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Abstract

Accurate Geographic Information System (GIS) data is fundamental to the reliable management, planning, and operation of modern
power distribution networks. Conventional validation methods, however, often rely on network-wide rule-based checks or manual
inspections, which are inefficient at identifying and localizing errors within vast, heterogeneous infrastructures. These approaches
frequently fail to detect complex spatial or topological inconsistencies, leading to significant operational challenges and costly data
remediation efforts. To address these limitations, a novel, automated validation pipeline has been developed with a modular, two-
stage approach. The first stage, Smart Grid Partitioning, spatially divides the network into manageable cells using either fixed-size
grids or a density-aware dynamic partitioning. This dynamic mode employs a bottom-up, clustering-inspired algorithm that adapts
grid sizes to the local intensity of network equipment, effectively resolving issues of data sparsity and overload. The second stage,
Al-Assisted Grid Validation, calculates a comprehensive Correctness Score for each resulting grid. This score provides a quantit-
ative measure of data quality by synthesizing four weighted factors: (1) configurable rule-based attribute checks, (2) connectivity
file conformance, (3) topological integrity assessed via advanced network trace functions, and (4) a series of representative graph-
theoretic metrics. By generating an intuitive, color-coded map of data health, our framework allows utility providers to precisely
localize data quality issues and prioritize remediation efforts. This targeted approach significantly enhances the efficiency of data
maintenance, improves the integrity of foundational GIS data for critical power infrastructure, and streamlines integration with

essential platforms like SCADA, OMS, and DMS.

1. Introduction

The transition towards smarter, more resilient, and efficient en-
ergy systems is critically dependent on the quality of the under-
lying data infrastructure. For power distribution networks, ac-
curate and reliable Geographic Information System (GIS) data
is the bedrock upon which essential functions—such as op-
erational management, long-term planning, outage response,
and the integration of distributed energy resources (DERs)—are
built. The integrity of this data directly impacts the performance
of critical systems like Supervisory Control and Data Acquisi-
tion (SCADA), Outage Management Systems (OMS), and Dis-
tribution Management Systems (DMS). However, ensuring this
integrity across large, complex, and constantly evolving net-
works presents a formidable challenge.

Conventional data validation approaches, which predominantly
rely on network-wide rule-based checks or laborious manual in-
spections, are increasingly proving inadequate. These methods
struggle to scale with the growing complexity of modern grids
and are often inefficient at pinpointing localized errors within
sprawling, heterogeneous infrastructures. More importantly,
they frequently overlook subtle yet critical spatial or topolo-
gical anomalies that can compromise network analysis and lead
to flawed operational decisions. The need for more sophistic-
ated, automated, and targeted validation methodologies is there-
fore critical, a sentiment echoed across recent studies focused
on data analysis and mining within smart grids (Li et al., 2024).
The academic and industrial communities have made signific-
ant strides in addressing aspects of this challenge. Founda-
tional work by (Wan et al. 2015) established a general frame-
work for automated spatial data inspection, laying the theor-
etical groundwork for systematic quality assessment. Concur-
rently, the conceptualization of the power grid as a complex

network has opened avenues for advanced analysis using graph
theory (Pagani & Aiello, 2013), providing a robust theoretical
basis for evaluating topological properties like density and con-
nectivity. Building on these foundations, researchers have de-
veloped specific validation techniques, such as benchmark-driven
feeder validation using statistical and operational metrics (Krish-
nan et al., 2020) and connectivity verification using data from
Advanced Metering Infrastructure (AMI) (Luan et al., 2015).
These methods have advanced the state-of-the-art but often fo-
cus on specific error types or data sources in isolation.

More recently, the advent of Artificial Intelligence (AI) and Ma-
chine Learning (ML) has introduced powerful new tools for
geospatial analysis. For instance, Wang et al. (2023) demon-
strated the use of ML with publicly accessible, multi-modal
data to achieve high-precision geospatial mapping of distribu-
tion grids. Furthermore, the application of graph-based Al in-
cluding Knowledge Graphs and Graph Convolutional Networks
(GCNss), has shown great promise for identifying complex topo-
logical errors that are invisible to standard rule-based systems
(Chang et al., 2020; Fei et al., 2024b). Parallel advancements
in spatial analysis have underscored the benefits of dividing ex-
tensive datasets into smaller, more manageable units.

