
AUTOMATIC CLASSIFICATION OF URBAN OBJECTS FROM MOBILE  

LASER SCANNING DATA 

 

S. Seyfeli1, 2, A. O. Ok2 
1 Hacettepe University, Graduate School of Science and Engineering, Ankara, Turkey  

2 Hacettepe University, Department of Geomatics Engineering, Ankara, Turkey 

(semanur.seyfeli, ozgunok)@hacettepe.edu.tr 

 

KEY WORDS: Mobile Laser Scanning, Feature Extraction, Local Neighborhood, Geometric Features, Shape Features. 

 

 

ABSTRACT: 

 

The study deals with the automatic supervised classification of urban objects from point clouds collected by the vehicle-based Mobile 

Laser Scanning (MLS) system. A benchmark dataset representing the Technical University of Munich (TUM) City Campus was used. 

The main contribution of this article is evaluating the performance difference between kNN, cylindrical and spherical local 

neighborhood relations in point-based classification of an MLS system using local geometric and shape-based features. The Random 

Forest (RF) classifier was performed for 8 manually marked classes in the benchmark set: artificial terrain, natural terrain, high 

vegetation, low vegetation, building, hardscape, artifact and vehicle. We reveal that the cylindrical neighborhood with 13 attributes 

provides an improvement of 5.2% compared to the spherical neighborhood, while the kNN gave almost the same result as the 

cylindrical neighborhood (0.8% improvement) in the shortest time. Finally, a new feature set was created by combining the most 

important features obtained from different neighborhood types. As a result, we achieved 96.9% overall accuracy by using 19 significant 

features obtained from all neighborhood types for the TUM-MLS1 point cloud. 

 

 

1. INTRODUCTION 

In recent years, accurate 3D spatial information has been 

important for use in many areas, including 3D city modeling, 

road and street planning and maintenance, location-based 

services, virtual reality, vehicle navigation, and so on. Therefore, 

it is important to rapidly acquire high-accuracy 3D data. Due to 

its ability to generate dense and precise 3D point clouds, LiDAR 

technologies are one of the most favored approaches in mapping 

and surveying studies. Based on the platform they are installed 

on, they can be categorized as airborne, terrestrial, mobile, or 

spaceborne. Mobile systems are known to be one of the fastest, 

most accurate, and most thorough ways to collect data in cities.  

 

Mobile Laser Scanner (MLS) systems are placed on a moving 

platform such as a car or a minivan, especially in street level 

surveys, and consist of 3D laser scanners, digital cameras, 

positioning and data storage units. All equipment is precisely 

calibrated to maintain minimal errors. Compared to other 

systems, urban acquisition with mobile laser scanning (MLS) is 

faster than with terrestrial laser scanning (TLS), and the resulting 

point clouds are much better quality and denser than aerial laser 

scanning (ALS) (Williams et al., 2013). Position information (X, 

Y, and Z) and color information are two attributes of point clouds 

obtained by laser scanning that contain surface information about 

objects. Hence, it does not carry information on which object on 

Earth's surface a particular point in the cloud belongs to. As a 

result, two questions arise: “Which points belong to a particular 

object?” and “What is the class of that object?”. No matter what 

approach is used to classify the point cloud, automatic 

classification relies on features derived from each individual 

point to assign a specific class to each of the points (or segments) 

within the cloud (Hemmes, 2018). In this context, a feature is any 

information about points in the dataset, and feature sets are 

basically created on the basis of four different types: geometric, 

radiometric, color, and contextual. The local properties of a point 

(or a segment) are defined as geometric features (e.g., shape, size, 

roughness, density). Density and color information can be 

recorded with MLS systems, and this information can be termed 

as radiometric and color features (Che et al., 2019). Finally, the 

spatial relationship between different points in a point cloud 

dataset is held by contextual features (Munoz et al., 2009). After 

attributes are extracted from the point cloud, a class label must 

be assigned to each point. For this purpose, machine learning 

methods (e.g., Weinmann et al., 2015; Xiao et al., 2016; Zheng 

et al., 2017; Sun et al., 2018; Thomas et al., 2018; Wang et al., 

2018; Atik et al., 2021; Seyfeli and Ok, 2022a) or deep learning 

methods (e.g., Balado et al., 2019; Guo and Feng, 2020) can be 

utilized. 

