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Abstract

This study investigates the behaviour of segmentation accuracy metrics in object-based image analysis (OBIA) using synthetic urban
objects. Monitoring land cover through high-resolution imagery relies heavily on accurate segmentation, which directly influences
classification performance. A synthetic dataset was created with a fixed-size reference square and varying-sized square segments
positioned systematically to analyse spatial and geometric relationships. Six widely used accuracy metrics were evaluated: Area Fit
Index (AFI), Match (M), Quality Rate (QR), Over-Segmentation (OS), Under-Segmentation (US), and Quality of Object Location
(gLoc), representing both area-based and location-based criteria.

Results reveal that area-based metrics generally show consistent trends and similar sensitivity to changes in segment size and geometry,
while location-based metrics exhibit independent patterns emphasizing spatial positioning and locational accuracy. This divergence
highlights the limitations of relying solely on either metric type, advocating for an integrated evaluation framework combining both
area and location criteria to achieve a more comprehensive assessment of segmentation quality. The study suggests that future research
should incorporate more complex and irregular urban object shapes and explore additional metrics, such as boundary-based or context-
aware measures. Furthermore, the identification of optimal segmentation configurations guided by these metrics could enhance training

data quality for deep learning applications in urban object classification.

1. Introduction

Monitoring land cover is a fundamental requirement for the
sustainable management of natural resources, environmental
conservation, and the assessment of climate change impacts.
Remote sensing techniques provide a robust framework for
detecting and analysing land cover dynamics. The literature
highlights that object-based image analysis (OBIA) significantly
enhances classification accuracy for high-resolution imagery by
addressing the inherent limitations of pixel-based techniques.
OBIA interprets groups of neighbouring pixels -called segments-
as visually meaningful objects, rather than analysing individual
pixels. The segmentation process, which divides imagery into
homogeneous regions, is a crucial pre-processing step in OBIA.
The accuracy of subsequent classification depends on both the
segmentation method and the selection of optimal parameters,
which are influenced by data quality.

Segmentation methods are typically classified as edge-based,
area-based, or threshold-based. Tools such as the Estimation of
Scale Parameter (ESP) toolbox (Dragut et al., 2010; 2014) assist
in identifying appropriate scale parameters for multi-resolution
segmentation, but do not directly evaluate segmentation
accuracy, which remains an ongoing challenge in OBIA
workflows. Segmentation accuracy can be assessed using
qualitative (visual interpretation) or quantitative (metric-based)
approaches (Kotaridis and Lazaridou, 2021). Quantitative
evaluations involve comparing classification accuracies or
measuring geometric mismatches between segments and
reference objects (Zhang et al., 2015). These mismatches are
typically assessed using area-based or location-based metrics,
focusing on overlap or spatial proximity (Clinton et al., 2010).

Urban features, especially buildings, are among the most
frequently studied object classes due to their regular geometries
and relevance in land use classification (Zhang et al., 2023;
Vasavi et al., 2023). Moreover, their clearly defined shapes make
them particularly suitable for evaluating segmentation accuracy
(Akcay et al., 2022; Xu et al., 2023). For example, Jozdani and
Chen (2020) first analysed eight regularly shaped buildings of

varying sizes to identify patterns in segmentation metrics and
then validated their findings on a randomly selected sample of
100 buildings. Their study revealed discrepancies among
commonly used evaluation criteria, highlighting the need for
further investigation. Simdes et al. (2023), on the other hand,
developed an R package called segmetric to enable the analysis
of the metrics proposed and applied in segmentation accuracy
studies.

The presented study constructs a synthetic dataset to represent the
building class and systematically evaluates segmentation
accuracy using six widely cited metrics: Area Fit Index (AFI),
Match (M), Quality Rate (QR), Over-Segmentation (OS), Under-
Segmentation (US), and Quality of Object Location (gLoc). By
comparing the areal and spatial relationships between segments
(represented as squares of varying sizes) and a fixed-size
reference object, the study aims to clarify the behaviour of area-
based and location-based metrics under controlled conditions.
The results show that area-based metrics generally produce
consistent values, while location-based ones display independent
patterns, offering new insights into metric selection in OBIA
validation.