Despite this progress, a critical gap remains: the absence of a
holistic, density-aware, and grid-centric validation framework
that integrates these disparate advancements into a unified, end-
to-end pipeline. While individual tools for rule-based checks,
connectivity verification, topological analysis, and spatial par-
titioning exist, they have not been systematically combined to
offer a comprehensive solution tailored to the unique challenges
of power distribution networks. This paper addresses this gap
by introducing a two-stage, modular pipeline designed to auto-
mate and enhance GIS data validation. The first stage, Smart
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Grid Partitioning, divides the network into either fixed-size or
adaptively sized grids. The adaptive mode, inspired by density-
based clustering, adjusts grid dimensions based on local equip-
ment intensity, ensuring that both dense urban centers and sparse
rural areas are partitioned effectively. The second stage, Al-
Assisted Grid Validation, synthesizes multiple validation tech-
niques into a single, unified Correctness Score for each grid.
The composite score integrates weighted contributions from mul-
tiple assessment dimensions, combining rule-based attribute val-
idations with connectivity-file conformance checks, higher-order
topological integrity evaluations using network trace functions,
and a comprehensive suite of graph-theoretic metrics.

Our framework empowers data engineers with more manage-
able workloads and precise error-correction strategies by loc-
alizing faults and supporting user-defined validation priorities.
This approach not only minimizes the need for costly and time-
consuming field investigations but also provides decision-makers
with actionable, spatially-explicit insights for resource alloca-
tion and maintenance planning. Furthermore, the modular ar-
chitecture enables seamless integration with existing utility man-
agement systems. High-quality grid outputs can be directly
ingested into real-time SCADA, Outage Management System
(OMS), and Distribution Management System (DMS) platforms,
while lower-quality segments undergo offline refinement. This

dual-track approach accelerates data readiness across large, multi-

company projects while maintaining operational continuity, driv-
ing significant time and cost efficiencies in power distribution

network management. Ultimately, by facilitating the rapid iden-

tification and correction of data quality issues, our pipeline ac-

celerates the readiness of high-integrity data for critical real-

time platforms, driving significant time and cost efficiencies in

the management of modern power distribution networks.

2. Methodology

The proposed GIS data validation pipeline employs a sequen-
tial, multi-stage methodology specifically designed to system-
atically assess and localize data quality issues within power
distribution networks. The framework architecture is built on
a modular design philosophy that enables scalable processing,
flexible configuration, and seamless integration with existing
utility management systems. The methodology encompasses
four primary phases: data ingestion and preprocessing, smart
grid partitioning, Al-assisted grid validation, and results syn-
thesis with temporal tracking. The system leverages spatial de-
composition to account for variations in equipment density and
complexity, replacing one-size-fits-all validation with adaptive,
grid-based checks. By tailoring validation criteria to local net-
work characteristics, we boost computational efficiency and en-
sure that inspections align with actual asset distributions.

The pipeline processes multiple data streams concurrently, in-
cluding spatial geometries, attribute tables and connectivity data.
The modular architecture ensures that individual components
can be independently updated, configured, or replaced without
affecting the overall system integrity. This design philosophy
enables adaptation to diverse utility environments, regulatory
requirements, and technical specifications while maintaining con-
sistent validation quality.

2.1 Data Ingestion and Preprocessing

The validation pipeline begins by ingesting detailed GIS asset
data encompassing spatial geometries and attributes for diverse

equipment types including transformers, distribution lines, switches,
and busbars. The system processes this spatial information along-
side a connectivity data file that defines the topological rela-
tionships between infrastructure components, containing terminal-
to-terminal connections and network structural information.
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Figure 1. Power distribution network topology constructed after
GIS data ingestion

Upon ingestion, a critical preprocessing phase ensures data con-
sistency by harmonizing all spatial data into a single Coordinate
Reference System (CRS), mapping disparate attribute schemas
to a unified standard, and enforcing unique identifiers for every
asset to eliminate ambiguity downstream. This module also
validates basic data integrity—performing format checks, refer-
ential integrity verification, and initial topological consistency
analyses—before network partitioning. The result is a cohesive
spatial and structural foundation that meets minimum quality
requirements, enabling effective partitioning and comprehens-
ive validation in subsequent stages.

