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ABSTRACT: 
 
Next location prediction is helpful for service recommendation, public safety, intelligent transportation, and other location-based 
applications. Existing location prediction methods usually use sparse check-in trajectories and require massive historical data to capture 
complex spatial-temporal correlations. High spatial-temporal resolution trajectories have rich information. However, obtaining 
personal trajectories with long time series and high spatiotemporal resolution usually proves challenging. Herein, this paper proposes 
a two-stage Context-Aware Spatial-Temporal Location Embedding (CASTLE) model, a multi-modal pre-training model for sequence-
to-sequence prediction tasks. The method is built in two steps. First, large-scale location datasets, which are sparse but easier to be 
acquired (i.e., check-in and anomalous navigation data), are used for pre-training location embedding to capture the multi-functional 
properties under different contexts. After that, the learned contextual embedding is used for downstream location prediction in small-
scale but higher spatiotemporal resolution trajectory datasets. Specifically, the CASTLE model combines Bidirectional and Auto-
Regressive Transformers to generate contextual embedding vectors rather than a fixed vector for each location. Furthermore, we 
introduce a location and time-aware encoder to reflect the spatial distances between locations and visit times. Experiments are 
conducted on two real trajectory datasets. The results show that the CASTLE model can pre-train beneficial location embedding and 
outperforms the model without pre-training by 4.6-7.1%. The proposed method is expected to improve the next location prediction 
accuracy without massive historical data, which will greatly drive the use of trajectory data. 
 
 

1. INTRODUCTION 

Next location prediction has raised intensive studies in recent 
years owing to the growth of location-based services. The large 
volume of historical data makes it possible to understand 
individuals’ preferences for the next movements (Wan et al., 
2021), as the trajectory data reveals individuals’ travel patterns 
and preferences. Meanwhile, predicting the next location is of 
great significance for service recommendation, public safety, 
intelligent transportation, and other location-based applications 
(Luo et al., 2021).  
 
There have been various models to predict the next location based 
on the historical trajectory in the past two decades. In general, 
location prediction methods can be categorized as pattern-based, 
probability distribution-based, statistical learning-based, and 
representation-learning-based. The pattern-based methods refer 
to extracting spatiotemporal patterns from historical trajectories 
for location prediction. Commonly used patterns include 
sequential, frequent, periodic, and clustering patterns. For 
example, the commonly used sequence mining model T-pattern 
tree records the behavior and the visit time of each location and 
calculates the transition probabilities between locations to 
dynamically predict the next location by finding the optimal 
matching path (Monreale et al., 2009). Based on historical 
trajectory data, some studies mine frequently visited locations of 
individuals through clustering and established a path network to 
predict the next location that individuals will go to (Yuan et al., 
2014). However, it is not easy to extract a long-term effective and 
meaningful movement pattern, and the fixed pattern limits the 
diversity of model prediction results. 
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The core idea of the probability distribution-based method is to 
fit a probability calculation model to evaluate the user’s visiting 
preferences for different locations and then predict the next 
visiting location. This method does not require parameter 
learning and training but only needs to fit the parameters 
according to a predetermined probability model based on 
historical trajectories. Specifically, this method establishes a 
probability calculation model from different aspects (e.g., 
geographic location, time, sequence characteristics, location 
category) based on the existing model (Zhang et al., 2015). An 
interesting study uses the Gaussian Mixture Model to fit the two-
dimensional spatial distribution of the user’s historically visited 
points of interest (Zhang and Chow, 2014). In general, the 
method based on probability distribution has good 
interpretability. However, methods based on probability 
distributions rely on prior knowledge, and fitting with different 
statistical models may yield different results. 
 
The method based on statistical learning refers to obtaining the 
optimal parameter combination by training based on historical 
data, mainly including matrix factorization, topic, and other 
classification-based machine learning models. The basic idea of 
the matrix factorization models, e.g., RCH (Wang et al., 2015) 
and GeoMF (Lian et al., 2018), are to decompose the user-
location matrix into two low-rank matrices representing the user 
and the location, respectively. In the subsequent research, the 
matrix dimension is expanded into a tensor, expressed as a user-
time-location tensor. The tensor factorization method is used to 
analyze the temporal patterns of users’ travel behavior (Bhargava 
et al., 2015). However, this kind of method is not suitable for 
cold-start problems, especially for new users and new locations 
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requiring the model’s retraining. Meanwhile, it ignores the 
sequential correlations in the trajectory. 
 
