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ABSTRACT: 

 

Trajectory data constitute location of objects at specified time intervals. The continuous availability of GNSS signals, or discrete 

availability of sensor systems such as license plate recognition cameras are used to generate trajectory data. Consequently, in a smart 

city context, big trajectory data are being generated on a daily basis. The analysis of big trajectory data entails the use of a distributed 

environment to conduct analysis, and at least two data sources. The literature review conducted in this paper shows that the two Vs 

of big data, Volume and Variety, may not be satisfied since researchers usually rely on a centralised computing environment, and 

analyse data coming from a single data source. Out of the 17 papers published from 2020 in Scopus, only five of them relied on a 

distributed computing environment, and two of them utilised more than one data source.  

 

 

1. INTRODUCTION 

The ubiquitous use of sensors coupled with the development in 

information and communication technologies contribute to the 

explosive growth of geospatial data. Geospatial data is usually 

considered as remotely sensed data, since petabytes of images 

have been collected and managed with the launch of various 

satellites including Landsat and Sentinel. These images could 

be processed, relatively easily, by relying on services such as 

Google Earth Engine or Amazon NASA NEX for various 

purposes ranging from estimating crop yields to cultural 

heritage management (Agapiou 2017; Warren et al. 2015). 

Geospatial data in a smart city context; however, is often 

collected as vector data, and more specifically trajectory data. 

 

Zheng (2015) defines a spatial trajectory as ‘a trace generated 

by a moving object in geographical spaces, usually represented 

by a series of chronologically ordered points’. The moving 

object can be both living, such as an animal or a person, or non-

living, such as a bus or a ship. Kong et al. (2018) provide a 

thorough review on various use-cases and research areas that 

rely on trajectory data ranging from detecting rapid accelerating 

vehicles to address fuel consumptions and carbon emissions, to 

the location selection of electric charging stations in order to 

maximise vehicle-miles travelled. They also classify trajectory 

data into two as i) explicit, and ii) implicit. Explicit trajectory 

data relies on continuous receival of GNSS signals to record the 

location and time of an object. Consequently, data are collected 

at regular time intervals. Implicit trajectory data, on the other 

hand, cannot collect location data at regular time intervals, since 

sensors such as Automatic Number Plate Recognition (ANPR) 

cameras, Wi-Fi probes or cellular network are used to collect 

location data. Therefore, locational information relies on the 

spatial distribution of these sensors. Furthermore, the activity of 

the object, such as making a phone-call or passing through an 

ANPR camera, defines the data collection interval. 

Consequently, implicit data are collected at irregular time 

intervals.  

 

Zheng (2015) provided a thorough coverage on trajectory data 

mining by emphasizing various interrelated topics on data 

preprocessing and management, data transformation and 

provided exemplar datasets, most of which can be associated 

within an urban context. It is reasonable to envision a scenario 

where buses / taxis equipped with GNSS receivers collect large 

amounts of time-stamped location information in a smart city. 

For example, Taxi & Limousine Commission (TLC) of New 

York City have been collecting and distributing the origin-

destination of taxi trips since 2009 

(https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page). 

This valuable source of data has been utilised in various 

research areas ranging from taxi demand prediction (Xu et al. 

2018) to developing effective ways to realise taxi ridesharing 

(Barann, Beverungen, and Müller 2017). Consequently, 

collected data are often used by public transportation authorities 

to improve transportation services as well as by passengers to 

ease their commute or reduce costs. Even though, origin-

destination data constitute only a subset of trajectory data, some 

researchers still consider it as Big Data as millions of taxi trips 

usually occur within metropolitan cities on a monthly basis 

(Anbaroğlu 2021; Zhu et al. 2016).  

 

Big Data has been defined in different contexts, but this paper 

relies on the definition provided by Khan, Uddin, and Gupta 

(2014), which is as follows: ‘according to many researchers 

and writers, big data is a form of data that exceeds the 

processing capabilities of traditional database infrastructure or 

engines’. The emphasis here is on the lack of ability of 

traditional database infrastructure to handle big data. More 

precisely, a distributed computing environment is required to 

manage and store big data. The necessity to scale out 

computations from single high-performance servers to multiple 

low-cost commodity-servers (tens to thousands) has led to the 

development of effective technologies like Apache Spark 

(Zaharia et al. 2016), YARN (Vavilapalli et al. 2013) or Apache 

Tez (Saha et al. 2015), most of which are licensed under the 

Apache Software Foundation. Although these technologies have 

been effective to employ analytics on textual / numeric data, 
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their utilisation on spatial data, and more specifically, trajectory 

data have remained limited. Those that focused on trajectory 

data have overlooked the progress in distributed-computing 

environments (Kong et al. 2018; D. Wang, Miwa, and 

Morikawa 2020).  

