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ABSTRACT: 

Different algorithms are available in literature to extract coastline from remotely sensed images and different approaches can be 

adopted to evaluate the result accuracy. In every case, a reference coastline is suitable to compare alternative solutions: usually, the 

visual photointerpretation on the RGB composition of the considered imagery and the manually vectorization of the coastline allow an 

accurate term of comparison, but they are laborious and time consuming. This article aims to demonstrate that a smart procedure is 

possible using a LiDAR-generated Digital Elevation Model (Lg-DEM) as a useful source from which to rapidly extract the reference 

coastline. The experiments are carried out on Sentinel-2 imagery, using six indices: Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Enhanced Vegetation Index 

(EVI), Red-Green Ratio (RGR) and NIR-Red Ratio (NRR). The unsupervised classification algorithm named K-Means transforms 

each index resulting product in two clusters, i.e. water and no-water, while the automatic vectorization allows to detect the coastline 

as separation between land and sea. The coastline from Lg-DEM and the manually achieved one using photointerpretation are both 

assumed as references for testing result accuracy. In every case, the performance analysis of the six indices products induces similar 

results, confirming the combination of NDWI and K-Means as the most performing approach. The tests demonstrate that, when Lg-

DEM and satellite images concern the same area in the same period or in absence of variations, the coastline extracted from Lg-DEM 

is useful as reference to compare various methods. 

1. INTRODUCTION

Defined as the element of separation between land and sea 

(Dolan et al., 1980) (Specht et al., 2020), the coastline is of 

fundamental importance in many fields such as cartography 

(Fabris, 2021), coastal geomorphology monitoring (Palazzo et 

al., 2012) (Darwish et al., 2017) and maritime navigation (Bo et 

al., 2001). Due to the dynamics in place that can modify its shape 

and position (Prasad and Kumar, 2014), the coastline requires 

careful monitoring to identify its transformations. Since the on-

site survey is expensive and time consuming (Nahon et al., 2019) 

and sometimes difficult to carry out due to the morphology of 

the places, remote sensing techniques are a valid alternative. 

The processing of remote sensed images allows to derive the 

coastline in automatic way: this result can be achieved through 

supervised (Goksel et al., 2019) and unsupervised classification 

methods (Viana et al., 2019), or through suitable indices 

(Karaman, 2021). Supervised classification provides usually 

better results than unsupervised, but requires longer times and a 

greater expenditure of resources (Pawluszek-Filipiak and 

Borkowski, 2020). In fact, supervised techniques need some 

prior knowledge of samples of the image classes for training the 

program into the identification of the classes (Sisodia et al., 

2014). However, in the literature it has been shown that 

unsupervised techniques can give excellent results if applied 

appropriately, i.e. on the map resulting from the application of 

the Normalized Difference Water Index (NDWI) (Alcaras et al., 

2021a).  

In any way, the result accuracy depends on many factors, i.e. 

applied method, sensor characteristics, coastline typology. In 

order to establish the effectiveness of a method in relation to 

these factors, a reference coastline to be compared with the 

automatically extracted one is necessary (Liu et al., 2017). 

Typically, we use the manually achieved shoreline from the 

panchromatic image (if available) or from the RGB composition 

as element of comparison. However, another important source 

for obtaining reference coastline is Digital Elevation Model 

(DEM). There are several techniques to acquire data for DEM 

generation, e.g. Airborne Light Detection and Ranging (LiDAR) 

(Chen et al., 2017) (Estornell, et al., 2011) (Liu et al., 2007) (Liu, 

2008).  

LiDAR is a remote sensing technique that allows to determine 

the distance to an object or surface using a laser pulse (Attila and 

Hajnalka, 2015). This technology provides digital models of the 

terrain with higher resolution than traditional methodologies, as 

it acquires dense point clouds capable of returning the smallest 

morphological variations (Meng et al., 2010). 