With the advancement of deep learning technology, 
representation learning has become widespread in next location 
prediction research. The core idea is to represent each location 
with a vector and train the model to get a latent embedding vector 
with a specific task. Similar to natural language, the trajectory is 
also a sequence in which the sequence node strongly correlates 
with its context. Thus, word embedding models in natural 
language processing have been widely used in the representation 
learning of trajectory. For example, the DeepMove model (Feng 
et al., 2018) uses the Skip-gram model to extract contextual 
information; that is, predicting the surrounding context through 
the central node. The Tale model (Wan et al., 2019) is based on 
the CBOW model to capture the temporal dependencies in the 
trajectory; that is, predicting the central nodes by the surrounding 
context. Although these methods can generate beneficial 
embedding vectors, they will produce a fixed embedding vector 
for the same location under a different context.  

 
Figure 1. Uncertain visited places in real trajectories. One stop 

may match multiple different places. 
 
Unlike the usually used check-in data, the visited location is 
uncertain in the real GPS or mobile phone trajectory dataset 
(Figure 1) due to the low spatial accuracy of the positioning 
terminal and the place ambiguity (e.g., multiple shop malls or 
cinemas in a shopping mall). It means that people may visit the 
same location for a different purpose; that is, a location may be 
multi-functional in the real world. Thus a model which can 
dynamically generate the contextual embedding vector is 
urgently needed. A recently proposed Bert-based (Devlin et al., 
2019) CTLE (Lin et al., 2021) model uses a bidirectional encoder 
to generate the embedding for a location based on its spatial-
temporal context. It shows that the dynamic location embedding 
significantly improves the downstream task’s performance. 
However, it ignores the spatial proximity of the locations. 
 
However, there still exist some problems in the existing methods. 
First, most existing studies use sparse check-in trajectory data, 
which is easy to acquire. However, the trajectory data obtained 
by mobile phones or GPS terminals with the high spatial-
temporal resolution has rich information. Obtaining personal 
trajectories with long time series and high spatiotemporal 
resolution usually proves challenging. Furthermore, training an 
effective model will be a difficult task without massive historical 
data. Second, the trajectory contains rich spatial-temporal 

information, and the existing methods fail to capture 
spatiotemporal associations between visited locations effectively. 
 
To address the above problems, we propose a two-stage context-
aware spatial-temporal location embedding pre-training model 
for the next location prediction. The contribution can be 
summarized as follows: 
 
(1) A two-stage framework is proposed to solve the problem that 
obtaining large-scale trajectories with the high spatial-temporal 
resolution is challenging. Thus, our model could predict the visit 
places accurately using small-scale fine-grained trajectory data. 
 
(2) We propose an encoding layer that incorporates the spatial 
position and the temporal information. Therefore, preferences for 
travel distance and visit time can be reflected in the model. 
 
(3) The bidirectional encoder and the autoregressive decoder are 
combined to dynamically capture long-term sequential 
dependence, which is more suitable for the uncertain visit places 
of real GPS or mobile phone trajectory. 
 
 

2. METHODOLOGY 

2.1 Proposed Framework for Next Location Prediction 

Obtaining personal trajectories with long time series and high 
spatiotemporal resolution usually proves to be challenging. Thus, 
we propose a two-stage framework (Figure 2) for next location 
prediction, including pre-training contextual embedding vectors 
for locations and fine-tuned next location prediction.  

 
Figure 2. Flowchart of the proposed two-stage next location 

prediction framework. 
 