2. Synthetic Dataset Design for Segmentation Metric
Evaluation

The synthetic dataset consists of a fixed reference sample
represented by a square with an edge length of fifty units. The
segments to be compared are also squares, but with varying edge
lengths ranging from ten to one hundred units, increasing in
increments of ten units, and positioned differently relative to the
sample. The dataset was generated within a two-dimensional
Cartesian coordinate system, where the reference sample square
was fixed at the origin for consistency. Segments were positioned
systematically by defining their centroid coordinates relative to
the sample to ensure precise control over spatial relationships. To
investigate the impact of area differences between the sample and
segments on the evaluation criteria, each segment set contains
squares of uniform edge length distinct from other sets. Within
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each segment set, the segment was initially positioned to create a
fixed intersection area of one hundred square units with the
sample. This intersection area was computed analytically using
geometric formulas for the overlap of two axis-aligned squares.
Following this initial positioning, the segment was incrementally
shifted in ten-unit steps upward and to the right (along the
positive y- and x-axes), creating multiple spatial configurations.
This systematic repositioning was designed to reveal how
changes in intersection and adjacency areas, as well as centroid
displacements, influence the segmentation accuracy metrics.

For segment sets with edge lengths varying from ten to one
hundred units, the number of positional shifts ranged from five to
fourteen, depending on the segment size and the ten-unit
increment steps. This resulted in a total of 985 sample-segment
intersection configurations, calculated as the sum of all
movement steps across segment sizes. The intersection pattern
observed for 50-unit segments is also seen in the 10-, 30-, 70-,
and 90-unit segments, while the pattern for 60-unit segments
resembles those of the 20-, 40-, 80-, and 100-unit segments.

Given the symmetrical properties of the evaluation criteria
employed in this study, specifically those related to area overlap
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and spatial proximity, redundant segment positions were
identified and removed to optimize the dataset. For instance,
rows and columns that were symmetrical with respect to the
dataset matrix exhibited identical metric values and were
therefore excluded. Figure 1 illustrates this data reduction
approach, where intersections highlighted in blue and green
represent redundant entries that were removed. Furthermore,
diagonal symmetry allowed for additional pruning of the dataset,
leaving only the unique intersection configurations within the

magenta region necessary for evaluation, while excluding those
in the red region.

The entire dataset, including segment coordinates and computed
intersection areas, was stored in matrix form to facilitate efficient
computational processing. It is important to note that while the
use of square shapes simplifies geometric calculations and allows
precise control of spatial parameters, it also introduces
limitations. Real urban objects, such as buildings, often exhibit
irregular shapes and orientations, and environmental factors
affecting segmentation accuracy were not modelled in this
synthetic dataset.
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Figure 1. Visualization of sample—segment intersections in the synthetic dataset and reduction approach (left: segments with edge

lengths of 50 units, right: segments with edge lengths of 60 units).
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Figure 2. Synthetic segment sets categorized by size; segment IDs progress from left to right and top to bottom within each panel,
starting at Ss = 100 (ID 1 - 28) and continuing sequentially down to Ss = 10 (ID 155 - 160).
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As a result, in the synthetic dataset, segments with edge lengths
of 100 and 90 units have 28 intersection positions each; those
with edge lengths of 80 and 70 units have 21 intersections;
segments of 60 and 50 units have 15 intersections; 40 and 30 unit
segments have 10 intersections; and segments of 20 and 10 units
have 6 intersections each. Figure 2 illustrates the total 160
segment sets organized by segment size, with their corresponding
Data IDs start from the top-left corner of a segment set with 100-
unit edge length and progresses in the horizontal direction (left to
right). Upon reaching the end of each row, the numbering
continues from the leftmost cell of the next row below. Once all
segments in a given set are numbered, the same spatial pattern is
maintained, and ID assignment continues from where it left off
in the subsequent segment set.

3. Segmentation Accuracy Metrics

Research on segmentation accuracy criteria began in the late
1990s, leading to the proposal of various evaluation metrics by
numerous researchers. Costa et al. (2018) provide a
comprehensive review of these criteria, categorizing them into
area-based and location-based metrics. Their review also
includes combined geometric metrics. Another significant
contribution is by Clinton et al. (2010), who analysed
segmentation accuracy criteria by applying them to an RGB
aerial image segmented with different parameter combinations of
scale, shape, and compactness.