Three main problems afflict the determination of the accuracy of 

the results in the comparative analysis of alternative methods: 

the possible different meaning of coastline relative to the 

operational context, the measurement of the results accuracy, 

and the appropriateness of the comparison element. As far as the 

first aspect is concerned, in the remotely sensed image we see 

the instantaneous coastline (Modava et al., 2019) which depends 

on the date and time of the data acquisition as it is linked to the 

tides and sea weather conditions (Aguilar et al., 2010). To 

measure the accuracy of the result, it is necessary to choose an 

indicator able to best express the difference between the 

coastline obtained and that of comparison. Finally, the element 

used as reference must be coeval with the image as we cannot 
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compare different temporal situations. The sources to be 

compared can refer to different and distant dates only if it is 

certain that no changes have occurred on the stretch of coast in 

the elapsed time interval.  

This article aims to identify an effective methodological 

approach to compare different methods for detecting the 

coastline in Sentinel-2 multispectral images. The attention 

focuses only on easily applicable algorithms for coastline 

extraction without using training sites; in other terms, the 

unsupervised approach applied to maps resulting from the usage 

of some indices is preferred. Finally, six different classification 

methods for coastline identification based on the following 

indices are considered: Normalized Difference Vegetation Index 

(NDVI), Normalized Difference Water Index (NDWI), 

Modified Normalized Difference Water Index (MNDWI), 

Enhanced Vegetation Index (EVI), Red-Green Ratio (RGR) and 

NIR-Red Ratio (NRR). In all cases we use k-Means algorithm to 

classify each index resulting product in two clusters, i.e. water 

and no-water. The automatic vectorization allows to detect the 

coastline as separation between land and sea. To define the 

accuracy level of the results, two different coastlines are 

introduced as reference both in vector format: the coastline 

obtained from the DEM produced with 3D LiDAR data and 

presenting cell size 2 m x 2 m, and the manually vectorised one 

based on RGB photointerpretation.  

 

2. STUDY AREA AND DATASET 

The experiments are carried out on Sentinel-2A imagery, 

acquired on 6 August 2019, presenting a 2A processing level, 

concerning a part of the metropolitan city of Naples (Italy) as 

shown in Figure 1. 

In particular, we examine the stretch of coast belonging to Torre 

Annunziata and Castellammare di Stabia (towns overlooking the 

Gulf of Naples), so to have a very varied scenario of the 

Campania Coastal morphology (Budillon et al., 2020), including 

anthropic constructions such as ports, and natural elements such 

as sandy and low-sloping beaches in the north and central parts, 

and high cliffs in the southernmost zone. 

The used DEM is supplied by Italian Ministry for the 

environment (Ministero dell’Ambiente) and it is obtained from 

LiDAR data, acquired in 2008, characterized by a density of 

survey points greater than 1.5 points per square meter. The 

LiDAR generated DEM (Lg-DEM) has a vertical accuracy of 

less than ± 15 cm, while the horizontal accuracy is ± 30 cm.  

Figure 2 shows the 3D photorealistic model of the study area 

resulting from drapery of the Sentinel-2 RGB true colour 

composition on the Lg-DEM. 

The Lg-DEM in the considered area also has negative values: 

these are representative of the seabed below the coast. Therefore, 

the reference coastline is extracted as the contour line at zero 

elevation from the Lg-DEM. Note that this is referred to the 

Italian vertical datum (EPSG:1051) that is determined by the 

mean sea level estimated at tide gauge station of Genoa 

(44°24’43.3” N, 08°55’32.2” E) managed by the Italian 

Hydrographic Institute.  

Sentinel-2 images can be downloaded for free from the 

Copernicus platform, managed by the European Space Agency 

(ESA) (Copernicus Open Access Hub, 2022). Two satellites 

make up the Sentinel-2 constellation, named Sentinel-2A and 

Sentinel-2B. Sentinel-2B images are used for this study, the 

characteristics of which are shown in Table 1 (Sentinel-2 User 

Handbook, 2015). 

