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ABSTRACT: 

Current methods of construction progress monitoring involve manual data collection and processing, which are time-consuming and 

labor-intensive, with a dominant human presence entailing several flaws such as missing or inaccurate information. Recent research 

efforts for automated progress monitoring have largely focused on model-based assessment methods that are dependent on a pre-

requisite step known as registration which is still performed manually due to numerous challenges. This study proposes a novel 

automated coarse registration method that utilizes the BIM model as the as-planned model to align it with the corresponding as-built 

model using their geometrical features. First, it extracts the corner points in both models using their planar features and then identifies 

the conjugate corner points based on different geometric invariants. Later, the transformations are determined from those conjugate 

points and the most accurate transformation parameter is finalized in the end. The proposed method is validated on different datasets. 

1. INTRODUCTION

Current progress monitoring is based on manual methods that are 

time-consuming, labor-intensive, and subject to human 

interpretation, therefore, demands an automated and accurate 

monitoring method [1-3]. Many studies to automate the progress 

monitoring have been investigated that performed Scan-vs-BIM 

in which the scan model of the building is compared with its 

Building information model (BIM) model. The scan model is 

usually obtained through three-dimensional (3D) reconstruction 

technologies such as laser scanning, image-based reconstruction, 

or integration of both. Similarly, the BIM model is utilized as the 

as-planned model to represent the geometrical and semantic 

information of the building. The Scan-vs-BIM results in the 

differences between both models that are interpreted to provide 

progress information. However, effective progress monitoring in 

this way demands accurate alignment of scan and BIM models. 

The alignment is performed through a registration step.[4-6]. 

Registration is a widely researched topic with most focused on 

the alignment of different point clouds of the same scene. In 

comparison, registration of BIM with its scan model, as as-

planned and as-built model respectively, is not so actively 

studied. Normally, registration is performed in a coarse-to-fine 

(global-to-local) strategy where coarse registration roughly 

aligns the models that are later made accurate using fine 

registration. Fine registration, mostly performed with a well-

established iterative closest point (ICP) algorithm, is dependent 

on the success of coarse registration. In coarse registration, the 

extraction of quality geometric features from both models and 

then finding their congruent pairs to compute the transformation 

parameter is critical and remains the area of challenge. Coarse 

registration approaches employing the planar features are usually 

less effect by outliers and they are more robust in finding the 

conjugate features [7,8]. As the building structures are enriched 

with dominant planar features, therefore, plane-based approaches 

can be a suitable solution for their registration. Hence, many 

studies utilized these approaches and proposed different 

methods; however, these methods faced some challenges 

including the lack of discriminatory features and distinct 

invariants for reliable congruent detections. 

The proposed research presents a novel method to extract and 

find the congruent match of discriminatory corner points from 

models to solve the registration problem for Scan-vs-BIM. The 

method extracts the corner points from both models from the 

combination of planar features and then assesses them through a 

pruning strategy using different geometric criteria to find the 

potential congruent pairs along with their transformation 

parameters. Later, the congruent corner points are identified from 

the potential points and then the optimal transformation is 

computed.  

The remainder of this paper is structured as follows. The related 

work is presented in section 2. The detailed methodology is 

described in section 3. Experimentation of the proposed method 

along with the results is presented in section 5. Finally, the 

conclusions are outlined in Section 6. 

2. RELATED WORKS

Registration, referred to as the alignment of different models or 

scenes according to the congruent geometrical information, has 

been extensively studied. It is achieved by estimating the rotation 

and translation parameters between the congruent features. 

Generally, existing fine registration can accurately perform 

registration, however, they require some good initial registration 

that is achieved through coarse registration techniques, hence, a 

coarse-to-fine registration strategy is adopted [9]. Fine 

registration is already well-established due to its mainstream 

techniques including the popular ICP algorithm [10] and its 

variants [11-13]. However, coarse registration is still facing 

numerous challenges and many attempts have been made to 

address the challenges.  
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Generally, coarse registration adopts the feature-based approach 

where the registration is performed based on the geometric 

features present in the models. This approach is widely accepted 

due to the substantial presence of geometric characteristics in the 

models or scenes. The main steps involved are the extraction of 

geometric features from models and then detection of the 

congruent features to compute the transformation. The extraction 

of geometric features requires the selection of key points or 

primitives formed from points and their utilization, instead of 

entire 3D points in the model, in the registration process eases 

the computation and improves the congruency detection [14]. 