In the present study, several widely used area-based criteria -
Area Fit Index (AFI), Match (M), Quality Rate (QR), Over
Segmentation (OS), and Under Segmentation (US) - along with
the location-based criterion, quality of the object’s location
(gLoc), are examined. For describing the criteria metrics; Xi
denotes the sample where X = {xi: i =1 : n} is the set of n training
objects, while y;j denotes the segment where Y = {yj:j=1:m}
is the set of m segments intersects with sample xi.

The AFI (1) criterion, introduced by Lucieer and Stein (2002),
measures the percentage of the intersection between a segment
and the reference sample with which it overlaps the most. In the
AFI metric, the optimal value, representing a perfect overlap
between the sample and segment areas, is zero. The maximum
possible value depends on the relative sizes of the sample and
segment areas and can be as high as one, while the minimum
value can approach negative infinity. A significant drawback of
the AFI criterion is that it assigns the same value to segments of
identical size regardless of the actual overlap with the sample,
potentially overlooking differences in intersection quality.

area(x;) — area(y]-)

AFLj = €y

area(x;)

Janssen and Molenaar (1995) proposed the M (2) criterion, which
considers the relationship among the intersection area, sample
area, and segment area. M is calculated by dividing the square of
the intersecting area by the product of the sample and segment
areas. A value of 1 indicates the best possible match between
segment and sample, whereas O represents no overlap,
corresponding to the worst-case scenario (Feitosa et al., 2010).
Unlike other criteria, since the optimal value for M is 1, it was
transformed to 1 — M for standardization during evaluation.
Although a larger intersection area generally improves the M
value, a smaller segment area can also lead to equal or better M
values.
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The QR (3) criterion, suggested by Weidner (2008), is the ratio
of the intersection area to the combined area of the sample and
segment (including their junction). QR’s advantage over other
area-based criteria lies in accounting for both correctly
intersecting areas and total junction areas (Clinton et al., 2010).
Its values range from 0 to 1, with O being optimal. Since the
junction area is smaller when segment areas are small, QR may
yield better results even if the intersection area is reduced.
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Persello and Bruzzone (2010) introduced the OS (4) and US (5)
criteria, which represent the relations between the intersection
area and the sample and segment areas, respectively. Under
segmentation occurs when neighbouring pixels belonging to
different classes are incorrectly grouped into a single object,
while over segmentation happens when pixels that should belong
to one object are split into multiple objects (Costa et al., 2018).
These criteria are graded similarly to QR. However, when
considered separately, OS and US may overlook the respective
areas of segment and sample, potentially resulting in
contradictory values; for example, a low US coupled with a high
OS. Consequently, Weidner (2008) and Levine and Nazif (1982)
recommended combining these measures, and their combined
metric, Over-Under Segmentation (OUS) (6), is discussed in this
study.
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Although the criteria discussed so far evaluate sample and/or
segment areas or intersection and/or junction areas, they do not
account for positional differences between the sample and
segment. To address this, the location-based gLoc (7) criterion
proposed by Zhan et al. (2005) was also evaluated. The glLoc
criterion calculates the Euclidean distance between the centroids
of the sample and segment. As the distance between centroids
increases, the glLoc value increases, negatively impacting
segmentation accuracy. The optimal gLoc value is 0 (indicating
perfect centroid overlap), while the maximum value is
unbounded, approaching infinity. This wide range necessitates
normalization of gLoc values. Accordingly, the Relative Position
(RP) (8) normalization method recommended by Moller et al.
(2007) was applied. RP is computed by dividing the centroid
distance of a sample and an intersecting segment by the
maximum gLoc value among all segments intersecting that
sample. Given that segment sizes are generally uniform;
normalization was applied within each segment set. However,
since gLoc is solely distance-based, it may not fully capture the
fit quality between sample and segment.
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4. Evaluation of Segmentation Accuracy Metrics on
Synthetic Datasets

The synthetic datasets were evaluated using the criteria whose
metrics and limitations were previously defined, and the
corresponding numerical results are summarized in Figure 3. The
evaluations of the intersections between the sample objects and
the 50- and 60-unit segments are presented in tabular form as
examples in Appendix A. The analyses yield the following key
insights:

1. The Area Fit Index (AFI) criterion exhibits invariant values
within each synthetic dataset.

2. lrrespective of the intersection (or junction) areas,
discrepancies between sample and segment area sizes result
in deviations of the AFI criterion from its optimal value.

3. When the intersection (or junction) areas of the sample and
segment are equivalent:
a. The metrics M, QR, and OUS display identical values
within their respective categories.
b. In contrast, the RP metric demonstrates variability.