2.1.1 Pre-Partitioning Quality Metrics: The preprocessing
phase generates key quality metrics—spatial coverage, attrib-
ute completeness, and topological connectivity statistics—that
establish baseline indicators for tracking data quality improve-
ments. It also performs statistical profiling of equipment distri-
butions, analyzing density patterns, spatial clustering, and net-
work topology (including spatial autocorrelation and density
gradients) to inform and optimize adaptive partitioning para-
meters.

2.2 Smart Grid Partitioning

To manage the inherent complexity of large distribution net-
works and effectively localize data errors, the entire network
is spatially divided into smaller, manageable grids using the
Smart Grid Partitioning module. The partitioning strategy re-
cognizes that power distribution networks exhibit natural spatial
hierarchies, from high-density urban cores to sparse rural areas,
and provides two distinct operational modes to accommodate
different network characteristics and analysis requirements.

2.2.1 Fixed-Size Partitioning Methodology: In this mode,
a fixed-size partitioning approach overlays the network with
a uniform grid of rectangular cells, offering consistent spatial
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resolution and predictable computational demands; users can
either define cell dimensions manually or rely on an integrated
optimal grid size calculator. The optimal grid size calculator
implements an automated routine that computes grid dimen-
sions by balancing a target number of cells NV against a user-
specified minimum equipment count per cell E,,;,. The cal-
culator determines grid dimensions that satisfy three essential
criteria:

o Complete Coverage: Grid cells completely cover the net-
work’s bounding box

e Target Grid Count: Produces approximately IV cells across
the network

e Minimum Density: Ensures expected equipment density
percell > Enin

Given a network bounding box with dimensions W x H and
total equipment count .41, the optimization process determ-
ines grid cell dimensions (w,h) that minimize the objective
function:

f(w7 h) - a‘Nactual - Ntarget‘ +ﬁ max(O, Erin — pezpected)
1)

The actual number of grid cells, denoted as Nt = [ 2| x
[£], is computed based on the width and height of the network
extent divided by the chosen cell dimensions.

The expected equipment density per cell is given by pexpected =
%, where FEiqy 1S the total number of equipment points. Ad-
ditionally, the optimization process incorporates two weighting
parameters, « and (3, to balance multiple partitioning object-
ives. The algorithm iteratively evaluates candidate grid dimen-
sions within feasible bounds and selects the configuration that
best satisfies the competing objectives of achieving target grid
counts while maintaining adequate equipment density for reli-
able validation.
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Figure 2. An example partitioned grid with fixed-size mode
2.2.2 Dynamic-Size Partitioning Methodology: Power dis-

tribution networks are often spatially heterogeneous, with high
equipment density in urban centers and sparse distribution in

rural or suburban areas. To address this, the dynamic-size par-
titioning mode adapts grid cell sizes to the local equipment in-
tensity. This approach avoids the pitfalls of fixed-size grids,
which can result in either empty, uninformative cells in sparse
areas or overly congested cells in dense areas.

1e6 GIS Equipment Grid Partitioning
+ Regular Equipment
+  Boundary Equipment
39 a0 2 2
4522 @0 * as) © ©
PRRDLN
PR 3
. a3
2 3 " 35 3 o7 38 3
(1) 6) 3 © @2) T, (20), ®
. PR e
4520 . - ]
x k3 i
o . i
. K
& & @ E
“a . o

F

o »
as18 i o1

13

o ]

"'."?s:r. I e S
PRk .