These geometric features are constructed from geometric 

characteristics such as fast point feature histograms (FPFHs) 

[15], intersecting lines [16], planes [17], patches [18], curves 

[19], or semantic feature lines [20]. Likewise, the techniques that 

detect the congruent features include Random sample consensus 

(RANSAC) [21], geometric consistency constraints [22], inliers 

search [23], fast matching pruning (FMP) [24]. 

According to the type of features, coarse registration can be 

categorized into point-based or primitive-based. The point-based 

approaches such as SIFT key points [25,26], virtual intersection 

points [27], FPFH key points [28], SURF key points [29], and 

semantic feature points[20,30] have performed the registration of 

point clouds, however, their success is affected by noise and 

varying point density and large datasets can reduce their 

efficiency[31]. In comparison to points, primitive-based 

approaches use line, plane, or curved surface as features proved 

to be more robust in detecting the congruent features [14].  Some 

studies employed the line feature as linear invariant [32,33], as 

the meeting of adjoining planes [16] and footprint from building 

[34] for registration. Curved surfaces [18] are also studied as the 

congruent feature to compute the transformation. Furthermore, 

the planar surfaces are also used in many studies [6,7,17,31,35-

38] as a geometric feature. These plane-based approaches 

performed well particularly in urban infrastructures due to the 

presence of considerable planar features in the urban structures 

[9]. 

