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ABSTRACT: 

 

In the realm of data analytics, machine learning (ML) is one of the most successful techniques for making predictions. The ability of 

ML algorithms has also been studied in various aspects of land surface temperature (LST) besides its retrieval. The few 

investigations on LST retrieval using ML algorithms suggested that it may potentially obtain the LST values incorporating relevant 

variables of land surface parameters; however, the variables and ML models used differ, and so do their accuracies. The accuracy of 

the model is affected by the variable's contribution, its quality and quantity, and the fulfilment of each technique's assumptions. 

Hence this study provides a wide range of LST indicators to be employed for LST retrieval using a widely used ML algorithm, 

random forest. The ML algorithm framework for LST prediction is illustrated with significant spectral indices and terrain parameters 

across the highly industrialised district of Jharkhand, India. With the exception of one (aspect) variable, the analysis shows that all 

20 variables that were included as independent factors were significant and equally contributed to the model. The model built with 

all the variables including the aspect of the terrain obtained an RMSE of 1.13 degree Celsius and R2 of 0.48. However, after the 

removal of aspect, the model obtained an R2 of 0.89 and RMSE of 0.74º C. The performance of the model on consecutive removal of 

lesser significant variables are evaluated and the study made clear how crucial it is to consider several environmental or land-use 

factors that could be pertinent to LST. 

 

 

1. INTRODUCTION 

Urbanisation and industrialisation drive rapid transformation of 

the land use and cover pattern (Kedia et al., 2021; Maheng et 

al., 2021). Although such development improves living 

standards in certain ways and causes social changes, it also 

impacts the environment and ultimately contributes to climate 

change. The human-induced changes in the land use/land cover 

(LULC) type transforms t h e  pervious to impervious surfaces, 

which reduces the outgoing longwave terrestrial emissions 

while absorbing shortwave solar radiation, increasing the 

temperature of the atmosphere and the land surface. The local 

climate and rainfall patterns are altered by such temperature 

fluctuations (Eleftheriou et al., 2018; Ranagalage et al., 2018; 

Salwan et al., 2021). Several studies have found that LULC type 

significantly impacts the relative rise in land surface 

temperature (LST), particularly in urban areas. The world’s 

population is expected to be exposed to human-induced climate 

change in metropolitan areas with a projected threefold increase 

in urban land use accompanied by heat stress (Seto et al., 2012; 

IPCC, 2014; Argüeso et al., 2015). LST massively contributes 

to the land surface processes, which impacts the Earth’s 

environmental and climatic conditions (Anderson et al., 2008; 

Kustas and Anderson, 2009; Karnieli et al., 2010). Due to the 

significant heterogeneity of land use patterns and cover, 

understanding and keeping track of the dynamics of LST is 

crucial. 

LST is typically obtained via remote sensors that collect data 

from one or more channels in the electromagnetic spectrum's 

thermal infrared window (Dar et al., 2019; Ermida et al., 2020). 

Numerous LST retrieval algorithms have been established for 

the Landsat satellite series (Sattari and Hashim, 2014; Duan et 

al., 2020). Although earlier studies demonstrated a relationship 

between various spectral indices (especially LULC indices) and 

LST, they tend to be non-linear. Several techniques have been 

put forth to retrieve LST and quantify its relationship with 

associated variables. One such example is the geographically 

weighted regression (GWR) which uses linear models; however, 

they are insufficient to simulate the non-linear relations between 

LST and its indicators. Furthermore, multicollinearity has a 

significant negative impact on GWR and can result in 

predictions that are not accurate when the associated surface 

parameters have a high degree of correlation (Li et al., 2019; 

Zhao et al., 2018; Jia et al., 2021). Hence, researchers have 

implemented machine learning (ML) algorithms to address the 

shortcomings of traditional LST retrieval. 