 

 

Figure 1. The study area: upper, localization of the study area 

in equirectangular projection and WGS84 geographic 

coordinates (EPSG: 4326); lower, visualization in RGB 

composition of Sentinel-2 images in UTM/WGS 84 plane 

coordinates expressed in meters (EPSG: 32632). 

 

 

Figure 2. 3D photorealistic model of the study area resulting 

from drapery of the Sentinel-2 RGB true colour composition on 

the Lg-DEM. 
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Bands Central Wavelength (nm) Resolution (m) 

B1 – Coastal 443 60 

B2 – Blue 490 10 

B3 – Green 560 10 

B4 – Red 665 10 

B5 – Red Edge 705 20 

B6 – Red Edge 740 20 

B7 – Red Edge 783 20 

B8 –  NIR 842 10 

B8A – NIR 865 20 

B9 – Vapour 945 60 

B10 – SWIR 1375 60 

B11 – SWIR 1610 20 

B12 – SWIR 2190 20 

Table 1. Main characteristics of Sentinell-2A images. 

 

The study area extends between the following UTM/WGS84 

zone 33N coordinates: E1= 451,040 m; E2= 457,740 m; N1= 

4,501,470 m; N2= 4,512,270 m. The total covered surface is 

equal to 72.36 Km2, and each image has a 670x1080 pixels 

format. 

 

3. METHODS 

3.1 Index Calculation 

In this section we present the six indices used for the 

experiments, reporting formulas and a brief description of the 

main characteristics of each of them.   

Normalized Difference Vegetation Index (NDVI) is an indicator 

that allows to highlight the presence of vegetation on satellite 

image, exploiting the peculiarity of the spectral signature of the 

vegetation that is characterized by low reflectance in red band 

and high reflectance in near infrared (NIR) band (Rouse et al., 

1974). It allows to distinguish also the classes of water and bare 

soil (Alcaras et al., 2019). It is obtained by applying the 

following formula: 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (1) 

 

However, one of the most largely used index for coastline 

detection in remotely sensed is Normalized Difference Water 

Index (NDWI). This index is proposed by McFeeters 

(McFeeters, 1996). Using two bands, Green and NIR, it allows 

to enhance the presence of the water in a remotely sensed image 

and can be obtained as follow: 

 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 (2) 

 

Figure 3 shows the output obtained by the application of NDWI 

to the Sentinel Green (B3) and NIR (B8) bands. 

 

 

Figure 3. NDWI obtained from the Sentinel-2A images in 

UTM/WGS 84 plane coordinates (EPSG: 32633). 

 

Modified Normalized Difference Water Index (MNDWI) was 

proposed by Wei et al. (Wei et al., 2011), it is generally used for 

urban areas. In fact, it permits to enhance and extract information 

on water as this index allows to reduce the noise generated by 

the buildings. The formula is shown below: 

 

𝑀𝑁𝐷𝑊𝐼 =
𝐵𝑙𝑢𝑒 − 𝑁𝐼𝑅

𝐵𝑙𝑢𝑒 + 𝑁𝐼𝑅
 (3) 

 

These first three indices can assume values in the range [-1, 1]. 

In particular, while in the NDVI the lowest values are 

representative of water, in the NDWI and in the MNDWI the 

highest values are representative of water. 