 

The goal of this paper is to perform a point-based supervised 

classification of point clouds collected using a vehicle-based 

MLS system in an urban area using the geometry and shape 

information of a point neighbor. During the evaluations, a 

benchmark dataset representing the Technical University of 

Munich (TUM) City Campus (Zhu et al., 2020) was employed. 

The dataset is composed of eight manually labelled classes: 

artificial terrain; natural terrain; high vegetation; low vegetation; 

building; hardscape; artifact; and vehicle. The local features for 

each point in the point cloud were computed via k-nearest 

neighborhood (kNN) (Weinmann et al., 2015; Seyfeli and Ok, 

2022a), cylindrical (Demantké et al., 2012; Zheng et al., 2017; 

Seyfeli and Ok, 2022b) and spherical neighborhood (Thomas et 

al., 2018; Atik et al., 2021). All of these approaches have been 

studied thoroughly, and their classification performance has been 

evaluated. During the classification process, the widely utilized 

Random Forest classifier is employed. Finally, the classifier-

based feature selection approach was used to determine the most 

important features obtained by all three methods.  
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Figure 1. The overall workflow of the study. 

 

The proposed framework (see Figure 1) was fully implemented 

on a desktop computer with an i7-9700K 3.60GHZ, 32GB RAM, 

using the MATLAB environment and CloudCompare, an open 

source 3D point cloud and network rendering project. The rest of 

this paper is structured as follows. Section 2 presents the applied 

methodology. Section 3 describes the dataset as well as the 

parameters that were employed. Section 4 presents the results and 

related discussion. Conclusions and future work are presented in 

Section 5. 

 

2. METHODOLOGY 

2.1 Neighborhood Selection 

In point-based classification, each point in the point cloud is 

individually labeled. Geometric features of points in a close 

neighborhood are used to classify them, and the uniqueness of 

geometric features depends on the neighborhood. Therefore; 

identifying local neighbor points between points is one of the 

important steps in classifying MLS point clouds (Seyfeli, 2021). 

Different approaches can be used to collect local neighborhood 

information from the point cloud (Wang et al., 2018). The most 

commonly preferred definitions of "local neighborhood" are 

based on the spherical neighborhood, the cylindrical 

neighborhood, and the k-nearest neighborhood. 

 

The K-nearest neighborhood is the type of neighborhood 

determined by the number of nearest points according to the 

Euclidean distance (Weinmann et al., 2017). Since the number of 

k points is fixed in this method, the area of interest is adjusted 

according to the point density and the closest points are selected. 

This means the kNN method does not have a fixed spatial 

neighborhood dimension. Spherical and cylindrical neighbors are 

created by defining a certain radius parameter. Compared to k-

NN, the neighborhood size does not change even if the density 

changes since the radius is constant. For the study, the following 

fixed scale parameters for each neighborhood were used for the 

data set by evaluating the results of previous studies (Seyfeli, 

2021) and the feasibility of data processing. 

 NkNN, 150   : k is 150 nearest points, 

 NS , 1.5       : the sphere has a radius of 1.5 m, 

 NC , 0.75     : the cylinder has a radius of 0.75 m. 