 

The aim of this paper is to review the literature on the use of 

distributed technologies to handle big trajectory data. The 

organisation of this paper is as follows. Second section explains 

the spatial indexing methods, and current technological tools 

and technologies to handle big geospatial data. Third section 

provides the results obtained from the literature review on 

keyword search big trajectory data in Scopus. Fourth section 

provides a Strengths-Weaknesses-Opportunities-Threats 

(SWOT) analysis on the utilisation of distributed computing 

technologies to manage big trajectory data. Finally, conclusions 

and future research directions are presented. 

 

2.  HANDLING BIG GEOSPATIAL DATA 

This section first describes the spatial indexing methods, and 

then the cloud infrastructure that can support management of 

big trajectory data. 

 

2.1 Spatial Indexing Methods 

Spatial indexing is used to enable fast access to spatial data. A 

spatial index usually corresponds to a tree data structure to 

reduce the time of searching the query data. Traditional 

indexing methods such as B-trees fail to index spatial data; 

since it is not possible to order spatial data in which the number 

of dimensions is usually two or three. Most spatial database 

management systems comprise a spatial indexing method to 

increase the performance on spatial queries such as k-nearest 

neighbour or point-in-polygon. The spatial indexing can be 

primarily divided into two for different geographical features: i) 

point, and ii) line and polygon. Indexing point datasets is 

usually achieved by converting point coordinates into grids by 

Space Filling Curves (SFCs), which are used to organise points 

in 2D space into bounding-box hierarchies by preserving the 

spatial adjacency. It was initially proposed by Giuseppe Peano 

in 1890, and simplified and improved by David Hilbert in 1891 

(Haverkort and van Walderveen 2010; Moon et al. 2001).  

 

Usually a two-step procedure is carried out to realise a spatial 

query involving lines and polygons: i) filter and ii) refinement. 

In the filter step, geospatial entities such as lines or polygons 

are represented as their Minimum Bounding Rectangle (MBR), 

and in the second step refinement the true representation of the 

geographical data is used. The filter step would dramatically 

reduce the number of computations. Manolopoulos, 

Theodoridis, and Tsotras (2009) provided an excellent summary 

on the historical progress and various methods of spatial 

indexing including, but not limited to, R-trees, quadtree, and 

LSD tree. Many variants of the renowned R-tree have been 

proposed, but probably the one that is most related to a 

distributed computation architecture is the SD-Rtree (du 

Mouza, Litwin, and Rigaux 2007).   

 

The theoretical foundations of indexing methods may not be 

clearly transferred to a database management system (DBMS). 

Specifically, the implementation details may be hidden from the 

users, and even if the code is open, it might be difficult to trace 

the code except for the developers of the DBMS themselves. 

For example, the spatial index used in PostGIS, the spatial 

extension of PostgreSQL –a renowned relational DBMS– is 

referred to as the generalised search tree (i.e. gist) and relies on 

R-tree. On the other hand, the spatial index used in MongoDB  

–a renowned NoSQL DBMS– is referred to as the 2Dsphere 

(https://www.mongodb.com/docs/manual/core/2dsphere/), but 

the data structure that it relies on has not been explicitly stated. 

Researchers have identified that the same query on the same 

dataset may return different outcomes on Postgres and 

MongoDB (Anbaroğlu 2021; Bartoszewski, Piorkowski, and 

Lupa 2019). Consequently, the differences in the ways in which 

a spatial indexing method has been implemented has crucial 

effect on the performance and effectiveness of spatial queries.  