The enhanced vegetation index (EVI) is an 'optimized' 

vegetation index that provides improved sensitivity in high 

biomass regions while minimizing soil and atmosphere 

influences. EVI is calculated in this way (Huete et al., 2002): 

 

𝐸𝑉𝐼 = 2.5 ∙
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 6 ∙ 𝑅𝐸𝐷 − 7.5 ∙ 𝐵𝐿𝑈𝐸 + 1
 (4) 

 

The last two indices used are Red-Green Ratio (RGR) index and 

NIR-RED Ratio (NRR) index (Lacaux et al., 2007): 

 

𝑅𝐺𝑅 =
𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 (5) 

  

𝑁𝑅𝑅 =
𝑁𝐼𝑅

𝑅𝑒𝑑
 (6) 

 

As for the NDVI, in these last three indices the water assumes 

the lowest values. 
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3.2 K-Means Clustering 

K-Means clustering is applied to each index, extracting two 

clusters (water/no-water) in order to classify the images. This 

procedure is carried out in SAGA GIS (Version 2.3.2) (Conrad 

et al., 2015). K-means is a numerical, unsupervised, non-

deterministic, iterative method usable for image classification 

(Ahmed et al., 2020).  

The central idea of this algorithm is to fix a priori the number of 

clusters k and to iteratively modify the partition, assigning each 

element x to the relative cluster, with the nearest mean, and then 

to recalculate the position of the average itself, as long as it 

remains unchanged (MacKay, 2003).  

Hence, the K-Means algorithm attempts to locate the vector of 

means (𝜇𝑖) in the multidimensional spectral space (i.e. in the l 

bands) for each of the k classes (i.e. per i = 1, 2, …, k). Initially, 

the localization estimates of the vectors of the means are chosen 

at random (Nazeer and Sebastian, 2009).  

If we indicate these initial estimates with 𝜇′′𝑖 , it is possible to 

tentatively assign each pixel to a class based on a criterion of 

minimum distance from the mean, that is, how close that pixel is 

to each "vector of means" relating to each hypothetical class 

(Sinaga and Yang, 2020). The average of all the pixels 

tentatively assigned to the i-th class becomes our new estimate 

𝜇′𝑖 of that class (Alcaras et al., 2021b). 

With respect to the latter, the pixels are reassigned using the 

same minimum distance criterion and the procedure is repeated 

until no significant variation in the averages is observed. 

However, in this case, the two resulting clusters effectively 

correspond to the researched classes: water/no water. The result 

of K-Means clustering applied to NDWI is shown in Figure 4. 

From each thematic map, the coastline is automatically extracted 

in vector format as polyline separating pixels classified as water 

from pixels classified as no-water. 

 

 

Figure 4. Result of K-Means clustering applied to NDWI: land 

is represented in black, while water is represented in white. 

 

3.3 Accuracy Assessment 

In order to evaluate the effectiveness of the applied methods, an 

accuracy assessment must be carried out. Generally, the obtained 

coastline is compared with another reference coastline, both in 

vector format. The latter can be achieved from the RGB 

composition or the panchromatic image (if available) of the same 

dataset (Maglione et al., 2015), from higher resolution images 

(Costantino et al., 2020), or from other sources.  

In this study we want to explore the possibility of carrying out 

accuracy tests using the coastline automatically extracted from 

Lg-DEM. Giving the variability of elevation as well as depths 

near the coast, Lg-DEM allows to easily identify the separation 

between land and sea as the line dividing positive from negative 

height values. However, the use of the Lg-DEM to extract the 

reference coastline presents some criticalities highlighted below. 

1. The first is closely linked to the definition of the coastline 

itself, as a matter of fact this can be considered as the 

instantaneous coastline, which is the one photographed at a 

specific time (Modava et al., 2019), or the coastline corrected by 

tidal effects and sea water conditions (Aguilar et al., 2010). In 

the case examined in this work we can say that the two coastlines 

are not distinguishable due to the resolution of the images (10 

m) which does not allow to appreciate the differences between 

high and low tide. 

2. Like in any other research field, it is often essential to 

associate 

multispectral images, with LiDAR data acquired at the same 

time (Chouari, 2021). The coastline may in fact be affected by 

erosion or nourishment. In this study the acquisition times of the 

two data are very distant (2008 for the LiDAR survey and 2019 

for the satellite image) and for this reason only the stretches of 

coast that have not changed over time are considered, which are 

equal to 55.16% of the total length of the coast. 