 

The clarification of local neighborhood information (length, size, 

shape, etc.) is crucial to obtaining a satisfactory result since point 

density in MLS-based point clouds is variable for certain reasons 

(occlusion, changing scanning angle, and varying distance) 

(Demantké et al., 2012). In most cases, neighborhood definitions 

can be performed with a single scale parameter (radius or number 

of nearest points), and prior knowledge of the data can be very 

useful for appropriate selection of this parameter. There are also 

suggested approaches for selecting the most appropriate 

neighborhood size based on the data, which aim to support 

different neighborhood sizes for different classes. Instead of a 

single scale, multiple scales of the point cloud can be used to 

characterize the local 3D structure. This can be created by 

combining different neighborhood sizes or by different 

neighborhood types (e.g., spherical and cylindrical neighborhood 

combinations) (Weinmann et al., 2017). Point-based features are 

generally sensitive to point density, so multi-scale features can 

be useful to improve classification performance. Basically, the 

methodology is performed according to the following steps for 

all approaches: 

 

1. Let Xi be any point in the MLS point cloud. Each Xi is 

taken as the center.  

2. The scale value is determined. In this case, the scale 

value is the radius r for cylindrical and spherical 

neighborhoods, and the number of closest points k for 

kNN. 

3. A 3D local neighborhood is spanned up around the 

point in the center based on a fixed scale. 

4. Points in the neighborhood are determined. These 

points are used for the feature extraction step. 

 

2.2 Feature Extraction 

A classifier can be run by computing features from the immediate 

vicinity of each point in the point cloud and using the geometric 

features gathered from the spatial arrangement of these 3D 

points. If the respective mobile system also allows the capture of 

additional information that may be relevant to the classification 

task (e.g., intensity or color information in the form of RGB 

values), this information can be used to identify further 

properties. The extracted geometric features depend on the 

neighborhood type and the respective classifier. The features are 

usually derived by describing the geometric properties of the 

defined local neighborhood. The features comprise five 3D 

geometric properties of the considered local neighborhood, 

which are given by the normalized height of a point (H) of the 

considered 3D point Xi, the number of points in the neighborhood 

(N), verticality (V), and the height difference (∆H) as well as the 

standard deviation of the height (σH) values corresponding to 

those 3D points within the local neighborhood (Seyfeli, 2021). 

The height of a point in the MLS point cloud is given based on a 

reference surface, i.e., the ellipsoidal surface (Z). In this study, 

normalization was performed to calculate the height from the 

ground of each point. For this purpose, the Cloud Simulation 

Filtering (CSF) plugin (Zhang et al., 2016) of the Cloud 

Comparison software is applied to extract the ground surface 

height. 

 

Furthermore, many studies have referred to the use of local 3D 

shape features derived from the 3D structure tensor. These 

features rely on eigenvalues λi with i=1,2,3.  
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(b) 

Figure 2. TUM-MLS1 (a) real scene representation, and (b) an eight-semantic labeled point cloud (Zhu et al., 2020). 

 

Principal component analysis (PCA) provides key aspects of the 

point distribution in 3D and magnitudes of variation of the point 

distribution based on the neighborhood's centroid (Demantké et 

al., 2012). PCA is used to construct a covariance matrix for each 

point in the neighbors and evaluate the eigenvalues generated 

from the covariance matrix (Guan et al., 2016). The coordinates 

of neighboring points specify a shape with eigenvalues obtained 

from the 3×3 covariance matrix. The eigenvalues are positive and 

are ordered as λ1 ≥ λ2 ≥ λ3 ≥ 0. The eigenvalues measure the 

goodness of the planar and linear fits. The neighborhood defines 

a 3D line shape when one of the eigenvalues is large and the 

others are close to zero. If two eigenvalues have nearly the same 

value and the other is close to zero, the neighborhood forms a 3D 

plane. Other than that, if they are all large, it creates a 3-

dimensional spherical or fuzzy surface (Zheng et al., 2017). Eight 

3D shape properties, also known as eigen-based properties, are 

represented by linearity (Lλ), planarity (Pλ), sphericity (Sλ), 

omnivariance (Oλ), anisotropy (Aλ), eigenentropy (Eλ), sum of 

eigenvalues (∑λ), and change of local curvature (cλ). 