Buildings have plentiful dominant planar features and utilizing 

those features, instead of all the 3D geometrical elements, can 

reduce the overall computation. Similarly, the plane-based 

registration approaches are not much affected by outliers present 

at the construction site, therefore, they can enhance the overall 

accuracy [7]. These approaches are dependent on the quality of 

extracted planes. The planes are extracted from points clouds 

using the segmentation techniques that include RANSAC 

segmentation [39-41], region growing [42], voxel-based 

growing[31], Hough transform [43], and dynamic clustering 

[38]. Many researchers performed registration using the 

geometric information acquired from the set of three planes. Dol 

and Brenner [35] performed the search using the tripe product of 

plane normal to find their congruent pairs. The search process 

ended with the acceptable outcome in which the combinatory 

complexity was lowered using several geometrical constraints 

including the area, bounding length, and mean intensity values 

but the practical details were not published [8]. Likewise, 

Brenner, et al. [44] utilized the angles between the three planes 

for congruency. Theiler and Schindler [27] approached the 

congruency problem by extracting the virtual tie points computed 

from the three planes using the descriptors based on geometrical 

characteristics of planes in which the distance within the tie 

points is used as the congruency invariant. To reduce the 

combinatory complexity, candidates were restricted using a 

specific threshold. However, this method didn’t address the 

additional tie points from the non-intersecting planes that may be 

generated at symmetrical distances. Similarly, the utilization of 

only distance constraints may not be reliable to find congruent 

pairs. Furthermore, the success rate was also affected by 

occlusion and high noise. In [31], the congruency problem was 

approached through a coordinate frame computed from the 

normal values of three planes through a RANSAC-based 

strategy. In each iteration, transformation parameters from the 

corresponding coordinate frame of planes were obtained and then 

assessed according to the no. of coplanar patches. In the end, 

transformation with the highest coplanar patches is finalized. In 

the case of models with many parallel planes, this method may 

end up with incorrect transformation parameters due to the 

utilization of only coplanar criteria. Furthermore, Li, Gao, Wang 

and Li [38] introduced a registration method with two strategies 

that find the set of three congruent planes intersecting at a point 

based on their relative angles. The first strategy finds the 

congruency between those set of planes having different relative 

angles with each other. In the case of non-availability of plane 

sets with all different relative angles, the method utilizes the 

second strategy that congruency between the sets having at-least 

one perpendicular relative angle. This method may also fail if 

there are too many planes because the utilization of only angle 

constraints makes it unreliable. Kim, et al. [45] proposed the 

plane-congruency algorithm that compares the normal values in 

the set of three planes to find their congruent pairs. The algorithm 

computed the rotation matrix from the direction of congruent 

planes and translation is calculated from the tie points of 

congruent planes. This study utilizes the algorithm as the second 

choice if the primary method is not sufficiently aligned based on 

the features of the RGB-fused point cloud. This method didn’t 

describe the congruency process nor the transformations were 

verified through any evaluations. Besides the limitation of all 

these mentioned methods, neither of them performed the 

registration in the context of construction progress monitoring 

that involves Scan-vs-BIM. 

In studies addressing the Scan-vs-BIM problem, Kim, et al. [46] 

utilized a coarse-to-fine strategy to register the as-built point 

cloud with the as-planned point cloud converted from CAD 

model. The coarse registration employed the Principal 

component analysis (PCA) [47] in which the rotation was 

computed from the bases formed by principal components of 

models and the translation was computed from the centroids of 

models. This practicality of this method is limited in real-life 

scenarios that include the noise and occlusions because it is 

assumed that both models have the same congruent centroid with 

principal components of both models having the same directions. 

These two assumptions are only valid if both models are exactly 

the same. Although the aforementioned studies offer various 

solutions, however, the registration of building models 

particularly in the Scan-vs-BIM problem is still a challenge due 

to the lack of discriminatory features and distinct invariants for 

congruency detection. 

3. METHODOLOGY 

The proposed method involves three major steps that are 

explained as follow: 

3.1 Extraction of corner points 

The extraction of corner points from the models is performed 

using their plane models. Initially, both the models are pre-

processed to obtain their best form. The scan model, referred to 

as the as-built model, is down sampled using voxelization with a 

suitable voxel size to ease the computation and remove the 
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uneven distribution of points. After that, plane segmentation is 

performed to acquire the plane segments from the as-built model. 

In the case of BIM, referred to as the as-planned model, it can be 

converted into the point cloud or other suitable format for 

compatible comparison with the as-built model. As the 

conversion results in loss of quality in geometrical parameters, 

therefore, the required geometrical information (including the 

vertices and faces) of vertical and horizontal structural building 

elements (such as wall, roof, slab) are directly extracted from IFC 

based BIM by traversing the ‘Representation’ attribute. This 

geometrical information is then utilized to create accurate 

meshes that are later used as plane segments. 

After obtaining the plane segments from both models, corner 

points as the unique intersection point between three non-parallel 

plane segments is computed using the following equation: 

[
𝑥
𝑦
𝑧

] = [

𝑛𝑎

𝑛𝑏

𝑛𝑐

]

−1

 [

𝑑𝑎

𝑑𝑏

𝑑𝑐

] 

 

(1) 

In the above equation, a corner point with coordinates (𝑥, 𝑦, 𝑧) is 

calculated from three plane segments having unit normal vectors 

(𝑛𝑎, 𝑛𝑏 , 𝑛𝑐) with distance from the origin (𝑑𝑎 , 𝑑𝑏 , 𝑑𝑐)  

respectively. All the corner points with possible combinations of 

plane segments are extracted. Similarly, it is ensured that the 

calculated corner point is intersecting its respective three plane 

segments with some suitable tolerance as the equation (1) 

calculates the corner point irrespective of the actual intersection 

of plane segments with each other. Otherwise, the accuracy and 

efficiency of the proposed method can be affected in lateral 

processing due to the inclusion of additional false corner points. 

An example of corner points extracted from their corresponding 

is shown in Figure 1. 

