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Abstract 

 

This study investigates the behaviour of segmentation accuracy metrics in object-based image analysis (OBIA) using synthetic urban 

objects. Monitoring land cover through high-resolution imagery relies heavily on accurate segmentation, which directly influences 

classification performance. A synthetic dataset was created with a fixed-size reference square and varying-sized square segments 

positioned systematically to analyse spatial and geometric relationships. Six widely used accuracy metrics were evaluated: Area Fit 

Index (AFI), Match (M), Quality Rate (QR), Over-Segmentation (OS), Under-Segmentation (US), and Quality of Object Location 

(qLoc), representing both area-based and location-based criteria. 

Results reveal that area-based metrics generally show consistent trends and similar sensitivity to changes in segment size and geometry, 

while location-based metrics exhibit independent patterns emphasizing spatial positioning and locational accuracy. This divergence 

highlights the limitations of relying solely on either metric type, advocating for an integrated evaluation framework combining both 

area and location criteria to achieve a more comprehensive assessment of segmentation quality. The study suggests that future research 

should incorporate more complex and irregular urban object shapes and explore additional metrics, such as boundary-based or context-

aware measures. Furthermore, the identification of optimal segmentation configurations guided by these metrics could enhance training 

data quality for deep learning applications in urban object classification. 

 

 

1. Introduction 

Monitoring land cover is a fundamental requirement for the 

sustainable management of natural resources, environmental 

conservation, and the assessment of climate change impacts. 

Remote sensing techniques provide a robust framework for 

detecting and analysing land cover dynamics. The literature 

highlights that object-based image analysis (OBIA) significantly 

enhances classification accuracy for high-resolution imagery by 

addressing the inherent limitations of pixel-based techniques. 

OBIA interprets groups of neighbouring pixels -called segments- 

as visually meaningful objects, rather than analysing individual 

pixels. The segmentation process, which divides imagery into 

homogeneous regions, is a crucial pre-processing step in OBIA. 

The accuracy of subsequent classification depends on both the 

segmentation method and the selection of optimal parameters, 

which are influenced by data quality. 

 

Segmentation methods are typically classified as edge-based, 

area-based, or threshold-based. Tools such as the Estimation of 

Scale Parameter (ESP) toolbox (Dragut et al., 2010; 2014) assist 

in identifying appropriate scale parameters for multi-resolution 

segmentation, but do not directly evaluate segmentation 

accuracy, which remains an ongoing challenge in OBIA 

workflows. Segmentation accuracy can be assessed using 

qualitative (visual interpretation) or quantitative (metric-based) 

approaches (Kotaridis and Lazaridou, 2021). Quantitative 

evaluations involve comparing classification accuracies or 

measuring geometric mismatches between segments and 

reference objects (Zhang et al., 2015). These mismatches are 

typically assessed using area-based or location-based metrics, 

focusing on overlap or spatial proximity (Clinton et al., 2010). 

 

Urban features, especially buildings, are among the most 

frequently studied object classes due to their regular geometries 

and relevance in land use classification (Zhang et al., 2023; 

Vasavi et al., 2023). Moreover, their clearly defined shapes make 

them particularly suitable for evaluating segmentation accuracy 

(Akcay et al., 2022; Xu et al., 2023). For example, Jozdani and 

Chen (2020) first analysed eight regularly shaped buildings of 

varying sizes to identify patterns in segmentation metrics and 

then validated their findings on a randomly selected sample of 

100 buildings. Their study revealed discrepancies among 

commonly used evaluation criteria, highlighting the need for 

further investigation. Simões et al. (2023), on the other hand, 

developed an R package called segmetric to enable the analysis 

of the metrics proposed and applied in segmentation accuracy 

studies. 