 

 

2.3 Classification 

Within the scope of our work, derived features serve as inputs to 

distinguish classes in the data set. For such a classification task, 

a Random Forest (RF) classifier (Breiman, 2001) can be used to 

achieve a good balance between accuracy and efficiency. RF is a 

tree-structured classifier that consists of a classification (or 

regression) tree built on random data samples. This method is one 

of the most preferred machine learning methods for high-density 

MLS data. 

  

3. DATASET AND EXPERIMENTS 

The study area covers the city campus of the Technical 

University of Munich (TUM) (Figure 1), which is located in 

Munich, Germany (48.1493° N, 11.5685° E). The test dataset 

TUM-MLS1 was acquired by the vehicle-based MLS platform 

MODISSA on April 18th, 2016. The point clouds were collected 

using two Velodyne HDL-64E cameras set at a 35° angle on the 

vehicle's front top (Sun et al., 2018). The dataset requires 62 GB 

of storage, and each point within the dataset has 3D coordinates 

(X, Y, and Z) and an intensity value (thermal information). It 

represents the urbanized landscape, including high-rise building 

facades. The dataset includes the following classes: artificial 

terrain (1), natural terrain (2), high vegetation (3), low vegetation 

(4), building (5), hardscape (6), artifact (7), and vehicle (8), and 

there are 3,039,327 manually labeled points in the ground truth 

data (see Figure 2).  

 

The data set was divided into test (about 75%), validation (about 

5%) and training (about 20%) parts with the holdout technique, 

which is one of the cross-validation methods that randomly 

divides the data set, so that the classification model was estimated 

with the training data and the performance of the trained model 

was internally evaluated with the validation data. Finally, test 

data was used independently to evaluate classification findings 

(Seyfeli, 2021). The parameters necessary to initialize the 

methodology are presented in Table 1. 

 

The importance of the features used during the classification and 

described in Section 2.2 was tested with the “Out of Bag 

Predictor Importance Estimates” of the RF algorithm of 

MATLAB, which is a classifier-based feature selection method. 

It has been found that the most important parameter for all 

neighborhood types is the normalized height (H) of a point. The 

strength of the association between predictor pairs can be inferred 
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using predictive association elements. The tests revealed a high 

correlation between sphericity and anisotropy properties, with an 

almost 100% correlation for all neighborhood types. Also, the 

curvature was highly correlated with these two predictors for 

kNN and cylindrical neighborhood. Based on the out-of-bag 

importance and predictor association estimates, the following 

feature sets were selected: 

 

 NkNN    :  Lλ, Pλ, Sλ, Oλ, Eλ, V, H, ∆H, σH 

 NS       : Lλ, Oλ, ∑λ, cλ, H, N, ∆H 

 NC       : H, N, ∆H 

 

Section Parameters {Tested} / “Selected” 

2.1 

k value (NkNN) 150 points 

radius (NS) 1.50 m 

radius (NC) 0.75 m 

2.2 

# of features (NkNN) { 12, “9” } 

# of features (NS) { 13, “7” } 

# of features (NC) { 13, “3” } 

2.3 

# of trees {5, 10, 15, 20, “25”, 30} 

# of variables (n) to 

select for each decision 

split, √n 

3 

minimum # of 

observations per tree leaf 
1 (default) 

 

Table 1. Parameter settings. 

 

 

4. RESULTS AND DISCUSSION 

4.1 Results for Different Neighborhood Definitions 

To understand how local neighborhood information affects the 

classification result, three local neighborhood information 

methods (kNN, spherical, and vertical cylindrical neighborhood) 

were evaluated, and all numerical results are reported in Table 2. 

Based on the tests performed, the lowest classification accuracy 

was achieved when neighborhood relationships were established 

via local spherical neighborhood. The overall accuracy and kappa 

index, respectively, were computed to be 90.1% and 85.8%. 