In the realm of data analytics, ML is one of the most successful 

techniques for making predictions using models and algorithms 

(Angra and Ahuja, 2017; Dhall et al., 2020). Although there is a 

paucity of research employing ML algorithm to retrieve LST, 

the technique has been used in other aspects of LST studies, 

such as spatial downscaling, simulation, addressing 

meteorological conditions, and similar tasks (Li et al., 2019; 

Buo et al., 2021; Maithani et al., 2022; Xu et al., 2021). Wang 

et al., (2022) employed land cover categories and Landsat bands 

to estimate the LST across the Tibetan plateau using random 

forest (RF). The LST by the RF trained model was the most 

accurate with the lowest root mean square error (RMSE) (1.89 

Kelvin), according to Wang et al., who also obtained and 

examined the LST from the single channel technique, the linear 

regression model (2.77 Kelvin), and the moderate resolution 

imaging spectroradiometer product (MOD11A1) (3.62 Kelvin). 

In order to acquire the LST over Dehradun using an artificial 

neural network, Maithani et al., (2022) employed built-up 
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densities with a mean absolute error of 1.5° C and 0.9° C, while 

Rana and Suryanarayana (2022) employed four ML techniques, 

K nearest neighbour, neural network, regression tree, support 

vector machine incorporating three indices resulting with an 

RMSE of 0.54° C, 0.59° C, 0.89° C, and 0.61° C respectively. 

Mohammad et al., (2022) predicted the LST over a city in 

Ahmedabad with an RMSE of 0.03° C using XGB regressor. 

Although earlier studies demonstrated the potential of ML 

algorithms to retrieve the LST incorporating related variables 

like land surface parameters, the variables and the ML models 

utilised vary, and so do their accuracies. The variable's 

contribution and its quality and quantity together with the 

fulfilment of each technique's presumptions, all have an impact 

on the model's accuracy (Zhong et al., 2019). For example, it is 

generally known that ML models suffer when there are few 

observations available, and this issue could worsen as more 

predictors are added. Herein, a robust ML algorithm, RF is 

employed to extract LST in the study area. RF has been proven 

to be efficient for generating spatial predictions, first described 

in Breiman (2001), and several studies (Hengl et al., 2018; 

Meyer et al., 2019; Sekuli et al., 2020; Pouyan et al., 2022; 

Wang et al., 2022) have verified that it is a promising technique. 

Since LST retrieval is vital for a sustainable check and planning 

for every rapidly growing region, our prime goals are:  

• to retrieve LST over the mineral-rich East Singhbhum 

district of Jharkhand, India, 

• to quantify the relationship between the spatially varying 

LST and surface parameters, 

• and to determine the effectiveness of the variables in ML 

model to predict the LST.  

 

2. MATERIALS AND METHODS 

2.1 Study site description 

One of the highest mining potential districts, East Singhbhum, 

also called Purbi Singhbhum (Figure 1) is considered for this 

study. It is situated at the extreme southeast of Jharkhand, 

having a longitudinal and latitudinal extent of 86°04' – 86°54' E 

and 22°12 - 23°01' N, respectively. In terms of industrial 

development, and mining and quarrying, the district leads the 

state Jharkhand. Approximately 53% of the district's total area 

is made up of residual mountains and hills formed of granite, 

gneiss, and schist. It is situated on the Chhotanagpur plateau, 

surrounded by lush forest from west to east and the Dalma 

Range on the northern edge. The Subernarekha river runs across 

the district from west to the south-east. The annual rainfall 

ranges from 1200 to 1400 mm, and the climate is temperate. 

The minimum recorded winter temperature is 8 degrees Celsius, 

while summer temperatures reach 40 to 45 degrees Celsius. 

Minerals are in abundance in the district. The primary minerals 

include iron ore, copper, uranium, and gold kynite 

(https://jamshedpur.nic.in/about-district/). The region is a 

heavily mineralised zone that has undergone substantial mineral 

extraction, which could result in collateral environmental 

damage (Singh et al., 2018). It is essential to monitor the 

growth and associated climate variables because Jharkhand's 

urbanisation has increased across all districts, with East 

Singhbhum experiencing a considerable growth rate (Kumar 

and Reshmi, 2018). 

 

 

Figure 1. Location map of the study site 

 

2.2 Dataset 

For the LST derivation, this study employs the Landsat-8 

operational land imager (OLI) and thermal infrared sensor 

(TIRS). In addition to Landsat data, the LST production code 

also uses two other datasets found in GEE: surface emissivity 

from the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer Global Emissivity Database (ASTER 

GED) created by the National Aeronautics and Space 

Administration's (NASA) Jet Propulsion Laboratory, and 

atmospheric data from the reanalysis of the National Center for 

Environmental Prediction (NCEP) and National Center for 

Atmospheric Research (NCAR). 