 

The presented study constructs a synthetic dataset to represent the 

building class and systematically evaluates segmentation 

accuracy using six widely cited metrics: Area Fit Index (AFI), 

Match (M), Quality Rate (QR), Over-Segmentation (OS), Under-

Segmentation (US), and Quality of Object Location (qLoc). By 

comparing the areal and spatial relationships between segments 

(represented as squares of varying sizes) and a fixed-size 

reference object, the study aims to clarify the behaviour of area-

based and location-based metrics under controlled conditions. 

The results show that area-based metrics generally produce 

consistent values, while location-based ones display independent 

patterns, offering new insights into metric selection in OBIA 

validation. 

 

2. Synthetic Dataset Design for Segmentation Metric 

Evaluation 

The synthetic dataset consists of a fixed reference sample 

represented by a square with an edge length of fifty units. The 

segments to be compared are also squares, but with varying edge 

lengths ranging from ten to one hundred units, increasing in 

increments of ten units, and positioned differently relative to the 

sample. The dataset was generated within a two-dimensional 

Cartesian coordinate system, where the reference sample square 

was fixed at the origin for consistency. Segments were positioned 

systematically by defining their centroid coordinates relative to 

the sample to ensure precise control over spatial relationships. To 

investigate the impact of area differences between the sample and 

segments on the evaluation criteria, each segment set contains 

squares of uniform edge length distinct from other sets. Within 
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each segment set, the segment was initially positioned to create a 

fixed intersection area of one hundred square units with the 

sample. This intersection area was computed analytically using 

geometric formulas for the overlap of two axis-aligned squares. 

Following this initial positioning, the segment was incrementally 

shifted in ten-unit steps upward and to the right (along the 

positive y- and x-axes), creating multiple spatial configurations. 

This systematic repositioning was designed to reveal how 

changes in intersection and adjacency areas, as well as centroid 

displacements, influence the segmentation accuracy metrics. 

 

For segment sets with edge lengths varying from ten to one 

hundred units, the number of positional shifts ranged from five to 

fourteen, depending on the segment size and the ten-unit 

increment steps. This resulted in a total of 985 sample-segment 

intersection configurations, calculated as the sum of all 

movement steps across segment sizes. The intersection pattern 

observed for 50-unit segments is also seen in the 10-, 30-, 70-, 

and 90-unit segments, while the pattern for 60-unit segments 

resembles those of the 20-, 40-, 80-, and 100-unit segments. 

 

Given the symmetrical properties of the evaluation criteria 

employed in this study, specifically those related to area overlap 

and spatial proximity, redundant segment positions were 

identified and removed to optimize the dataset. For instance, 

rows and columns that were symmetrical with respect to the 

dataset matrix exhibited identical metric values and were 

therefore excluded. Figure 1 illustrates this data reduction 

approach, where intersections highlighted in blue and green 

represent redundant entries that were removed. Furthermore, 

diagonal symmetry allowed for additional pruning of the dataset, 

leaving only the unique intersection configurations within the 

magenta region necessary for evaluation, while excluding those 

in the red region. 

 

The entire dataset, including segment coordinates and computed 

intersection areas, was stored in matrix form to facilitate efficient 

computational processing. It is important to note that while the 

use of square shapes simplifies geometric calculations and allows 

precise control of spatial parameters, it also introduces 

limitations. Real urban objects, such as buildings, often exhibit 

irregular shapes and orientations, and environmental factors 

affecting segmentation accuracy were not modelled in this 

synthetic dataset. 

 

           

Figure 1. Visualization of sample–segment intersections in the synthetic dataset and reduction approach (left: segments with edge 

lengths of 50 units, right: segments with edge lengths of 60 units). 