4. As the intersection area between sample and segment
increases (concomitant with a reduction in junction areas):

a. M, QR, and OUS criteria values uniformly decrease,
maintaining a consistent rank order.

b. When the segment area is smaller than the sample area,
RP values similarly decrease and conform to the order
established by the other criteria.

c. Conversely, if the segment area exceeds the sample area,
RP values may remain constant or increase, thereby
diverging in rank order relative to the other criteria.
Specifically, within the following sample-segment
intersections, despite increased intersection areas (which
correspond to lower area-based criterion values), RP
values are elevated:

i.  Ss100 dataset:

1. RPg> RPs, RPs, RP7
2. RP1is =RP12>RP13
3. RP19>RP17, RP1s

ii.  Ss90 dataset:
1. RP37> RP3s3, RP3s4, RP3s
2. RP47 > RP4ss, RP4s

iii.  Ss80 dataset:
1. RPss > RPe2

5. In cases where the sample is entirely enclosed within the
segment (intersection area equals sample area and junction
area equals segment area), or reciprocally, where the segment
is fully enclosed within the sample:

a. The M, QR, and OUS metrics yield consistent values
within their groups.
b. The RP metric may present variable values.
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Figure 3. Segmentation accuracy criteria values of the synthetic datasets for a fixed sample size (50 units) and varying segment sizes
(Ss = 100-10), with RP, QR, M, and OUS plotted on the left Y-axis and AFI on the right Y-axis.

The evaluations outlined above are exemplified in Figure 4. In
cases where the intersection areas of the sample and segment are
equivalent, whether the segment area is larger (1D: 44, 45, 46) or
smaller (ID: 144, 145) than the sample, the area-based criteria
remain constant within their group, while RP values vary slightly
due to spatial alignment differences. This variation, however, has
only a limited effect on the overall representativeness when the
intersection ratio is fixed. A similar behaviour is observed when
the segment is fully contained within the sample (ID: 146, 147,

148), where RP decreases gradually as the segment shifts within
the sample, reflecting positional sensitivity but without
substantially altering the representativeness relationship. By
contrast, variations in RP become more pronounced when the
sample is entirely enclosed within the segment (ID: 75, 76, 77),
as the segment’s dominance amplifies the influence of alignment
on representativeness. Moreover, as the intersection between the
sample and segment increases in cases where the segment area is
smaller than the sample (1D: 142, 143, 144), RP values follow the
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decreasing trend of the area-based criteria. Conversely, when the
segment area exceeds the sample area (ID: 46, 47), RP values
may increase despite the decline observed in the area-based
criteria, highlighting the need to consider which type of metric
should be prioritized when evaluating representativeness.

The area-based metrics—M, QR, and OUS—exhibit a consistent
decreasing trend as intersection areas increase, maintaining their
relative ranking and offering a stable characterization of
geometric overlap. In contrast, the location-based RP metric
occasionally diverges from this trend, showing constant or even
elevated values under certain configurations. This behaviour
reflects RP’s sensitivity to spatial alignment, which complements

the strictly area-focused nature of the other metrics. Notably,
segments with identical area-based values can show varying RP
scores, with some achieving the best alignment within their set.
Conversely, segments sharing the same RP may differ in their
area-based scores. This underscores the complementary roles of
these metrics in evaluating segmentation performance. These
patterns indicate that while area-based metrics reliably quantify
the extent of overlap, RP captures differences in spatial
configuration and object alignment—providing complementary
insight into segmentation accuracy. To illustrate these behaviors,
Appendix A presents a representative subset of 44 intersections
selected to highlight extreme, median, and divergent scenarios
across both area-based and location-based metrics.