Figure 1. Visualization of corner points (c, d) extracted from 

their respective models (a, b) 

3.2  Assessment of corner points 

After extracting the corner points, a step-wise assessment is 

performed using a pipeline of different geometric criteria to find 

out the potential congruent points along with their respective 

transformation parameters. If the as-built model is transformed 

with rotation matrix R ∈ 𝑆𝑂(3), and translation vector 𝒕 ∈ ℝ3as 

compared to the as-planned model, then the congruent corner 

points from these respective models, represented by  {𝒅𝒊}𝑖=1
𝑁 ∈

ℝ3and  {𝒎𝒊}𝑖=1
𝑁 ∈ ℝ3, satisfy the following equation: 

𝑎 = 𝑅𝑑𝑖 + 𝑡 (2) 

Based on that, the congruency of corner points is assessed 

through a series of different geometric certainties that input two 

points from both models in each iteration and reject the non-

congruent pairs to ultimately filter out the potential congruent 

points. These assessment steps are explained below: 

Initially, the corner points are processed according to the 

certainty that the distance within two points in both models 

should be the same if they are congruent. For example, if two 

transformed corner points from the as-built with rotation R and 

translation t and their corresponding congruent points from the 

as-planned model are represented by {𝑑𝑎 , 𝑑𝑏} and {𝑚𝑎, 𝑚𝑏}. 

Based on the invariant that both corresponding congruent points 

have the same translation ‘t’, equation (1) can be written as: 

𝑚𝑎 − 𝑅𝑑𝑎  =  𝑚𝑏 − 𝑅𝑑𝑏  (3) 

𝑚𝑎 − 𝑚𝑏 − 𝑅. (𝑑𝑎 − 𝑑𝑏) = 0 (4) 

As rotation matrix ‘R’ is independent of Euclidean norm, 

therefore, the above equation becomes: 

‖𝑚𝑎 − 𝑚𝑏‖ − ‖𝑑𝑎 − 𝑑𝑏‖  = 0 (5) 

In the above equation, ‖ . ‖ is the Euclidean norm in ℝ3. This 

equation enables the mass rejection of non-congruent pairs of 

corner points without the need to calculate other parameters at 

this initial stage that ultimately ease the overall computation.  

The remaining pairs of corner points are scrutinized based on the 

certainty that the congruent corner points are computed from the 

congruent plane segments, therefore, the relative angles between 

the congruent plane segments belonging to the corresponding 

corner points should also be equal. If an as-planned corner point 

𝑚𝑎 and its congruent as-built point 𝑑𝑎 are computed from plane 

segments with normal values {𝑛𝑚1, 𝑛𝑚2, 𝑛𝑚3
} and 

{𝑛𝑑1, 𝑛𝑑2, 𝑛𝑑3
} respectively, then the equivalency of relative 

angles between the plane segments can be compared using their 

normals (e.g. ∠n𝒎𝟏
n𝒎𝟐

 ≃ ∠n𝒅𝟏
n𝒅𝟐

). 

Once the non-rejected pairs of two corner points having the same 

distance and relative angles are obtained, the corresponding 

transformations of both points are obtained for further scrutiny. 

The rotation matrix can be calculated using the directions of 

corresponding plane segments of corner points while the 

translation is calculated from the corner points. Normally, the 

planes are perpendicular in building models, consequently, the 

correspondence of plane segments to find the rotation matrix is 

not certain due to identical angles between the planes, therefore, 

the transformation obtained based on those correspondences may 

not be correct.  

To calculate the correct transformation of particular 

corresponding points, all the potential rotation matrices are first 

calculated using all the possible correspondences of plane 

segments and then evaluated based on the certainty that the 

transformation matrix with correct rotation should fit the 

(a) (b) 

  
(c) (d) 
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congruent plane segments. Therefore, all the possible 

transformations obtained with the potential rotation matrices are 

probed using the centroids of plane segments belonging to the 

corresponding corner points. In the ideal case, the centroids of 

congruent plane segments should project into each other if 

transformed with correct rotation, however, due to the presence 

of noise or occlusion, the projection may fall near. Therefore, all 

the transformations with the possible rotation matrices are 

scrutinized with the average centroid of plane segments using the 

given equation. 