 

Figure 2. Synthetic segment sets categorized by size; segment IDs progress from left to right and top to bottom within each panel, 

starting at Ss = 100 (ID 1 - 28) and continuing sequentially down to Ss = 10 (ID 155 - 160). 
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As a result, in the synthetic dataset, segments with edge lengths 

of 100 and 90 units have 28 intersection positions each; those 

with edge lengths of 80 and 70 units have 21 intersections; 

segments of 60 and 50 units have 15 intersections; 40 and 30 unit 

segments have 10 intersections; and segments of 20 and 10 units 

have 6 intersections each. Figure 2 illustrates the total 160 

segment sets organized by segment size, with their corresponding 

Data IDs start from the top-left corner of a segment set with 100-

unit edge length and progresses in the horizontal direction (left to 

right). Upon reaching the end of each row, the numbering 

continues from the leftmost cell of the next row below. Once all 

segments in a given set are numbered, the same spatial pattern is 

maintained, and ID assignment continues from where it left off 

in the subsequent segment set. 

 

3. Segmentation Accuracy Metrics 

Research on segmentation accuracy criteria began in the late 

1990s, leading to the proposal of various evaluation metrics by 

numerous researchers. Costa et al. (2018) provide a 

comprehensive review of these criteria, categorizing them into 

area-based and location-based metrics. Their review also 

includes combined geometric metrics. Another significant 

contribution is by Clinton et al. (2010), who analysed 

segmentation accuracy criteria by applying them to an RGB 

aerial image segmented with different parameter combinations of 

scale, shape, and compactness. 

 

In the present study, several widely used area-based criteria - 

Area Fit Index (AFI), Match (M), Quality Rate (QR), Over 

Segmentation (OS), and Under Segmentation (US) - along with 

the location-based criterion, quality of the object’s location 

(qLoc), are examined. For describing the criteria metrics; xi 

denotes the sample where X = {xi : i = 1 : n} is the set of n training 

objects, while yj denotes the segment where Y = {yj : j = 1 : m} 

is the set of m segments intersects with sample xi. 

 

The AFI (1) criterion, introduced by Lucieer and Stein (2002), 

measures the percentage of the intersection between a segment 

and the reference sample with which it overlaps the most. In the 

AFI metric, the optimal value, representing a perfect overlap 

between the sample and segment areas, is zero. The maximum 

possible value depends on the relative sizes of the sample and 

segment areas and can be as high as one, while the minimum 

value can approach negative infinity. A significant drawback of 

the AFI criterion is that it assigns the same value to segments of 

identical size regardless of the actual overlap with the sample, 

potentially overlooking differences in intersection quality. 

 

𝐴𝐹𝐼𝑖𝑗 =
𝑎𝑟𝑒𝑎(𝑥𝑖) − 𝑎𝑟𝑒𝑎(𝑦𝑗)

𝑎𝑟𝑒𝑎(𝑥𝑖)
     (1) 

 

Janssen and Molenaar (1995) proposed the M (2) criterion, which 

considers the relationship among the intersection area, sample 

area, and segment area. M is calculated by dividing the square of 

the intersecting area by the product of the sample and segment 

areas. A value of 1 indicates the best possible match between 

segment and sample, whereas 0 represents no overlap, 

corresponding to the worst-case scenario (Feitosa et al., 2010). 

Unlike other criteria, since the optimal value for M is 1, it was 

transformed to 1 – M for standardization during evaluation. 

Although a larger intersection area generally improves the M 

value, a smaller segment area can also lead to equal or better M 

values. 

 

𝑀𝑖𝑗 = 1 − √
𝑎𝑟𝑒𝑎(𝑥𝑖 ∩ 𝑦𝑗)

2

𝑎𝑟𝑒𝑎(𝑥𝑖) ∗ 𝑎𝑟𝑒𝑎(𝑦𝑗)
     (2) 

 

The QR (3) criterion, suggested by Weidner (2008), is the ratio 

of the intersection area to the combined area of the sample and 

segment (including their junction). QR’s advantage over other 

area-based criteria lies in accounting for both correctly 

intersecting areas and total junction areas (Clinton et al., 2010). 

Its values range from 0 to 1, with 0 being optimal. Since the 

junction area is smaller when segment areas are small, QR may 

yield better results even if the intersection area is reduced. 