¥ Coordinate
8

17
(a6)

an 15 1
4516 ) @ ©

i 10 Joa. 12
@3 (I ] ) (@)

kS

7 8o
1) )

4514

ya 3 4 5 6
@) © © ©

1 2
© . (5]

4512

4.200 4202 4.204 4.206 4.208 4.210 4212
X Coordinate 1e6

Figure 3. An example partitioned grid with dynamic-size mode

The dynamic partitioning algorithm uses a bottom-up, clustering-
inspired approach based on DBSCAN (Ester et al., 1996) to
adapt grid sizes to local equipment intensity. It begins with a
fine-resolution grid and iteratively merges adjacent cells whose
combined equipment density falls below a defined threshold.
The full procedure is detailed in Algorithm 1.

Algorithm 1 Dynamic-Size Partitioning

Require: Fine-resolution grid GG, equipment locations &£, in-
tensity threshold 7", maximum cell size Smax

1: {Initialize counts}

2: forall cell c € G do

3:  countlc] + [{e € £ : ein ¢}

4: end for

5: while 3c € G: count[c] < T" and size(c) < Smax do

6:  {Select merge candidates}

7 (ci,¢j) < argming, y) adjacent in & (count[z] -+ count[y])
8:  {Merge cells}

9:  Remove ¢;, ¢; from G; add merged cell ¢ = ¢; U ¢

10:  count[c'] < count[c;] + count[c;]
11: end while
12: return G

The process, detailed in Algorithm 1, operates as follows:

1. Initialization: The network’s bounding box is first over-
laid with a fine-resolution base grid. The number of equip-
ment assets within each initial cell is counted.

2. Iterative Merging: The algorithm iteratively identifies ad-
jacent grid cells where the combined equipment count falls
below a user-defined intensity threshold (T). The pair of
adjacent cells with the lowest combined count is merged
into a single, larger cell.

3. Termination: This merging process continues until no ad-
jacent cells can be merged without violating the intens-
ity threshold or exceeding a maximum allowable cell size
(Smax)-
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2.2.3 Boundary Equipment Handling: Equipment span-
ning multiple grid cells requires handling strategies to main-
tain data integrity and prevent validation errors. Our system
provides three configurable approaches for boundary equipment
management, each optimized for different validation scenarios
and accuracy requirements.

1. Duplication Strategy: The default approach includes bound-

ary equipment in all intersecting grid cells, ensuring com-
prehensive coverage while accepting potential redundancy.
This strategy proves optimal for critical equipment valid-
ation where missing components would create significant
operational risks. The system maintains cross-reference
tables that track duplicated equipment to prevent double-
counting in aggregate statistics.

2. Primary Grid Assignment: This approach allocates bound-
ary equipment exclusively to the grid containing the largest
portion of the equipment geometry (e.g., greatest length
for a line, greatest area for a polygon).

By calculating geometric intersections to assign each piece
of equipment to a primary grid cell, the algorithm min-
imizes redundancy and preserves single-source accountab-
ility for validation—although this can sacrifice important
contextual information in neighboring cells.

3. Geometric Splitting: The equipment’s geometry is phys-
ically split at the grid boundaries, with each resulting seg-
ment assigned to its corresponding cell. This is the most
geometrically precise method but is computationally more
intensive and requires careful handling of attribute data for
the newly created features.

The chosen strategy is applied consistently across the network,
and the resulting grid-specific connectivity information is up-
dated accordingly.

2.2.4 Grid Metadata and Temporal Tracking: For audit-
ability and temporal analysis, each grid cell maintains a com-
prehensive timestamped metadata record. This record includes
the cell’s unique ID and precise spatial extent, complete invent-
ories of its assets and their assignment modes, and connectivity
snapshots reflecting the network structure within the grid.

The metadata is stored hierarchically by execution time, en-
abling efficient temporal queries and change tracking. Each
partition captures metrics like total and empty grids, equipment
counts, and distribution percentiles, summarized in Table 2?.
This structure facilitates monitoring data corrections and qual-
ity trends, identifying problem areas, and maintaining multi-
resolution data for efficient retrieval and comprehensive audit
trails.