Firstly, large-scale sparse location datasets, which are easier to 
be acquired (i.e., check-in data and anomalous navigation data), 
are used for pre-training the location embedding model to capture 
multi-functional properties. Herein, we propose a Context-Aware 
Spatial Temporal Location Embedding Pre-Training (CASTLE) 
Model to learn the contextual embedding vectors for visited 
locations. The same location will have different embedding 
vectors in different spatial-temporal contexts. After pre-training 
the CASTLE model, the learned contextual embedding is used 
for downstream location prediction in small-scale but higher 
spatiotemporal resolution trajectory datasets.  Besides, the 
parameters of the CASTLE model are fine-tuned to learn the 
spatial-temporal information in the dataset. 
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In this paper, a visit v = (l, t, g) indicates that individual visits a 
location l at time t and the geospatial position of the location l 
can be denoted as g. Given the trajectory s={( 𝑙", 𝑡", 𝑔" ), 
(𝑙&, 𝑡&, 𝑔&),…, (𝑙', 𝑡', 𝑔')}, the goal of the next location prediction 
is to predict the output 𝑙'(". And the goal of the pre-training step 
is to learn a parameterized map function f, which generates the 
latent contextual embedding vector V(𝑣*) from a visited record 
𝑣* = (𝑙*, 𝑡*, 𝑔*) and its context C(𝑣*). 
 
2.2 The Proposed CASTLE Model 

Our proposed CASTLE Model (Figure 3) consists of 1) a multi-
modal encoding module that inputs the visited location, time, and 
geospatial position into the model; 2) a bidirectional encoder that 
learns the embedding of locations by taking other relevant visited 
locations within the sequence into account. 3) an autoregressive 
decoder that predicts locations auto-regressively. 
 

 

 
Figure 3. The sketch map of CASTLE. (a) The input layer of 

CASTLE consists of the location, time, and geospatial position 
encoding layer. (b) Bidirectional encoder. (c) Autoregressive 

decoder. 
 
 
2.2.1 Multi-modal Encoding Module:  Given a trajectory 
{𝑣" =(𝑙", 𝑡", 𝑔"), 𝑣& = (𝑙&, 𝑡&, 𝑔&),……,	𝑣'/" = (𝑙'/", 𝑡'/", 𝑔'/"), 
𝑣' = (𝑙', 𝑡', 𝑔')}, the input vector E(v) of visit record v is denoted 
as: 
 

 𝐸 𝑣* = 𝑒(𝑙*)+	𝑒(𝑡*)+	𝑒(𝑔*), (1) 
 
where  𝑒(𝑙*) = embedding vector of location 𝑙* 
 𝑒(𝑡*) = embedding vector of time 𝑡* 
 𝑒(𝑔*) = embedding vector of geospatial position 𝑔* 
 
(1) location encoding layer: The location encoding is 
implemented using a fully connected embedding layer, and the 
embedding layer can be represented as an embedding matrix 𝑍3 ∈
ℝ'6∗89:;<6 , where	𝑛3 is the total number of locations and 𝑑?@8A3 
is the set dimension of the location embedding vector. A matrix 
multiplication process 𝑒 𝑙* = 𝑜 𝑙* C𝑍3  is used to generate the 
embedding of locations 𝑙* based on the one-hot vector 𝑜 𝑙* . 
 
(2) time embedding layer: Here, the continuous timestamp was 
mapped into 168 dimensions (7 days * 24 hours per day). Then 
the time embedding layer can be represented as an embedding 
matrix 𝑍D ∈ ℝ"EF∗89:;<6 . 
 
(3) geospatial position embedding layer: In general, the 
geospatial position of a visit is usually characterized by latitude 
and longitude. Nevertheless, this representation method will 
suffer from the sparsity issue. Thus, we adopt a hierarchical map 
gridding method to represent the geospatial position (Lian et al., 
2020). Because of grid division like quadtrees, each grid was 
represented as a base-4 number with a certain length (e.g., the 
length of a quadtree key is 16 at the 16th level of detail). In this 
way, the spatial distances of different locations can be reflectedd 
in their quadtree keys.  
 

 
Figure 4. The geospatial encoding layer of CASTLE. 

 
In order to model the spatial positional relationship of visited 
locations, this study uses the N-gram method and self-attention 
network to construct a geospatial embedding layer using the tiled 
quadtree index of trajectory points (Lian et al., 2020). N-gram is 
a widely used method of segmenting sequences according to a 
certain length. N-gram consists of a series of substrings obtained 
by sliding a window of length N by one string at a time. Taking 
the quadtree index “13101113” as an example, the corresponding 
trigram sequence when N is 3 is {131, 310, 101, 011, 111, 113}. 
Since the character set of the quadtree index string only includes 
{0, 1, 2, 3} four characters, it is not enough for characterizing the 
whole area. The size of the vocabulary of the embedding layer 
corresponding to the N-gram is 4H . In order to obtain the 
contextual information of sequences in N-grams, the N-gram 
embedding sequences are represented by a self-attention encoder 
after adding positional encoding. The self-attention encoder used 
here is consistent with the encoder in the transformer. Finally, the 
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embedding of the geospatial position is generated by the average 
pooling of the n-gram sequence. 
 