 

𝑄𝑅𝑖𝑗 = 1 −
𝑎𝑟𝑒𝑎(𝑥𝑖 ∩ 𝑦𝑗)

𝑎𝑟𝑒𝑎(𝑥𝑖 ∪ 𝑦𝑗)
     (3) 

 

Persello and Bruzzone (2010) introduced the OS (4) and US (5) 

criteria, which represent the relations between the intersection 

area and the sample and segment areas, respectively. Under 

segmentation occurs when neighbouring pixels belonging to 

different classes are incorrectly grouped into a single object, 

while over segmentation happens when pixels that should belong 

to one object are split into multiple objects (Costa et al., 2018). 

These criteria are graded similarly to QR. However, when 

considered separately, OS and US may overlook the respective 

areas of segment and sample, potentially resulting in 

contradictory values; for example, a low US coupled with a high 

OS. Consequently, Weidner (2008) and Levine and Nazif (1982) 

recommended combining these measures, and their combined 

metric, Over-Under Segmentation (OUS) (6), is discussed in this 

study. 

  

𝑂𝑆𝑖𝑗 = 1 −
𝑎𝑟𝑒𝑎(𝑥𝑖 ∩ 𝑦𝑗)

𝑎𝑟𝑒𝑎(𝑥𝑖)
     (4) 

 

𝑈𝑆𝑖𝑗 = 1 −
𝑎𝑟𝑒𝑎(𝑥𝑖 ∩ 𝑦𝑗)

𝑎𝑟𝑒𝑎(𝑦𝑗)
     (5) 

 

𝑂𝑈𝑆𝑖𝑗 = √
(𝑂𝑆𝑖𝑗)2 + (𝑈𝑆𝑖𝑗)2

2
     (6) 

 

Although the criteria discussed so far evaluate sample and/or 

segment areas or intersection and/or junction areas, they do not 

account for positional differences between the sample and 

segment. To address this, the location-based qLoc (7) criterion 

proposed by Zhan et al. (2005) was also evaluated. The qLoc 

criterion calculates the Euclidean distance between the centroids 

of the sample and segment. As the distance between centroids 

increases, the qLoc value increases, negatively impacting 

segmentation accuracy. The optimal qLoc value is 0 (indicating 

perfect centroid overlap), while the maximum value is 

unbounded, approaching infinity. This wide range necessitates 

normalization of qLoc values. Accordingly, the Relative Position 

(RP) (8) normalization method recommended by Möller et al. 

(2007) was applied. RP is computed by dividing the centroid 

distance of a sample and an intersecting segment by the 

maximum qLoc value among all segments intersecting that 

sample. Given that segment sizes are generally uniform; 

normalization was applied within each segment set. However, 

since qLoc is solely distance-based, it may not fully capture the 

fit quality between sample and segment. 

  

𝑞𝐿𝑜𝑐𝑖𝑗 = 𝑑𝑖𝑠𝑡[𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑥𝑖), 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑦𝑗)]     (7) 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W18-2025 
Symposium on GeoSpatial Technologies: Visions and Horizons 2025 (GeoVisions2025), 8–10 October 2025, Çanakkale, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W18-2025-63-2026 | © Author(s) 2026. CC BY 4.0 License.

 
65



 

𝑅𝑃𝑖𝑗 =
𝑞𝐿𝑜𝑐𝑖𝑗

𝑑𝑖𝑠𝑡𝑚𝑎𝑥
     (8) 

 

4. Evaluation of Segmentation Accuracy Metrics on 

Synthetic Datasets 

The synthetic datasets were evaluated using the criteria whose 

metrics and limitations were previously defined, and the 

corresponding numerical results are summarized in Figure 3. The 

evaluations of the intersections between the sample objects and 

the 50- and 60-unit segments are presented in tabular form as 

examples in Appendix A.  The analyses yield the following key 

insights: 

 

1. The Area Fit Index (AFI) criterion exhibits invariant values 

within each synthetic dataset. 