Metric Value
Total grids 79
Empty grids 22 (27.8%)
Min equipment per grid 0
Max equipment per grid 86
Average equipment per grid 21.8
Median equipment per grid 16

Table 1. An Example Grid Equipment Distribution Analysis

2.3 Al-Assisted Grid Validation

Once the network is partitioned, each grid undergoes an inde-
pendent validation process. The Al-Assisted Grid Validation
module evaluates each grid against a series of criteria and com-
putes a composite Correctness Score S, a normalized value
between 0 and 100 that quantifies the overall data quality. The
score is calculated as:

4
S = 100 — (w1f1+w2f2+w3f3+w4f4), Zwi =12
i=1

Where f; are normalized factor scores and w; are user-adjustable
weights that enable customization for different validation prior-
ities, operational requirements, and regulatory contexts. The
scoring formulation ensures that perfect validation yields the
maximum score of 100, while increasing errors progressively
reduce the score toward zero.

2.3.1 Rule-Based Attribute Checks (f1): This factor as-
sesses the syntactic and semantic quality of the attribute data
for all equipment within a grid. The system employs a con-
figurable suite of rule-based checks that can be tailored to any
network data schema. Standard checks include detecting null
or duplicate IDs, invalid attribute values (e.g., incorrect voltage
levels), missing or null coordinate information, and incomplete
boundary information for assets connected to adjacent grids.
The score (f1) is calculated based on the error rate within the
grid:

For a grid containing equipment set £, let errors, C & represent
the subset of features violating rule category k. The total error
count and error rate are calculated as:

total_errors = Z |errorsy, 3)
2

“)

total_errors )

€]

error_rate = min(l,

The final rule-based score is normalized to ensure that f; = 1
indicates an error-free grid, with values decreasing toward zero
as errors accumulate:

fi =1 — error_rate (5)

2.3.2 Connectivity File Conformance (f;): Connectivity
file conformance assessment employs systematic analysis to val-
idate topological relationships and identify structural inconsist-
encies. The system processes connectivity matrices and ter-
minal definitions to ensure electrical network integrity through
comprehensive error classification.

The validation process classifies connectivity errors into five
primary categories: duplicate terminals, high-order connectiv-
ity violations, invalid terminals, missing terminal pairs, and
missing connectivity records. Each category represents a dif-
ferent type of topological inconsistency that can impact network
analysis and operational reliability.
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Given a connectivity table of size N, and a dictionary of error
lists vr, the total error count and conformance rate are calcu-
lated as:

total_errors = Z |vr| (6)
k

‘cotal,errors7 N. >0,
Ne @)

1, Ne=0.

error_rate =

fa =1 — error_rate (®)

This formulation ensures that grids with complete, accurate con-
nectivity information receive high scores, while those with miss-
ing or inconsistent connectivity data receive proportionally lower
scores.

2.3.3 Trace-Based Topological Integrity (f3): To move bey-
ond simple checks and assess the functional integrity of the
grid, this factor leverages network tracing algorithms. The trace
algorithms implement advanced logic for handling complex net-
work configurations:

e trace_up: Traverses upstream from loads to sources/injection

points

o trace_down: Traverses downstream to map load-distribution

paths

e trace_all: Conducts bidirectional traversal to ensure full
connectivity coverage

To evaluate network integrity and issue severity, let IV be the
total node count, 7" the number of traversed nodes, and D1, D3,
D3 the counts of disconnections, dead ends, and switch issues
respectively, each weighted by severity factors w1 > wa > ws.
The weighted issues and coverage metrics are calculated as:

weighted_issues = w1 D1 + w2 D2 + w3 D3 )

coverage —

~ (10)

The final trace score integrates issue detection with coverage
assessment:

weighted_issues
1 - Melghtedises

f3 = N
0, N=0.

] x coverage, N >0,
(1D

2.3.4 Graph-Theoretic Metrics Assessment (fs): Graph-
theoretic validation constructs undirected graph representations
of the network topology within each grid and computes com-
prehensive structural metrics specifically designed for power
distribution network analysis. The implementation recognizes
the unique characteristics of electrical networks, including their
sparse topology, hierarchical structure, and specific branch-to-
node relationships.

After constructing the undirected graph for each grid, the sys-
tem computes key structural metrics including node count (n),
edge count (m), density (d), connected component count (c),
isolated nodes (), clustering coefficient (vy), average path length,
and electrical network-specific metrics such as branch-to-node
ratios.