Confusion between high vegetation and building classes, as well 

as artificial terrain and natural terrain classes, were the most 

common sources of classification errors. The producer's 

accuracies of three classes as low vegetation, hardscape, and 

artifact were found to be less desirable (≈ 51-61%) in this 

scenario. However, the local spherical strategy was more 

successful than the kNN method in extracting the hardscape 

class. 

 

The overall accuracy of the test data was calculated to be 94.5% 

in the scenario of kNN local neighborhood. Despite the fact that 

this result is substantially better than the spherical neighborhood 

outcomes, a number of points corresponding to the classes of 

building and high vegetation were misclassified. The low 

vegetation and hardscape classes' classification results were still 

found to be the lowest two of all classes. However, it should be 

noted that the kNN approach is the most effective way for 

distinguishing low vegetation.  

 

In comparison to the other two local neighborhood definitions, 

the vertical cylindrical neighborhood produced the best overall 

outcome (95.3%). Despite the confusion between these two 

classes, high vegetation and building, both gave highly 

successful results with over 97.8% accuracy. Even in this case, 

the producer’s accuracy of the class hardscape could not reach a 

satisfactory level. There are some classes in the dataset that have 

a small sampling size relative to others (e.g. low vegetation, 

hardscape, and artifact), and their classification accuracies were 

relatively low. Considering this, the high overall accuracy is due 

to the high accuracy of the dominant classes (e.g., artificial 

terrain, high vegetation, and buildings) in the dataset. As a result 

of the methods tested, the kappa coefficient was found to be 

between 0.85-0.93 for all neighborhoods. This means a nice 

agreement (Landis and Koch, 1977) between the predictions and 

the ground truth. 

 

Since the features were calculated using the points collected in 

the local neighborhood, the processing time increases as the 

number of points in the neighborhood increases. As indicated in 

Table 2, the cylindrical neighborhood gave the best results. 

However, this comes at the expense of a significant increase in 

processing time (approximately 6 hours), particularly due to the 

computation of the covariance matrix to compute the shape 

features. Although the kNN method gave the second-best results, 

its processing was completed within 8 minutes, thus providing 

the shortest processing time. It was found that the spherical 

neighborhood processing is almost two times slower than the 

kNN method. 

 

 NkNN NS NC 

Class P.A U.A P.A U.A P.A U.A 

A.T (1) 94.5 90.7 93.6 89.4 94.6 90.6 

N.T (2) 83.4 80.7 82.0 81.8 83.3 82.7 

H.V (3) 98.7 96.7 95.9 90.1 98.8 98.1 

L.V (4) 67.0 84.5 61.1 85.0 66.1 82.2 

B (5) 95.6 97.3 88.3 92.8 97.5 97.8 

H (6) 53.6 80.9 55.8 83.9 56.6 79.5 

A (7) 75.0 89.8 51.3 86.2 77.0 88.7 

V (8) 85.6 88.6 85.5 86.2 85.0 87.1 

O.A.(%) 94.5 90.1 95.3 

Kappa  0.92 0.85 0.93 

Time (min) 7.44 14.60 355.08 

 

Table 2. Accuracy results of all neighborhood types (O.A.: 

Overall Accuracy, P.A: Producer’s Accuracy, U.A: User’s 

Accuracy). 

 

 

4.2 Result after the Combination of Features from Different 

Neighborhood Information 

Considering the results presented in Section 4.1, a nice balance 

between accuracy and processing speed was achieved by the 

kNN approach. Consequently, 9 important features of kNN were 

chosen as base features. The classification result of the test data 

was assessed by subjoining 7 features of the spherical 

neighborhood and only the 3 important geometric features (H, N 

and ∆H) through the cylindrical neighborhood to the important 

features deduced from the kNN neighborhood. Since the 

normalized height (H) property is the same for all neighborhoods, 

duplicate features were removed. To perform RF classification, a 

total of 19 features were used as inputs. The classified point cloud 

is illustrated in Figure 3. 
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Figure 3. Classified outcome of the test dataset of TUM-MLS1 after combining features from all three local neighborhoods. 
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Figure 4. Classes of the TUM-MLS1 test dataset that were obtained with low accuracy (It belongs to the classification result of the 

different neighborhood type and their combination). 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W3-2022 
The 7th International Conference on Smart City Applications, 19–21 October 2022, Castelo Branco, Portugal

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-171-2022 | © Author(s) 2022. CC BY 4.0 License.