 

2. Irrespective of the intersection (or junction) areas, 

discrepancies between sample and segment area sizes result 

in deviations of the AFI criterion from its optimal value. 

 

3. When the intersection (or junction) areas of the sample and 

segment are equivalent: 

a. The metrics M, QR, and OUS display identical values 

within their respective categories. 

b. In contrast, the RP metric demonstrates variability. 

 

4. As the intersection area between sample and segment 

increases (concomitant with a reduction in junction areas): 

a. M, QR, and OUS criteria values uniformly decrease, 

maintaining a consistent rank order. 

b. When the segment area is smaller than the sample area, 

RP values similarly decrease and conform to the order 

established by the other criteria. 

c. Conversely, if the segment area exceeds the sample area, 

RP values may remain constant or increase, thereby 

diverging in rank order relative to the other criteria. 

Specifically, within the following sample-segment 

intersections, despite increased intersection areas (which 

correspond to lower area-based criterion values), RP 

values are elevated: 

i. Ss100 dataset: 

1. RP9 > RP5, RP6, RP7 

2. RP15 = RP12 > RP13 

3. RP19 > RP17, RP18 

ii. Ss90 dataset: 

1. RP37 > RP33, RP34, RP35 

2. RP47 > RP45, RP46 

iii. Ss80 dataset: 

1. RP64 > RP62 

 

5. In cases where the sample is entirely enclosed within the 

segment (intersection area equals sample area and junction 

area equals segment area), or reciprocally, where the segment 

is fully enclosed within the sample: 

a. The M, QR, and OUS metrics yield consistent values 

within their groups. 

b. The RP metric may present variable values. 

 

 

Figure 3. Segmentation accuracy criteria values of the synthetic datasets for a fixed sample size (50 units) and varying segment sizes 

(Ss = 100–10), with RP, QR, M, and OUS plotted on the left Y-axis and AFI on the right Y-axis. 

The evaluations outlined above are exemplified in Figure 4. In 

cases where the intersection areas of the sample and segment are 

equivalent, whether the segment area is larger (ID: 44, 45, 46) or 

smaller (ID: 144, 145) than the sample, the area-based criteria 

remain constant within their group, while RP values vary slightly 

due to spatial alignment differences. This variation, however, has 

only a limited effect on the overall representativeness when the 

intersection ratio is fixed. A similar behaviour is observed when 

the segment is fully contained within the sample (ID: 146, 147, 

148), where RP decreases gradually as the segment shifts within 

the sample, reflecting positional sensitivity but without 

substantially altering the representativeness relationship. By 

contrast, variations in RP become more pronounced when the 

sample is entirely enclosed within the segment (ID: 75, 76, 77), 

as the segment’s dominance amplifies the influence of alignment 

on representativeness. Moreover, as the intersection between the 

sample and segment increases in cases where the segment area is 

smaller than the sample (ID: 142, 143, 144), RP values follow the 
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decreasing trend of the area-based criteria. Conversely, when the 

segment area exceeds the sample area (ID: 46, 47), RP values 

may increase despite the decline observed in the area-based 

criteria, highlighting the need to consider which type of metric 

should be prioritized when evaluating representativeness. 

 

The area-based metrics—M, QR, and OUS—exhibit a consistent 

decreasing trend as intersection areas increase, maintaining their 

relative ranking and offering a stable characterization of 

geometric overlap. In contrast, the location-based RP metric 

occasionally diverges from this trend, showing constant or even 

elevated values under certain configurations. This behaviour 

reflects RP’s sensitivity to spatial alignment, which complements 

the strictly area-focused nature of the other metrics. Notably, 

segments with identical area-based values can show varying RP 

scores, with some achieving the best alignment within their set. 