For the generation of the various LULC indices, we utilised the 

atmospherically corrected surface reflectance (SR) data from 

Landsat 8's collection 2, Tier 1 (highest available data quality) 

datasets that have been processed using a sophisticated data 

processing method and algorithm. 
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Figure 2. Overview of the methodology 
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2.3 Methodology 

2.3.1 LST retrieval using SMW algorithm: Since the 

statistical mono-window (SMW) algorithm developed by the 

Climate Monitoring Satellite Application Facility (CM-SAF) 

method is a reliable technique to provide LST with high 

accuracy, it was applied to derive LST in this study using 

Google Earth Engine (Gorelick et al., 2017) (Figure 2). SMW 

algorithm is based on the empirical link between the top of 

atmosphere (TOA) brightness temperatures (BT) in a single 

thermal infrared channel and LST via a linear regression (Sun et 

al., 2004; Jiménez‐Muñoz and Sobrino, 2003). Landsat's TOA-

BT and SR collection have a cloud mask applied to them. The 

nearest two total column water vapour (TCWV) NCEP analysis 

times for each TOA-BT image are chosen and linearly 

interpolated to the Landsat observation time. The normalised 

difference vegetation index (NDVI) is computed using the SR 

data, which is then used to estimate the fractional vegetation 

cover (FVC). 

                          
b

v b

NDVI NDVI
FVC

NDVI NDVI

 −
=  

− 

                        (1) 

where NDVIb and NDVIv represent, respectively, the NDVI 

values of soil or bare land and densely vegetated pixels. The 

threshold values are set to NDVIb = 0.2 and NDVIv = 0.9 in 

accordance with Jiménez-Muñoz et al., (2009) since the highest  

NDVI values in our study area are 0.88, and those below 0.2 are 

non-vegetated surfaces. We used mean ASTER GEDv3 NDVI 

and NDVI calculated from Landsat to account for vegetation.  

 

The equivalent Landsat emissivity is then calculated using the 

ASTER emissivity values. 

  
_ _(1 )b b veg b bareFVC FVC  = + −                     (2) 

where, for a specific spectral band b,  b_veg and  b_bare 

represent the emissivity of dense vegetation and bare soil, 

respectively. Because the emissivity of vegetated surfaces 

typically exhibits only minor fluctuations in the TIR area, 

vegetation is taken as 0.99 as recommended (Peres and 

DaCamara, 2005). The surface emissivity is derived from the 

ASTER GEDv3. Therefore, the emissivity is modified to 

correspond to Landsat's thermal bands using the coefficients 

provided by Malakar et al., 2018. The TOA BT of the Landsat 

TIR band is then subjected to the SMW algorithm. The TWVC 

from NCEP and the designated classes are then used to overlay 

the algorithm's coefficients over the Landsat image. 

                 1b
i i i

T
LST A B C

 
= + +

                            (3) 

where Tb is the TIR channel's TOA BT, and ε is the channel's 

surface emissivity. The Coefficients Ai, Bi, and Ci were 

computed from linear regressions of radiative transfer 

simulations following Martin et al., (2016) using a dataset of air 

temperature, water vapour, and ozone profiles generated by 

Borbas et al., 2011. 

 

2.3.2 Machine learning-based LST retrieval: Random forest 

is a non-parametric, non-linear ML technique that creates 

decision trees on several samples and predicts continuous or 

categorical data by averaging the values or taking the majority 

vote, respectively (Breiman, 2001). The creation of RF models 

entails modelling the target variable, sometimes referred to as 

the dependent variable, using a dataset of predictor or 

independent variables. Each tree is built using several 

bootstrapped datasets, and predictors are randomly selected 

from the entire array to act as candidates for each split. The 

approach de-correlates each tree because they are not reliant on 

the same factors, reducing the variance in the dataset (Zhong et 

al., 2021). Here, we created an RF regression model with LST 

as the target variable to investigate the spatial variation of the 

LST over the study area using spectral indices as predictor 

variables.  