ID: 44 ID: 45 ID: 46 ID: 47 ID: 75 ID: 76 ID: 77

M= 0.667 M= 0667 M= 0.667 M= 0.644 M=0.375 M=0.375 M= 0.375
QR=0.835 QR=0.835 QR=0.835 QR=0.822 QR=0.609 QR=0.609 QR=0.609
OUS=0.642 OuUS= 0642 OUS= 0642 OUSs=0.622 QOUS=0.431 0OuUs=0.431 OUS=0.431
RP=0.527 RP=0.486 RP=0.4T71 RP=10.500 RP=10.273 RP=0.203 RP=0.091
ID: 142 ID: 143 ID: 144 1D: 145 1D: 146 ID: 147 ID: 148
M=0.800 M=0.733 M= 0.600 M= 0.600 M= 0.400 M= 0.400 M= 0.400
QR=0.903 QR=0.867 QR=0.786 QR=0.786 QR= 0640 QR=0.640 QR= 0640
0OuUS=0.781 Ous=0.712 OuUs=0.587 QuUs=0.587 QUSs=0.453 0OUS=0.453 QUS=0.453
RP=0.707 RP= 0667 RP=0.527 RP=0.471 RP=0.333 RP=0.236 RP=0.000

Figure 4. Comparison of M, QR, OUS, and RP metrics for varying intersection and segment sizes.

5. Conclusion and Future Work

The results of the segmentation accuracy assessment indicate that
area-based metrics exhibit largely consistent trends across the
synthetic datasets, demonstrating similar sensitivity to variations
in segment geometry and scale. In contrast, location-based
metrics display an independent behavioural pattern, highlighting
a different dimension of segmentation quality—particularly
spatial positioning and locational consistency. This divergence
reveals the inherent limitations of relying solely on either metric
type, suggesting that individual use may provide an incomplete
assessment of segmentation quality. Specifically, metrics such as
the Area Fit Index (AFI), despite their utility, can be insensitive
to the degree of spatial congruence between segment and sample
boundaries, potentially limiting their discriminative power in
certain scenarios.

Therefore, it is critical to integrate both area-based and location-
based criteria within a combined evaluation framework. While
area-based metrics quantitatively capture segment-sample
overlap, location-based metrics complement this by detecting
positional deviations between objects. Such an integrated
approach enables a multidimensional and more holistic analysis
of segmentation performance, supporting more robust and
reliable decision-making for optimal parameter selection and
subsequent classification tasks.

This study employed a synthetic dataset with regular geometries
to evaluate the behavioural differences among widely used
segmentation accuracy metrics. While this controlled setup
allows for isolating specific spatial and geometric factors, future
studies can benefit from introducing more diverse and complex
object forms. For example, datasets including rotated, L-shaped,
or irregularly contoured building geometries would better reflect

the variability of real urban environments. Such additions would
enable further analysis of how different segmentation metrics
respond to geometric complexity, orientation changes, or shape
irregularities.

Another promising direction involves the inclusion of additional
segmentation accuracy criteria. Beyond the six metrics evaluated
here, future work could explore boundary-based, spectral—
spatial, or context-aware measures that capture different
dimensions of segmentation quality. For instance, metrics
evaluating edge alignment or object topology may provide
complementary insights, especially in high-resolution imagery
where geometric details are critical. Incorporating such measures
would enable a more holistic and multi-dimensional evaluation
framework, potentially revealing metric sensitivities that are not
apparent in area- or location-based analyses alone.

Furthermore, once optimal segmentation configurations are
identified using appropriate accuracy metrics, the resulting high-
quality segments, particularly for urban objects, can be utilized
to generate training labels for deep learning applications. This
metric-guided approach allows the creation of spatially
consistent and semantically reliable labeled datasets with
minimal manual effort. It also provides a methodological bridge
between object-based image analysis and data-driven learning
frameworks, improving training data quality and supporting
more accurate classification outcomes.
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Appendix A
ID Ss Jun. Area | Int. Area | AFI M QR ouUS RP Feature within the set
1 100 12400 100 -3.00 | 0.980 | 0.992 | 0.975 | 1.000 | max RP
7 100 12000 500 -3.00 | 0.900 | 0.958 | 0.878 | 0.709 same RP. diff area metrics
10 100 11700 800 -3.00 | 0.840 | 0.932 | 0.809 | 0.709 ’

15 100 11300 1200 -3.00 | 0.760 | 0.894 | 0.723 | 0.620 | area-based median-like
23 | 100 10000 2500 -3.00 | 0.500 | 0.750 | 0.530 | 0.385 | equal the best in area-based metrics
28 | 100 10000 2500 -3.00 | 0.500 | 0.750 | 0.530 | 0.077 | best

29 90 10500 100 -2.24 | 0.978 | 0.990 | 0.974 | 1.000 | max RP

41 90 9600 1000 -2.24 | 0.778 | 0.896 | 0.751 | 0.589 same RP. diff area metrics

43 90 9400 1200 -2.24 | 0.733 | 0.872 | 0.706 | 0.589 ’