Conversely, segments sharing the same RP may differ in their 

area-based scores. This underscores the complementary roles of 

these metrics in evaluating segmentation performance. These 

patterns indicate that while area-based metrics reliably quantify 

the extent of overlap, RP captures differences in spatial 

configuration and object alignment—providing complementary 

insight into segmentation accuracy. To illustrate these behaviors, 

Appendix A presents a representative subset of 44 intersections 

selected to highlight extreme, median, and divergent scenarios 

across both area-based and location-based metrics. 

 

 

Figure 4. Comparison of M, QR, OUS, and RP metrics for varying intersection and segment sizes. 

 

5. Conclusion and Future Work 

The results of the segmentation accuracy assessment indicate that 

area-based metrics exhibit largely consistent trends across the 

synthetic datasets, demonstrating similar sensitivity to variations 

in segment geometry and scale. In contrast, location-based 

metrics display an independent behavioural pattern, highlighting 

a different dimension of segmentation quality—particularly 

spatial positioning and locational consistency. This divergence 

reveals the inherent limitations of relying solely on either metric 

type, suggesting that individual use may provide an incomplete 

assessment of segmentation quality. Specifically, metrics such as 

the Area Fit Index (AFI), despite their utility, can be insensitive 

to the degree of spatial congruence between segment and sample 

boundaries, potentially limiting their discriminative power in 

certain scenarios. 

 

Therefore, it is critical to integrate both area-based and location-

based criteria within a combined evaluation framework. While 

area-based metrics quantitatively capture segment–sample 

overlap, location-based metrics complement this by detecting 

positional deviations between objects. Such an integrated 

approach enables a multidimensional and more holistic analysis 

of segmentation performance, supporting more robust and 

reliable decision-making for optimal parameter selection and 

subsequent classification tasks. 

 

This study employed a synthetic dataset with regular geometries 

to evaluate the behavioural differences among widely used 

segmentation accuracy metrics. While this controlled setup 

allows for isolating specific spatial and geometric factors, future 

studies can benefit from introducing more diverse and complex 

object forms. For example, datasets including rotated, L-shaped, 

or irregularly contoured building geometries would better reflect 

the variability of real urban environments. Such additions would 

enable further analysis of how different segmentation metrics 

respond to geometric complexity, orientation changes, or shape 

irregularities. 

 

Another promising direction involves the inclusion of additional 

segmentation accuracy criteria. Beyond the six metrics evaluated 

here, future work could explore boundary-based, spectral–

spatial, or context-aware measures that capture different 

dimensions of segmentation quality. For instance, metrics 

evaluating edge alignment or object topology may provide 

complementary insights, especially in high-resolution imagery 

where geometric details are critical. Incorporating such measures 

would enable a more holistic and multi-dimensional evaluation 

framework, potentially revealing metric sensitivities that are not 

apparent in area- or location-based analyses alone. 

 

Furthermore, once optimal segmentation configurations are 

identified using appropriate accuracy metrics, the resulting high-

quality segments, particularly for urban objects, can be utilized 

to generate training labels for deep learning applications. This 

metric-guided approach allows the creation of spatially 

consistent and semantically reliable labeled datasets with 

minimal manual effort. It also provides a methodological bridge 

between object-based image analysis and data-driven learning 

frameworks, improving training data quality and supporting 

more accurate classification outcomes. 
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Appendix A 

ID Ss Jun. Area Int. Area AFI M QR OUS RP Feature within the set 

1 100 12400 100 -3.00 0.980 0.992 0.975 1.000 max RP 

7 100 12000 500 -3.00 0.900 0.958 0.878 0.709 
same RP, diff area metrics 

10 100 11700 800 -3.00 0.840 0.932 0.809 0.709 

15 100 11300 1200 -3.00 0.760 0.894 0.723 0.620 area-based median-like 

23 100 10000 2500 -3.00 0.500 0.750 0.530 0.385 equal the best in area-based metrics 