The SMW algorithm-retrieved LST values were utilised in 

conjunction with different spectral indices to train the ML 

algorithm. A total of 20 variables, comprising parameters of the 

terrain (aspect, elevation, slope), vegetation indices, namely 

enhanced vegetation index (EVI), normalised difference 

vegetation index (NDVI), and transformed vegetation index 

(TVI), soil or bare land indices viz bare soil index (BSI), 

normalised difference bareness index (NDBaI), normalised 

difference bare soil index (NDBSI), normalised multi-band 

drought index (NMDI), optimised soil adjusted vegetation 

index (OSAVI), soil adjusted vegetation index (SAVI), and 

urban characteristic indicators such as built up index (BUI), 

enhanced built-up and bareness index (EBBI), new built-up 

index (NBI), normalised built-up area index (NBAI), urban 

index (UI), and normalised difference built-up index (NDBI), 

and lastly the water indices including the modified normalised 

difference water index (MNDWI) and normalised difference 

water index (NDWI) were generated (Table 1) that were shown 

to have impact on the LST. 

The values of all the parameters were then extracted at the 

corresponding coordinates of the 429 total points that were 

generated at equal intervals over the entire study region, 

ensuring local heterogeneity. The necessary packages for the 

random forest algorithms were installed and loaded using the 

RStudio integrated development environment of R to train the 

model (R Core Team, 2020). To ensure that the variables 

generated are relevant, they were passed to boruta algorithm, 

which uses a wrapper approach built around a random forest 

(Kursa and Rudnicki, 2010). It was cross-validated with the 

random forest variable importance ranking of the ranger 

package. The RF model was implemented using a 

computationally faster ranger package, which contains several 

parameters that can be fine-tuned. The most important 

parameters were considered when developing the model (Probst 

and Boulesteix, 2017; Probst et al., 2019):  

Mtry- number of variables to be drawn at each split in a tree. 

Node size- Minimum number of observations in a terminal 

node. 

Ntree: number of trees in the forest. 

Sample size: Number of observations drawn for each tree. 

 

To determine whether the trained model’s predictive ability can 

be extrapolated to an unknown dataset, we randomly split the 

sample points (429 points) into 70 and 30 per cent and used the 

later portion to validate. The predictor variables’ imageries were 

then applied to predict the LST for the entire study region using 

the trained and validated model that has reached its maximum 

accuracy and stability based on root mean square error (RMSE) 

and r-square (R2). In order to assess the effectiveness of the 

variables generated, the model was run repeatedly with all the 

variables generated with fine-tuned hyperparameters by 

consecutively removing the less significant ones. 

3. RESULTS AND DISCUSSION 

 

To demonstrate the spatial distribution of surface temperature in 

response to the surface parameters of the study area, LST map of 

the year 2021 was generated using the SMW algorithm.  
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Table 1. Spectral indices of the surface parameters *
B , 

G ,
R ,

NIR ,
1SWIR , and 

2SWIR  are respectively, 

the blue, green, red, near infrared, short wavelength infrared 1, 

and short wavelength 2 bands of Landsat 8. 

 

 

Figure 3. LST variation in response to LULC; (a) Industrial and 

settlement area (b), quarrying/mining area (c) agricultural and 

settlement (d), waterbody (e) Vegetation, (f) Bare ground 

The mean of the LST for the year 2021 retrieved by the SMW 

algorithm ranged between 22.69 to 42.23 degree Celsius. The 

distinct thermal signatures exhibited in the LST maps are due 

to the different attributes of the various land use/cover type. 

Throughout the period, temperatures were high in places with 

various factories and industries, mining and quarrying 

locations, urban settlements, and agricultural lands. On the 

other hand, waterbody and vegetation have the lowest 

temperature throughout the area. The graph shown in Figure 4 

depicts a positive correlation between urban spectral indices’ 

(BSI, EBBI, MNDWI, NBAI, NBI, NDBaI, NDBI, NDBSI, 

NMDI, and UI) and the LST. In the case of vegetation and 

waterbody, the opposite is supposed to be true. Here the 

vegetation indices are negatively correlate with LST because 

wherever there is vegetation cover, the surface temperature is 

low (Mishra et al., 2021). Similarly, the NDWI-LST relation 

is low as water temperature varies with its surroundings, 

implying a negative correlation between them. 