The graph-theoretic score employs a penalty-based system that
assesses multiple structural characteristics specific to power dis-
tribution networks. The composite score is calculated as:

fa=max(0,1 =) P)) (12)
J
where P; represents individual penalty components:
Penalty Components:
1. Component Fragmentation Penalty:
Peomp = min(0.3, 0.1 (c — 1)) (13)

Penalizes networks with multiple disconnected compon-
ents beyond the expected single component.

2. Network Density Penalty:
Pensity = min(0.2, (5) (14)

Penalizes networks with density above 0.1, as electrical
networks are typically sparse.

3. High-Degree Nodes Penalty:

Piogree = min(o.z, 0.02|{v: d(v) > 8}]) (15)

Penalizes nodes with degree greater than 8, which may in-
dicate modeling errors in power networks.

4. Isolation Penalty:

-Pisolation = mln(037 1) (16)
n

Penalizes isolated nodes that indicate connectivity prob-
lems.

5. Branch-to-Node Ratio Penalty:

min(0.2, 0.4 (0.5 —r)), r <0.5,

Pratio = 11[1111(0.27 0.1(r — 3))7 r>3,

0, 0.5<r<3.
a7
where r represents the branch-to-node ratio. Electrical net-
works typically maintain ratios between 0.5 and 3.0.

6. Clustering Anomaly Penalty:
Pclustering = mln(OL 'Y) (18)

Penalizes clustering coefficients above 0.3, which are un-
usual in power distribution networks.
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2.3.5 Composite Scoring & Visualization: The four factor
scores (f1 to f4) are combined using user-defined weights (w1
to wy) to yield a final Correctness Score for each grid. That
score—together with all individual factor scores and the asso-
ciated metadata—is recorded for audit and analysis. For intu-
itive interpretation, the results are rendered as a thematic map
in which each cell is color-coded along a green-to-red gradi-
ent. This immediate, at-a-glance view of network data health
enables managers to pinpoint problematic areas and efficiently
prioritize remediation efforts.

3. Results

To evaluate the efficacy and scalability of the proposed data val-
idation pipeline, we conducted experiments on two real-world,
medium-voltage power distribution networks of significantly
different scales. The experimental validation demonstrates the
framework’s capability to handle networks ranging from com-
pact urban deployments to extensive regional infrastructure.

3.1 Experimental Setup & Datasets

The validation pipeline was tested on two distinct networks:

e Small Network: A network covering a 132.6 km? area,
comprising 1,588 equipment assets.

e Large Network: A significantly larger network spanning
a 53,732 km? area, containing 97,967 equipment assets.

For both experiments, the Dynamic-Size Partitioning mode
was employed to effectively handle the heterogeneous equip-
ment densities characteristic of real-world networks. The Du-
plication strategy was used for handling boundary equipment.
The composite Correctness Score was calculated using a con-
sistent set of weights across both networks, prioritizing rule-
based and topological checks: (w1=0.35) (Rule-based Checks),
(w2=0.25) (Connectivity Checks), (w3=0.25) (Trace Checks),
and (w4=0.15) (Graph Metrics).

3.2 Performance & Network-Wide Analysis

The pipeline demonstrated efficient performance on both data-
sets. For the small network, the entire process from ingestion
to final reporting completed in 7.92 seconds. For the large
network, the execution time was 245.05 seconds, showcasing
the tool’s scalability. Dynamic partitioning module divided the
small network into 40 grids (35 non-empty) and the large net-
work into 457 grids (368 non-empty). A summary of the valid-
ation results for both networks is presented in Table ??.

Metric Small Network | Large Network
Total Grids Analyzed 35 368
Average Score 57.36 50.36
Minimum Score 35.11 0.00
Maximum Score 68.86 74.00
Total Execution Time (s) 7.92 245.05
Time per Grid (s) 0.226 0.667

Table 2. Network Validation Summary Statistics

The results indicate that both networks contain data quality is-
sues, with the larger network exhibiting a lower average score
and a wider range of quality. The primary output of this analysis
is a color-coded thematic map (results are shown in Figures 4
and 5), which provides an immediate visual guide to the spatial
distribution of these data quality problems.
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Figure 4. Color-coded thematic map for the small network.
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Figure 5. Color-coded thematic map for the large network.