𝐶𝑚𝑎
− 𝑅𝑟 . 𝐶𝑑𝑎

− 𝑡𝑟 = 0 (6) 

The transformation matching the planes segments according to 

above equation is considered as the correct transformation 

allowing the alignment of correct corresponding plane 

segments.[as shown in fig]. It is worth mentioning that the 

obtained transformation is correct according to the two 

corresponding corner points, however, the congruency of these 

corresponding points still needs to be probed. 

After obtaining the transformation parameter of both pairs of 

corresponding corner points, they are compared to probe the 

congruency of the corner points. The comparison is performed 

based on the invariant that the rotation matrices and the 

translation vectors obtained of all the congruent corner points 

should be the same. In our case, transformation parameters of 

both pairs of corresponding corner points are compared. The 

equivalency of rotation matrices {𝑅𝑎, 𝑅𝑏} and translation vectors 

{𝑡𝑎, 𝑡𝑏} obtained from as-planned corner points {𝑚𝑎, 𝑚𝑏} 

corresponding to as-built corner points {𝑑𝑎 , 𝑑𝑏} are ensured 

using the following equations: 

𝑅𝑎. 𝑅𝑏
𝑇 = 𝐼3 (7) 

‖𝑚𝑎 − 𝑅𝑎. 𝑑𝑎‖ −  ‖𝑚𝑏 − 𝑅𝑏 . 𝑑𝑏‖ = 0 (8) 

In the end, the pairs of potential congruent corner points that are 

compatible with the geometric invariants are acquired. These 

potential congruent points include the congruent points with 

correct transformations and non-congruent points as well. 

Therefore, these potential congruent points are further processed 

in the coming stage to identify the congruent points with correct 

transformation. All the assessment steps should be performed 

with suitable tolerance to scrutinize the potential pairs of corner 

points. 

(a) (b) 

  

Figure 2. Visualization of pair of as-planned corner points 

having possible congruency with two pairs of as-built corner 

points (a) before transformation scrutiny and, (b) after complete 

geometric assessment. 

The figure 2(a) shows an example in which a pair of corner points 

{𝑚𝑎, 𝑚𝑏} from the as-planned model have more than one 

potential congruent pairs {𝑑𝑎 , 𝑑𝑏} 𝑎𝑛𝑑 {𝑑𝑐 , 𝑑𝑑} in the as-built 

model due to equal distance and relative plane angles of points. 

However, figure 2(b) shows that the transformation parameters 

of non-congruent pair {𝑑𝑐 , 𝑑𝑑} was rejected while verifying the 

computed parameters, as potentially congruent pair {𝑑𝑎, 𝑑𝑏} has 

the transformation parameters that correspond the centroids of 

plane segments using equation (6) in contrast to non-congruent 

pairs. Similarly, the same congruent pair also maintained it 

congruency while verifying the similarity of transformation 

parameter computed from individual corresponding points using 

equation (7) and equation (8). 

3.3 Identification of optimal transformation 

This stage identifies the congruent points with correct 

transformation and then finalizes the most accurate 

transformation among them as optimal transformation. As the 

assessment process output the pairs of two corner points from 

both models in each iteration, hence, many pairs may be present 

more than once, therefore, it is ensured that no congruent points 

be repeated more than one by confirming their corresponding 

congruent plane segments.  

The identification of congruent points is based on the certainty 

that the correct transformation parameter should project all the 

congruent corner points into each other. To do so, all the potential 

congruent points are clustered according to their respective 

transformation to obtain the possible cluster each having points 

with similar transformations. As the cluster of transformations 

indicates the no. of corner points with potential congruent points 

transformed with cluster transformation, therefore, 

transformation with the highest no. of potential congruent points 

will be finalized as correct transformation following the 

mentioned certainty. 

(a) (b) 

  
(c) (d) 

  

Figure 3. Visualization of models registered with 

transformation parameters sorted in ascending order from (a) to 

(d) according to respective errors. 