2.2.2  Bidirectional Encoder and Autoregressive Decoder: 
The main body of the CASTLE model adopts the encoder-
decoder structure of the transformer (Vaswani et al., 2017). The 
encoder is adopted to capture sequence context information, and 
the decoder is used for sequence prediction. The encoder consists 
of several attention sub-modules with the same layer structure. 
The bidirectional self-attention in the sub-modules can capture 
the spatiotemporal context information in the sequence. The 
output vector of the encoder corresponding to visited records 𝑣* 
contains the spatiotemporal context information C(𝑣*). which is 
represented as V(𝑣*) in this study. Use the sequence obtained by 
the decoder as Q, and the representation sequence obtained by the 
encoder as K and V to perform attention interaction. After 
multiple self-attention and attention modules, a sequence of 
latent vectors {ℎ", ℎ&, … ℎ'} with the same dimension as the input 
vector is finally obtained. Finally, the location is predicted as 
follows: 
 

 𝑙* = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ℎ*𝑊Q + 𝑏 , (2) 
 
where  ℎ* = the latent output vector of the decoder  
 𝑊Q  ∈ ℝ'6∗8and 𝑏  ∈ ℝ'6 , both of them are learnable 
 𝑛3= the total number of locations  
 d = the set dimension of the location embedding vector 
  
2.3 Pre-training Objective 

The goal of pre-training is to learn a mapping function f to 
produce a contextual embedding V(v) for a target visit v given its 
spatial-temporal context C(v).  
 
Inspired by Masked Language Model proposed in BERT, we 
implement a self-supervised training model.  Given a trajectory 
s, 15% of visited records are randomly chosen as masked visited 
records and replaced the embedding vectors of masked records 
with special tokens [(𝑚3,𝑚D,𝑚T)]. In the pre-training process, 
the original visited location of each masked visit record is 
predicted. And the pre-training objective is expressed as follows: 
 

 𝑂 = 𝑎𝑟𝑔	𝑚𝑎𝑥
W

𝑝 𝑙* 𝑙*

Y

*Z"

, (3) 

   
where  𝜃 =  all the learnable parameters  
 M= the number of all the masked visit records 
 𝑝 𝑙* 𝑙* 3= the probability that location 𝑙* is correctly 
predicted  
 
2.4 Next Location Prediction Objective 

Given the trajectory{(𝑙", 𝑡", 𝑔"), (𝑙&, 𝑡&, 𝑔&),……,(𝑙'/", 𝑡'/", 𝑔'/"), 
(𝑙', 𝑡', 𝑔')}, the goal of the next location prediction is to predict  
𝑙'(" correctly. Thus, the objective of the next location prediction 
can be represented as: 
 

 𝑂 = 𝑎𝑟𝑔	𝑚𝑎𝑥
W

𝑝 𝑙* 𝑙* ,
C

*Z"

 (4) 

 
where  𝜃 =  the set of all the learnable parameters of the model  
 𝑇= the number of all the predicted records 
 

The above objectives can be transformed into classification tasks 
and optimized using the cross-entropy loss function. 
 
 

3. EXPERIMENTAL RESULT 

The experiments were conducted on two real-world spatial-
temporal trajectory datasets to verify the effectiveness of the 
proposed model. Furthermore, the CASTLE model was 
compared with other models quantitatively. 
 
3.1 Datasets 

Two real trajectory datasets were used in the experiments, 
including a large-scale anomalous navigation dataset and a small-
scale mobile phone trajectory dataset in the same city, denoted as 
TucityPre and TucityLife, respectively. The TucityPre data set 
was captured from one of the biggest navigation service 
companies in China and included anonymous mobile phone or 
vehicle navigation data for about two weeks in May 2021. The 
TucityLife dataset was collected by some volunteers in the same 
city in August 2021.  
 