 
175



 

According to the results in Table 3, the overall accuracy 

increased to 96.9%. The artificial terrain, high vegetation, and 

building classes were obtained with an accuracy of over 95%. 

Besides, there is a great increase in the accuracy of classes such 

as low vegetation, hardscape, and artifact, which are found to be 

lower when individual neighborhood information is utilized (see 

Figure 4). Thus, a significant improvement has been achieved in 

the extraction of classes with small sample sizes by using 19 

important features from all neighborhood types. The processing 

time, which was clearly a disadvantage of the cylindrical 

neighborhood, was now estimated to be roughly 67 minutes. 

 

 NAll 

Class P.A U.A 

A.T (1) 97.0 94.3 

N.T (2) 90.2 91.0 

H.V (3) 99.2 97.9 

L.V (4) 84.9 95.3 

B (5) 97.7 98.3 

H (6) 72.4 93.1 

A (7) 81.3 96.4 

V (8) 93.9 93.5 

O.A. (%) 96.9 

Kappa  0.95 

Time (min) 66.88 

 

Table 3. Accuracy result of combined features from all three 

neighborhood types (O.A.: Overall Accuracy, P.A: Producer’s 

Accuracy, U.A: User’s Accuracy). 

 

 

5. CONCLUSION AND FUTURE WORK 

The extraction of urban objects and automatic classification of 

vehicle-based MLS point clouds for an urban region are 

discussed, and all tests were performed on the TUM-MLS1 

benchmark dataset. In terms of classification performance, three 

different local neighborhood relationships were examined over 

eight classes in the point cloud. Among the three neighborhoods, 

the best result was obtained with the cylindrical neighborhood, 

with 95.3%, and the worst result was obtained with the spherical 

neighborhood, with 90.1%. The kNN method is the fastest among 

them. Although the cylindrical neighborhood took the longest 

time to process, it produced the best results. By producing a 

feature set containing 19 features by using all three 

neighborhoods simultaneously, the extraction of these classes 

was particularly successful, and the overall accuracy was 

increased to 96.9%, the best result in all tests for TUM-MLS1. 

 

For all neighborhood definitions, the kd-tree data structure was 

employed to effectively discover neighboring points. Other data 

structures, such as the octree schema, can be useful to improve 

processing speed. Since the processing load will increase as the 

data density increases, various approaches (segmentation, voxel, 

etc.) can be applied to alleviate the processing speed problem for 

better processing of large datasets. 

 

Considering the geometric and shape features, it was observed 

that shape features are more important for kNN and spherical 

neighborhoods, while they have almost minimal effect on shape 

features when using cylindrical neighborhood. This may be due 

to the large variation in points in the cylindrical neighborhood. 

The normalized height was the most essential feature. Therefore, 

the method of obtaining the normalized height has a significant 

impact on the classification outcome. The accuracy of classes 

with a small sample size is also low, and there were some 

misclassifications in the classified point cloud. Depending on the 

point density of the cloud, the fixed scale selection may not be 

suitable for small sampled classes, so instead of using a single 

neighbor parameter for the entire data set, more than one 

parameter can be preferred for the size parameter.  

 

In the future, we will go further into classification approaches for 

the MLS, such as deep learning.  Other publicly available 

benchmark datasets will be used to test the proposed 

methodology. In addition, the feature set will be augmented with 

additional features, and the relevance of the features will be 

examined with the classifier-independent feature selection 

methods. 
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