters (Figure 7c). Both UV-HH and UV-LL clusters 

are distributed across various aspects on different days. During 

the peak NO2 period (July 29-31), HH clusters cover 

considerable areas on multiple aspects, with perhaps a slight 

tendency towards East, Southeast, South, Southwest, and West 

aspects compared to North-facing slopes. It is thought that 

these aspects receive higher solar radiation, enhancing surface 

dryness and fuel flammability, thus forming spatially coherent 

high-risk zones. UV-LL clusters also show a wide distribution, 

with Southwest and West aspects frequently showing large 

areas, particularly in the later days (August 2-4). South and 

Southeast aspects also contribute significantly to LL cluster 

areas. Although north-facing aspects exhibit relatively smaller 

clustered areas, both HH and LL clusters are still present. The 

daily variability suggests that aspect preference is likely 

strongly modulated by other factors, primarily wind direction 
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and potentially diurnal heating effects influencing fire spread 

and plume transport. 

 

5. Conclusion 

 

This study applied spatial autocorrelation analysis, specifically 

UV Moran's I, to examine satellite-derived NO₂ concentrations 

during the 2021 Manavgat wildfire. The results provide 

quantitative insights into how complex topography influenced 

NO₂ accumulation and dispersion throughout this major fire 

event, thereby advancing the understanding of pollutant 

dynamics in fire-prone, topographically heterogeneous 

regions. 

 

By integrating topographic variables with UV Local Moran’s 

I, the analysis reveals that wildfires and their emissions exhibit 

significant spatial clustering shaped by terrain characteristics. 

HH clusters were consistently associated with low elevations 

(below 500 meters), moderate slopes (6–20 degrees), and sun-

exposed aspects—conditions conducive to fire ignition and 

spread. Although the role of aspect showed greater day-to-day 

variability, likely driven by wind and fire behavior, the 

findings emphasize the critical influence of elevation and slope 

in shaping NO₂ distribution patterns during the fire. These 

spatial patterns offer valuable guidance for targeted wildfire 

management and underline the importance of incorporating 

spatial statistics into fire risk and air quality assessments. 
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