The dynamic partitioning algorithm successfully created larger
grid cells in sparse rural areas while maintaining compact cells
in dense urban zones, optimizing the balance between computa-
tional efficiency and validation granularity. The high utilization
rates of 87.5% for the small network and 80.5% for the large
network demonstrate effective adaptation to equipment density
patterns.

Small network achieved an average correctness score of 57.36
out of 100, with scores ranging from 35.11 to 68.86, indicat-
ing moderate quality with consistent maintenance needs across
all grid regions. The large network demonstrated an average
correctness score of 50.36 out of 100, with a wider score range
from 0.00 to 74.00, indicating greater variability and heterogen-
eous data quality across different network regions.
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The lower average score and wider score range in the large net-
work reflect the challenges of maintaining consistent data qual-
ity across extensive geographical areas, highlighting the value
of localized validation approaches for large-scale infrastructure
management.

Validation framework demonstrated exceptional performance
across all dimensions. The trace function accuracy reached
a perfect 100% detection rate for interrupted and disconnec-
ted equipment. Meanwhile, rule-based validation consistently
flagged attribute errors exactly as specified by the configured

rules, connectivity problem localization reliably pinpointed equip-

ment experiencing connectivity issues, and graph-based metrics
provided crucial insights into topological anomalies and struc-
tural inconsistencies.

3.3 Operational System Integration Benefits

By delivering cleaner, more accurate network data, the frame-
work streamlines SCADA monitoring, enhances state estima-
tion, and reduces false alarms—ultimately supporting smarter
control decisions. In OMS applications, precise topology accel-
erates outage localization, improves restoration planning, and
sharpens customer communications. And within DMS, valid-
ated connectivity and attributes power more reliable power-flow
analyses, better capacity and volt-var planning, and enable ad-
vanced distribution management functions.

Partitioning the network into validated grid regions allows mul-
tiple teams to operate in parallel, each applying their spe-
cialized expertise while adhering to uniform quality standards.
Seamless integration with GIS update workflows automates on-
going quality checks, maintains a comprehensive audit trail for
compliance, and offers real-time change-impact scoring to guide
data modification decisions.

4. Conclusion

We developed an automated, grid-based validation pipeline that
systematically ensures the quality and accuracy of GIS data in
power distribution networks. By integrating a density-aware
spatial partitioning algorithm with Al-assisted validation across
four complementary dimensions —rule-based checks to enforce
data standards, connectivity conformance to ensure proper link-
age between components, trace-based topology integrity to verify
network structure, and graph-theoretic metrics to assess struc-
tural properties- the framework delivers both computational ef-
ficiency and comprehensive error detection.This integrated ap-
proach not only enhances computational efficiency by localiz-
ing analysis but also ensures comprehensive detection of data
quality issues throughout the power distribution network. Dy-
namic partitioning adapts to network density, producing larger
cells in rural areas and finer granularity in urban zones, while
the unified correctness score simplifies quality assessment.

Experimental evaluations on two real-world medium-voltage
networks demonstrate the pipeline’s readiness for operational
deployment. Individual grid segments are validated in just 0.226
seconds for smaller grids and 0.666 seconds for larger ones,
while end-to-end assessments of entire networks complete in
under 8 seconds and 245 seconds, respectively. By pinpointing
errors to specific spatial partitions, the system enables precise,
grid-level remediation and facilitates parallel workflows across
multiple engineering teams. Furthermore, seamless interop-
erability with SCADA, OMS, and DMS platforms enhances

real-time network visibility, accelerates outage response, and
drives more effective distribution optimization.

Our contributions fill a notable gap in infrastructure informat-
ics, offering the first holistic, density-aware validation frame-
work tailored to power distribution. Beyond immediate utility
applications, the methods and mathematical foundations presen-
ted here lay the groundwork for continuous real-time monitor-
ing, predictive quality assessment, and transfer to other infra-
structure domains.
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