28 100 10000 2500 -3.00 0.500 0.750 0.530 0.077 best 

29 90 10500 100 -2.24 0.978 0.990 0.974 1.000 max RP 

41 90 9600 1000 -2.24 0.778 0.896 0.751 0.589 
same RP, diff area metrics 

43 90 9400 1200 -2.24 0.733 0.872 0.706 0.589 

51 90 8100 2500 -2.24 0.444 0.691 0.489 0.333 equal the best in area-based metrics 

56 90 8100 2500 -2.24 0.444 0.691 0.489 0.000 best, coincident centres 

57 80 8800 100 -1.56 0.975 0.989 0.972 1.000 max RP 

61 80 8400 500 -1.56 0.875 0.940 0.863 0.733 
same RP, diff area metrics 

64 80 8300 600 -1.56 0.850 0.928 0.836 0.733 

66 80 7900 1000 -1.56 0.750 0.873 0.732 0.610 area-based median-like 

75 80 6400 2500 -1.56 0.375 0.609 0.431 0.273 equal the best in area-based metrics 

77 80 6400 2500 -1.56 0.375 0.609 0.431 0.091 best 

78 70 7300 100 -0.96 0.971 0.986 0.970 1.000 max RP 

83 70 6900 500 -0.96 0.857 0.928 0.850 0.707 
same RP, diff area metrics 

85 70 6800 600 -0.96 0.829 0.912 0.821 0.707 

96 70 4900 2500 -0.96 0.286 0.490 0.346 0.200 equal the best in area-based metrics 

98 70 4900 2500 -0.96 0.286 0.490 0.346 0.000 best, coincident centres 

99 60 6000 100 -0.44 0.967 0.983 0.966 1.000 max RP 

106 60 5300 800 -0.44 0.733 0.849 0.731 0.598 area-based median-like 

107 60 5100 1000 -0.44 0.667 0.804 0.664 0.556 
same RP, diff area metrics 

108 60 5200 900 -0.44 0.700 0.827 0.697 0.556 

113 60 3600 2500 -0.44 0.167 0.306 0.216 0.111 best 

114 50 4900 100 0.00 0.960 0.980 0.960 1.000 max RP 

117 50 4600 400 0.00 0.840 0.913 0.840 0.729 
same area metrics, diff RP 

119 50 4600 400 0.00 0.840 0.913 0.840 0.750 

121 50 4200 800 0.00 0.680 0.810 0.680 0.559 median-like 

128 50 2500 2500 0.00 0.000 0.000 0.000 0.000 perfectly coincident 

129 40 4000 100 0.36 0.950 0.975 0.949 1.000 max RP 

134 40 3500 600 0.36 0.700 0.829 0.696 0.589 median-like 

138 40 2500 1600 0.36 0.200 0.360 0.255 0.143 best 

139 30 3300 100 0.64 0.933 0.970 0.925 1.000 max RP 

143 30 3000 400 0.64 0.733 0.867 0.712 0.667 median-like 

146 30 2500 900 0.64 0.400 0.640 0.453 0.333 equal the best in area-based metrics 

148 30 2500 900 0.64 0.400 0.640 0.453 0.000 best, coincident centres 

149 20 2800 100 0.84 0.900 0.964 0.861 1.000 max RP 

153 20 2500 400 0.84 0.600 0.840 0.594 0.447 equal the best in area-based metrics 

154 20 2500 400 0.84 0.600 0.840 0.594 0.200 best 

155 10 2500 100 0.96 0.800 0.960 0.679 1.000 max RP, equal the best in area-based metrics 

160 10 2500 100 0.96 0.800 0.960 0.679 0.000 best, coincident centres 

Table A1. Representative subset of segmentation evaluation results across all synthetic segment sets. For each set, rows were selected 

to capture extremes of RP and area-based metrics (M, QR, OUS), median-like cases, and instances where identical RP values 

correspond to different area-based outcomes. 
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