The trajectory-subsequence that a user stays within 100 meters 
for more than 5 minutes is regarded as visiting the location. We 
included the trajectories with more than 3 different visit locations 
in the both two datasets. The numbers of users, locations, and 
visit records of the two datasets are shown in Table 1. 
 

Dataset Visit 
Records Users Locations 

TucityPre 67082 4033 2354 
TucityLife 4266 23 2354 

Table 1. Statistics of users, locations, and visit records of the 
used datasets. 

 
3.2 Baseline Models 

3.2.1 Baseline Pre-Training Embedding Models: In order 
to verify the effectiveness of the proposed CASTLE model in 
pre-training embedding vectors for visits, this paper uses the 
CTLE model (Lin et al., 2021) as the baseline. The CTLE model 
uses a BERT-like bidirectional encoder to predict the masked 
location. The CTLE model interoperates time and location 
information, which is a state-of-the-art model in pre-training 
embedding vectors for locations.  
 
3.2.2 Baseline Next Location Prediction Models: To 
evaluate the usefulness of our framework, we employ some 
effectivenext location prediction methods: 
 
(1) GRU (Cho et al., 2014) (Gate Recurrent Unit): An improved 
model of the RNN model, we use the GRU-based seq2seq 
location prediction model as a baseline model. 
 
(2) DeepMove (Feng et al., 2018): a state-of-the-art model 
consisting of recurrent network and attention layers to capture 
sequence correlations. 
 
(3) Pre-trained CASTLE encoder + GRU: The pre-trained 
embedding vectors are used as the input to the GRU model. 
 
(4)  CASTLE without pre-training: Directly train the CASTLE 
location prediction model on the TucityLife dataset without pre-
training. 
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3.3 Evaluation Metrics 

The pre-training embedding method does not have a stable 
performance evaluation index. Since the downstream task of this 
study is next location prediction, the trajectory prediction task is 
used here to evaluate the accuracy of the pre-training model. 
Specifically, we masked the last visit record in the trajectory 
sequence and used the pre-training model to predict the last visit 
location of the trajectory. 
 
Two widely used metrics of next location prediction, including 
Recall and NDCG (Normalized Discounted Cumulative Gain) 
(Lian et al., 2020), were adopted in this study. Furthermore, two 
metrics were both calculated at the cut-off of k = 1 and k = 5. 
 
3.4 Settings 

The dimension of location embedding 𝑑?@8A3 was set to 64 for 
the CASTLE model and other compared methods. We train all 
the models using the Adam optimizer with a learning rate of 
0.001. To avoid over-fitting, we set the dropout ratio to 0.2. In 
the pre-training process, the mask ratio of the input encoder is set 
to 15%. Geocoded N-grams use trigrams to represent quadtree 
indexes and use a two-layer self-attention structure with a single 
attention head to capture the context of trigrams. Besides, the 
level of the quadtree key is set as 17 in our experiments. The 
hidden layer dimension of its feed-forward network is set to 128. 
The encoder of CASTLE uses a two-layer self-attention structure 
with four attention heads, the dimension of the feed-forward 
network hidden layer is set to 128, and the parameter settings of 
the decoder are consistent with the encoder. The pre-training 
batch size is set to 64, and the training epoch is set to 1000. In 
addition, to avoid randomness of the results, a different random 
seed is used for each epoch training. In pre-training, the first 80% 
(in time order) of the trajectory visit records for each user are 
used for training, and the last records are used for testing to 
prevent data leakage. The parameters in the next location 
prediction are almost the same as in pre-training. Considering the 
small size of the TucityLife dataset, the Batch Size is set to 32. 
For each user’s time-ordered trajectory sequence, the first 70% 
of the trajectory visit records are used as prediction, 20% of the 
trajecotories are used as validation, and the rest are used as the 
test set.  
 
3.5 Results 

3.5.1 Pre-training Results: After the model was pre-trained 
on the training set of TucityPre, the trajectory prediction task was 
chosen to evaluate the performance of the pre-trained CASTLE 
model. The comparison between the model and the baseline 
model is shown in Table 2. For the top-1 and top-5 sets of 
prediction results, the Recall and NDCG of the CASTLE model 
are both better than the CTLE model. It shows that the CASTLE 
pre-training method proposed in this study can better capture the 
spatiotemporal context information by incorporating geospatial 
position information, which improves the model’s accuracy in 
the trajectory prediction task. 
 