 

Figure 4. Correlation matrix of the LST and the LULC 

indices 

The variables that are highly correlated, whether 

positively or negatively, are shown to be important for the 

prediction of the LST by Boruta algorithm (Figure 5). 

With the exception of the aspect, which is due to the 

Spectral indices 

(References) 

Equations* 

BSI (Abdullah et 

al., 2022) 
1

1

( ) ( )

( ) ( )

SWIR R NIR B

SWIR R NIR B

   

   

+ − +

+ + +

 

BUI (Javed et al. 

2021) 
2 1 1

1 1 2

( ) ( )
2

( ) ( )
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R SWIR SWIR SWIR

   

   

 − 


+  +
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1
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SWIR NIR
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−

 +
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et al., 2020) 
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6 7.5 1
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−

+ − +
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planar study region (70% of the study area has nearly 

level or very gentle slopes), all variables were determined 

to be significant for the LST prediction.  

 

Figure 5. Feature importance ranking  

 

Figure 6. Grid search for the number of variables at each 

split (mtry) 

 

Figure 7. Grid search for number of trees (ntree) 

To predict the LST, the RF model was built using the 

variables selected by the feature selection algorithm. The 

Mtry, minimum node size, sample size, and ntree values 

were obtained via the hyperparameter grid search for 

optimal parameters as 3 (Figure 6), 10, 0.7 (70%), and 

500 (Figure 7), respectively. Less correlated trees are 

produced by using smaller sample sizes, larger node size 

values, and smaller mtry values (Probst et al., 2019). 

These trees are more distinct from one another; thus, they 

produce more distinctive predictions. The model 

predicted the LST on the testing dataset with an R square 

of 0.89 and RMSE of 0.74 degree Celsius. The SMW 

algorithm has an LST ranging from 22.69 to 42.23 degree 

Celsius, while the RF predicted LST ranges from 24.75 to 

41.09 degree Celsius. The range difference in the 

temperatures are due to the deficient coverage of the 

temperature above 41 degrees Celsius (0.01 square 

kilometre) and below 24 degrees Celsius (0.06 square 

kilometre), which prevented the model from being trained 

with smaller samples. It was not possible to infer that 

expanding the dataset would increase the model's 

accuracy as proposed by Wang et al., (2022). Because 

when we increased the training points in our case, the 

majority of the region was predicted with hardly any 

spatial variance of the LST. 

 

Figure 8. Comparison of the model performance based on the 

variables’ importance 

 

 

Figure 9. Predicted LST map of East Singhbhum district 

using RF algorithm 

 

To evaluate the effectiveness of the variables, the models 

were run repeatedly with all the variables and gradually 

removed one lesser significant variable at a time. The 

model built with all the variables including aspect 

obtained an RMSE of 1.13 and R2 of 0.48, which when 
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removed the model improved. Using all the other 

variables by removing the terrain aspect obtained an R2 of 

0.89 and RMSE of 0.74. The performance of the model 

on consecutive removal of lesser significant variables are 

displayed in figure 8. 

 

4. CONCLUSION 

 

Given the likelihood that global temperatures will continue to 

rise, it is crucial to detect and monitor LST frequently. The 

LST variation in response to surface parameters using the 

spectral indices was determined in the mineral-abundant and 

industrially developed district of Jharkhand, East Singhbhum. 

The study has also quantified the relationship between the 

spatially varying LST and surface parameters. The analysis 

showed substantial variations in the temperatures of each type 

of land use and cover. The ML algorithm predicted the LST 

incorporating terrain parameters and significant spectral 

indices of vegetation, urban, soil or bare land and water, thus 

demonstrating the potential of the algorithm to predict the 

LST with known errors. Keeping in mind that the variables 

used by the ML algorithm are not redundant, other surface 

parameters may be investigated. Furthermore, to prevent 

environmental extremes, the LST must be closely monitored 

due to the anticipated increase in population and rising 

urbanisation and industry. The study's findings may also be 

helpful in developing site-specific adaptation plans/strategies 

to mitigate environmental effects and enhance urban residents' 

quality of life. City planners and policymakers may take 

specific steps to make the city less sensitive to climate change 

by assessing the parameter (LST) that is influenced by 

compact land use patterns. 
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