51 90 8100 2500 -2.24 | 0.444 | 0.691 | 0.489 | 0.333 | equal the best in area-based metrics
56 90 8100 2500 -2.24 | 0.444 | 0.691 | 0.489 | 0.000 | best, coincident centres

57 80 8800 100 -1.56 | 0.975 | 0.989 | 0.972 | 1.000 | max RP

61 80 8400 500 -1.56 | 0.875 | 0.940 | 0.863 | 0.733 same RP. diff area metrics

64 80 8300 600 -1.56 | 0.850 | 0.928 | 0.836 | 0.733 '

66 80 7900 1000 -1.56 | 0.750 | 0.873 | 0.732 | 0.610 | area-based median-like

75 80 6400 2500 -1.56 | 0.375 | 0.609 | 0.431 | 0.273 | equal the best in area-based metrics
77 80 6400 2500 -1.56 | 0.375 | 0.609 | 0.431 | 0.091 | best

78 70 7300 100 -0.96 | 0.971 | 0.986 | 0.970 | 1.000 | max RP

83 70 6900 500 -0.96 | 0.857 | 0.928 | 0.850 | 0.707 . .

85 | 70 | 6800 600 | -0.95 | 0.829 | 0.912 | 0.821 | 0.707 | S2Me RP. diff area metrics

96 70 4900 2500 -0.96 | 0.286 | 0.490 | 0.346 | 0.200 | equal the best in area-based metrics
98 70 4900 2500 -0.96 | 0.286 | 0.490 | 0.346 | 0.000 | best, coincident centres

99 60 6000 100 -0.44 | 0.967 | 0.983 | 0.966 | 1.000 | max RP

106 | 60 5300 800 -0.44 | 0.733 | 0.849 | 0.731 | 0.598 | area-based median-like

107 | 60 5100 1000 -0.44 | 0.667 | 0.804 | 0.664 | 0.556 . .

108 | 60 | 5200 900 | -0.44 | 0.700 | 0.827 | 0.697 | 0.556 | S2Me RP. diff area metrics

113 | 60 3600 2500 -0.44 | 0.167 | 0.306 | 0.216 | 0.111 | best

114 | 50 4900 100 0.00 | 0.960 | 0.980 | 0.960 | 1.000 | max RP

117 50 4600 400 0.00 | 0.840 | 0.913 | 0.840 | 0.729 same area metrics. diff RP

119 50 4600 400 0.00 | 0.840 | 0.913 | 0.840 | 0.750 '

121 50 4200 800 0.00 | 0.680 | 0.810 | 0.680 | 0.559 | median-like

128 | 50 2500 2500 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | perfectly coincident

129 | 40 4000 100 0.36 | 0.950 | 0.975 | 0.949 | 1.000 | max RP

134 | 40 3500 600 0.36 | 0.700 | 0.829 | 0.696 | 0.589 | median-like

138 40 2500 1600 0.36 | 0.200 | 0.360 | 0.255 | 0.143 | best

139 30 3300 100 0.64 | 0.933 | 0.970 | 0.925 | 1.000 | max RP

143 | 30 3000 400 0.64 | 0.733 | 0.867 | 0.712 | 0.667 | median-like

146 | 30 2500 900 0.64 | 0.400 | 0.640 | 0.453 | 0.333 | equal the best in area-based metrics
148 30 2500 900 0.64 | 0.400 | 0.640 | 0.453 | 0.000 | best, coincident centres

149 20 2800 100 0.84 | 0.900 | 0.964 | 0.861 | 1.000 | max RP

153 | 20 2500 400 0.84 | 0.600 | 0.840 | 0.594 | 0.447 | equal the best in area-based metrics
154 | 20 2500 400 0.84 | 0.600 | 0.840 | 0.594 | 0.200 | best

155 | 10 2500 100 0.96 | 0.800 | 0.960 | 0.679 | 1.000 | max RP, equal the best in area-based metrics
160 10 2500 100 0.96 | 0.800 | 0.960 | 0.679 | 0.000 | best, coincident centres

Table Al. Representative subset of segmentation evaluation results across all synthetic segment sets. For each set, rows were selected
to capture extremes of RP and area-based metrics (M, QR, OUS), median-like cases, and instances where identical RP values
correspond to different area-based outcomes.
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