3. The accuracy of the Lg-DEM and remotely sensed images 

must be comparable. Usually LiDAR data collected by sensor on 

airplane are referenced to the ground using kinematic differential 

global positioning system (GPS) methods, providing vertical 

accuracy to within few centimetres (Brock and Sallenger, 2001). 

Small laser spot size and high pulse frequency results in DEM 

products being produced at a very high resolution, e.g. 1-m 

resolution or higher (Nayegandhi and Brock, 2002). In our study, 

the Sentinel pixel dimensions are 10 m x 10 m while the Lg-

DEM resolution is 2 m x 2 m. Despite the difference in size, the 

comparison is possible, given the high accuracy of the coastline 

obtained from the Lg-DEM. 

Two indices present in literature are applied for testing the 

accuracy of the resulting coastline in vector format: the Ratio 

Index (RI) introduced in Maglione et al. (Maglione et al., 2014), 

and the Distributed Ratio Index (DRI) developed by Alcaras et 

al. (Alcaras et al., 2022). The first index allows to define the 

mean deviation of the extracted coastline from the reference one 

and is expressed in meters. The second index calculates RI for 

each of the polygons generated by the intersection between the 

reference coastline and each of the extracted ones, so it is more 

suitable for the analysis of the level accuracy of the results. 

Particularly, if the overlap between the two lines does not occur 

perfectly, polygons are generated: considering their area (A), 

and the length of the reference coastline (L), RI is defined as 

follow: 

 

𝑅𝐼 =
𝐴

𝐿
  (7) 

 

DRI works similarly to RI, considering every polygon that is 

generated between the two coastlines, so as to provide all 

possible statistical values (min, max, mean, standard deviation 
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and RMSE) for the deviation between the two examined 

coastline. 

The pixel size is used as the spatial unit for the accuracy 

assessment (Stehman and Wickham, 2011).  

In other words, to evaluate the effectiveness of the results, we 

analyse the coastline detectable in automatic way as vector 

feature in each resulting thematic map as separation between 

water and no-water, and consider its deviations from the 

reference one that is the Lg-DEM coastline. 

 

4. RESULTS AND DISCUSSION 

The tables reported in the first part of this section, (Tables 2 and 

3) show the values of the indices used for the accuracy test 

conducted in this study and based on the reference coastline 

extracted from Lg-DEM. 

 

Method RI (m) 

NDVI 8.56 

NDWI 6.40 

MNDWI 7.28 

EVI 8.67 

RGR 7.90 

NRR 8.68 

Table 2. RI values for the extracted coastlines using coastline 

extracted from Lg-DEM as reference. 

 

Method 
Mean 

(m) 

St. Dev. 

(m) 

RMSE 

(m) 

Min  

(m) 

Max  

(m) 

NDVI 4.20 5.31 6.77 0.01 58.60 

NDWI 2.71 2.84 3.92 0 19.26 

MNDWI 2.71 3.03 4.06 0 19.16 

EVI 3.56 3.83 5.23 0.02 24.48 

RGR 3.00 4.05 5.04 0.01 43.28 

NRR 3.72 4.83 6.10 0.02 51.23 

Table 3. DRI statistical values for the extracted coastlines 

using coastline extracted from Lg-DEM as reference. 

 

The values shown in Table 2 demonstrate that the best results are 

achieved by applying the K-Means on NDWI (6.40 m), while 

EVI and NRR present the worst results (8.67 m and 8.68 m 

respectively), although they turn out to be appreciable results as 

they are all below the pixel size. 

Analysing the RMSE values in Table 3, also in this case, the K-

Means applied on the NDWI provides the best results, while the 

worst output is achieved by the NDVI.  

The experiments confirm the good performance of the NDWI 

submitted to K-Means algorithm. All indices supply the average 

value of the deviation less than the pixel size, but in the case of 

NDVI, NRR and RGR the maximum values are very high (58.60 

m, 51.23 m and 43.28 m respectively). 