Table 2. Pre-training performance comparison. 
 

3.5.2 Next Location Prediction Results: The location 
prediction performance of different models on the TucityLife test 
set is shown in Table 3. By analyzing the next location 
preddiction results, we couldd conclude the following 
conclusions:  
 
(1) The performance of the CASTLE model without pre-training 
is better than that of GRU and DeepMove, indicating that the 
spatiotemporal context information obtained through attention 
can play a positive role in location prediction;  
 
(2) Inputting the pre-trained location embedding vectors into the 
GRU model can also significantly improve the accuracy, 
indicating that the location embedding vectors pre-trained by the 
CASTLE model have good transfer performance. 
 
(3) The fine-tuned CASTLE model achieves the best 
performance and outperforms the model without pre-training by 
4.6-7.1%, indicating the effectiveness of our proposed two-stage 
next location prediction framework, 
 

Table 3. Comparison of next location prediction with different 
methods. 

 
3.6 Ablation Study 

 
Figure 5. The ablation study results of the CASTLE model. 

 
To further prove the effectiveness of time encoding layer and 
geospatial encoding layer of the CASTLE model, we design an 
ablation study, and the compared variants include: 
 

Pre-training 
model 

Recall
@1 

NDCG
@1 

Recall
@5 

NDCG
@5 

CTLE  0.252 0.252 0.549 0.409 

CASTLE 0.319 0.319 0.554 0.446 

Model Recall
@1 

NDCG
@1 

Recall
@5 

NDCG
@5 

GRU  0.217 0.217 0.439 0.334 

DeepMove  0.293 0.293 0.592 0.453 

Pre-trained  
CASTLE 
encoder + 

GRU 

0.256 0.256 0.532 0.404 

CASTLE 
Without 

pre-training 

0.314 0.314 0.710 0.532 

Fine-tuned  
CASTLE 0.360 0.360 0.781 0.592 
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(1) – TimeEnc: This model replaces the time encoding layer with 
the positional encoding layer in Transformers. 
 
(2) – GeoEnc: This model just uses the location and time 
encoding layer. 
 
We compared these two variants with the CASTLE model on the 
next location prediction task in pre-training. Figure 5 shows that 
both time geospatial encoding layers benefit the learning of 
location embedding vectors. The CASTLE model with time and 
geospatial encoding layers can better capture the spatiotemporal 
context information of visited locations in the trajectory sequence.  
 
 

4. CONCLUSIONS 

To address the issue that it is challenging to obtain personal 
trajectories with long time series and high spatiotemporal 
resolution, we propose a two-stage next-location prediction 
framework. The first step is pre-training contextual embedding 
for locations using large-scale trajectory datasets, which are 
relatively sparse but easier to be acquired. After that, the model 
is fine-tuned for the next location prediction task in the small-
scale but higher spatiotemporal resolution trajectory datasets. 
Furthermore, a context-aware spatial-temporal location 
embedding (CASTLE) model is designed for pre-training and 
next location prediction. The model will generate different 
embedding vectors for the same location in different spatial-
temporal contexts. Specifically, the CASTLE model combines 
Bidirectional and Auto-Regressive Transformers to predict the 
next location. Furthermore, we introduce a spatiotemporal aware 
encoder to reflect the spatial distances between locations and the 
visit times, which consists of location, time, and geospatial 
spatial encoding layers. Experiments were conducted on a large-
scale anomalous navigation dataset and a small-scale mobile 
phone trajectory dataset in the same city. The results show that 
the fine-tuned CASTLE model achieves the best performance 
and outperforms the model without pre-training by 4.6-7.1%, 
indicating the effectiveness of our proposed two-stage next 
location prediction framework. Furthermore, inputting the pre-
trained location embedding vectors into other location prediction 
models can also significantly improve the accuracy, indicating 
that the location embedding vectors pre-trained by the CASTLE 
model have good transfer performance. Without massive 
historical data, our method could still accurately predict the next 
location in a dense but small-scale trajectory dataset. 
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