After identifying the cluster of congruent points with correct 

transformation, the individual transformation parameter of each 

congruent point is evaluated to find the error in terms of fitting 

all the congruent points. For example, if 𝑑𝑖 and 𝑚𝑖 represents the 

congruent point from as-built and as-planned model at 𝑖-
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correspondence with transformation parameter (𝑅, 𝑡) with n 

number of congruent points, then error (E) can be computed 

using the given equation: 

E(𝑅, 𝑡)  = ∑‖(𝑚𝑖  − 𝑅. 𝑑𝑖 − 𝑡)‖2

𝑛

𝑖=1

 
 

(9) 

The transformation parameter giving the lowest error is 

concluded in the end as it is aligning all the congruent points with 

maximum accuracy. An example of models registration 

transformation parameters are shown in Figure 3 along with the 

respective errors where it is evident that the parameter with 

lowest error is comparatively giving best fitting of models. 

(a) (b) 

 

 

Figure 4. Visualization of as-planned models from (a) dataset 

1, and (b) dataset 2. 

4. EXPERIMENT 

The proposed method was tested on different models including 

two stimulated and one real building dataset to validate its 

methodology. Dataset 1 and 2 were artificially prepared 

stimulated datasets to analyze the proposed methodology with 

any effect of errors while dataset 3 represented a real-life dataset 

to assess the working in real conditions. The as-planned model 

of datasets 1 and 2, representing the single and three floor 

buildings, are shown in Figure 4. For testing, their random 

transformed model was used as the as-built model. In the case of 

dataset 3, the as-planned model and as-built model representing 

the scan and BIM respectively of a conference room are shown 

in Figure 5. The as-built model comprised of laser-scanned point 

cloud having 3,580,303 3D points coupled with noise and 

occlusion. The proposed method was executed in Python 

language and testing was performed on a laptop with an Intel i7-

8850H CPU and 16 GB RAM. 

(a) (b) 

  

Figure 5. Visualization of (a) as-planned model, and (b) as-

built model, from dataset 3 

The proposed method successfully performed the registration of 

BIM with its corresponding scan model after performing all three 

major steps. The registration results are shown in Figure 6 and 

the processing details including the time and accuracy of the 

proposed registration are listed in Table 1. If the accuracy is 

analyzed that it is evident that the proposed method successfully 

registered the models with good accuracy in terms of coarse 

registration. The reliability of the registration can linked to the 

methodology that finds the potential congruent points from 

extracted corner points through various geometric criteria in a 

specific sequence to ensure that actual congruent points are most 

likely acquired. Similarly, the precision in the results can be 

associated to the identification of the optimal transformation 

from the acquired potential congruent points. As compared to the 

stimulated datasets, the real-life dataset demonstrated relatively 

low RMSE mainly due to the presence of noise and occlusion in 

the as-built model that may have resulted in slightly erroneous 

corner points, consequently, the transformation parameters 

computed from their congruent pairs were slightly less accurate.   

Furthermore, it is also apparent that the computation time of 

dataset 3 is highly robust, however, dataset 2 witness relatively 

higher time. The underlying reason for time efficiency can be 

linked to the no. of extracted corner points from the models. The 

proposed methodology is highly efficient particularly with 

datasets having fewer extracted corner points, but the 

computation time is increasing exponentially in opposite cases. 

Hence, it can be assumed that the proposed method will take 

much higher time if the large building models with higher corner 

points are proposed. The combinatorial complexity in the 

processing can be improved using the RANSAC or other suitable 

optimization solutions to increase the time efficiency of the 

proposed method. 

Datasets 
No. of extracted 

corner points 

Processing 

time (s) 

RMSE 

(mm) 

1 16 3.27 0.47 

2 22 7.55 1.09 

3 08 1.36 7.59 

Table 1. Registration details of datasets. 

5. CONCLUSION 

The paper is a part of ongoing research that addresses the 

congruency problem in coarse registration and introduces a novel  

method that employs the corner points of building structure and 

finds their congruent pairs to compute the optimum 

transformation. Experimentation performed on building datasets 

(including real-life) with different geometries demonstrate its 

success in the Scan-vs-BIM problem. The result indicated the 

accurate registration of models, however, it is also found that the 

computation time is dependent on the corner points extracted 

from models, hence the proposed method can be computationally 

expensive for large  datasets. In the future, it is planned to 

improve the method for its practical utilization in large datasets.  
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