The tables reported below (Tables 4 and 5) show the results 

obtained, in terms of RI and DRI, using the manually vectorised 

coastline as a reference term. The resulting values are 

comparable with those reported in Tables 2 and 3 referred to the 

coastline extracted from Lg-DEM.  

 

 

 

 

 

 

 

 

Method RI (m) 

NDVI 9.98 

NDWI 7.04 

MNDWI 7.95 

EVI 10.00 

RGR 8.81 

NRR 10.05 

Table 4. RI values for the extracted coastlines using manually 

achieved coastline (based on visual interpretation of RGB 

composition) as reference. 

 

Method 
Mean 

(m) 

St. Dev. 

(m) 

RMSE 

(m) 

Min  

(m) 

Max  

(m) 

NDVI 6.26 6.89 9.31 0.01 50.40 

NDWI 4.42 3.60 5.70 0.03 26.65 

MNDWI 5.06 4.33 6.65 0.03 26.57 

EVI 5.77 4.99 7.62 0.01 27.52 

RGR 4.83 5.26 7.15 0.00 53.09 

NRR 5.93 6.16 8.55 0.01 52.94 

Table 5. DRI statistical values for the extracted coastlines 

using manually achieved coastline (based on visual 

interpretation of RGB composition) as reference. 

 

Also in this case the results obtained, both as regards the RI and 

the DRI, remark the optimal performance of the combination 

between the K-Means and the NDWI.  

Particularly, analysing the values reported in table 4, it is 

possible to note that, also in this case, the EVI and the NRR 

present the worst results in terms of RI. 

As regards the results shown in table 5, comparable with those 

shown in table 3, it can be noted that, by analysing the RMSE, 

the NDWI with the K-Means generates the best result, while the 

NDVI gives the worst result. 

The manually achieved coastline from RGB composition is 

78.05% shorter than the one obtained from the Lg-DEM. This 

factor affects the results, in fact, by analysing Tables 4 and 5 you 

can see that all the values have increased if compared to the 

corresponding ones in Tables 2 and 3. You can also note how the 

order of effectiveness of each method, identified by the RI in 

Tables 2 and 4, and by the RMSE in Tables 3 and 5, remain 

unchanged. Furthermore, the results obtained using the coastline 

derived from Lg-DEM as reference term are the best ones: this 

can be attributed not only to the human error that afflicts the 

manual vectorization, but also to the different geometric 

resolution of the two datasets, the Lg-DEM at 2 m x 2 m and 

Sentinel-2 RGB image at 10 m x 10 m. 

 

5. CONCLUSIONS 

This study demonstrates that the coastline derived from Lg-

DEM can be assumed as reference term to compare various 

methods applicable for coastline extraction from remotely 

sensed images. Since the extraction of the coastline from a Lg-

DEM is a very fast operation, we can avoid consuming the time 

of manual photointerpretation and vectorization starting from the 

remotely sensed images in RGB composition. 

To achieve valid results, at least three aspects need careful 

evaluation. First of all, due to the dynamic nature of the coastline 

and the territorial transformations caused by natural and 

anthropogenic factors, the Lg-DEM and satellite images must be 

contemporary or, if acquired at different times, cover an area 

which, in the time interval elapsed, has not undergone any 

changes. Since the instantaneous coastline is extracted from the 

images and the coastline relative to the vertical datum from the 
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Lg-DEM, this difference must be taken into account, e.g. 

evaluating the tide value at the date and time of the image 

acquisition. An accurate coastline is necessary as reference; a 

Lg-DEM with pixel dimensions shorter than those of satellite 

images is to prefer. 

Finally, we want to remark that the application of K-Means on 

NDWI is a very performing approach to distinguish water pixel 

from no-water ones on Sentinel-2 images, so to detect the 

coastline accurately (RMSE is much less than the pixel size). 
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