 

2.2 Cloud Infrastructure 

Leading IT companies provide cloud services, where it is 

possible to store and analyse big trajectory data. The well-

known of these services include Amazon Web Services (AWS), 

Google Cloud Platform (GCP), Microsoft Azure and AliBaba 

Cloud. These infrastructures have also been used in research, 

and in order to provide a proxy of their prevalence, Scopus is 

used to search the keywords in two different settings: i) using 

all fields, and ii) using only the article title, abstract and 

keywords. The search is conducted on 22 June 2022. The 

former is abbreviated as ‘A’, and the latter as ‘T, A, K’ in Table 

1. The former search provides a prevalence of the cloud service 

in the published outcomes, whereas the latter provides research 

articles focusing on the specified cloud service. The second 

number in each cell denotes the same search while adding the 

keywords ‘spatial’ and ‘trajectory’ to the search.  

 

 A T, A, K 

AliBaba Cloud 676 / 6 157 / 0 

Amazon Web Services (AWS) 6394 / 26 1399 / 0 

IBM Cloud 1273 / 3 167 / 0 

Microsoft Azure 3987 / 21 942 / 0 

Google Cloud  5190 / 52 1047 / 2 

Table 1. Prevalence of the cloud platforms, and in their use 

with trajectory data in Scopus 

 

The number of publications suggest that AWS is more common 

to research community. However, once the focus is on trajectory 

data analysis, apart from Google Cloud Platform (GCP), none 

of them was utilised. The two papers on trajectory analysis that 

relied on GCP are indeed relevant to this review. First, Ghosh 

and Ghosh (2019) developed a GCP-based trajectory 

management system. Although the proposed system’s 

performance exceeds the centralised way to realise map-

matching (i.e. matching GPS records to a road network), the 

experimental setup should be re-evaluated on larger datasets to 

understand the full-potential. Second, Jitkajornwanich et al. 

(2017) utilised high-frequency radar observations to predict the 

direction and velocity of sea current values. The high-frequency 

radar data can be considered as an implicit trajectory data, since 

observations are recorded at predefined grids rather than a 

continuous space. Moreover, the effectiveness of the use of 

GCP have not been investigated. To realise a global model, one 

might be interested in performance issues.  

 

On the other hand, other researchers might setup their own 

distributed system, and conduct big trajectory analysis. For 

example, Maguerra et al. (2020) designed a reactive system on 

an Akka cluster. The designed system comprises high 

concurrency, responsiveness, and elasticity while handling 

exceptions efficiently. The technologies they have relied on 

include Play Framework, Nginx, AngularJS, D3.js and 
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MongoDB. The components of such systems may differ, and 

consequently the performance and effectiveness may change. 

Furthermore, user-interface design is another issue that have not 

been addressed in the paper. An interactive dashboard allows 

users interact and analyse data (Lwin et al. 2019; Oktay et al. 

2021). 

 

Geospatial big data framework solutions have also been 

developed that can be classified under three categories: i) 

GeoWave, ii) GeoMesa, and iii) GeoTrellis. GeoWave can 

manage different data stores such as Redis, Kafka, Cassandra or 

Accumulo, and visualise spatial data on top of GeoServer. 

GeoWave takes advantage of Hilbert space filling curve for 

dimensionality reduction, and to index spatial data. In this way, 

contiguity in single dimensional keys of a datastore would be 

preserved. Similarly, GeoMesa, allows querying and analytics 

on big geospatial data, and it provides indexing to various 

database management systems including Accumulo, HBase, 

Google Bigtable and Cassandra. Stream processing can also be 

realised via Apache Kafka and Apache Camel integration 

(Hughes et al. 2015, 2016). GeoMesa has been leveraged by Li 

et al. (2020) due to its capability to manage big spatio-temporal 

data over distributed NoSQL data stores. However, these are 

emerging technologies, and some issues may arise in their 

installation. For example, GeoWave could not be installed on 

all three operating systems as of 30 June 2022 as illustrated in 

Figure 1, probably due to an issue at the Amazon S3 

environment in which the associated files are hosted. In our 

previous attempts, we were successful to install GeoWave, but 

then configuring the Maven environment proved to be difficult.  

 

 

Figure 1. Installation error of GeoWave – 30 June 2022 

 

Scopus is used to search these frameworks to understand their 

prevalence in research community, and the results are presented 

in Table 2.  

 

 A T, A, K 

GeoMesa 114 15 

GeoTrellis 74 3 

GeoWave  71 25 

Table 2. Prevalence of big geospatial data analysis frameworks 

in Scopus 

 

The results suggest that GeoWave is more prevalent when titles, 

abstract and keywords are searched, whereas GeoMesa is more 

prevalent when the search is relaxed to the entire paper. 

Nevertheless, these frameworks are still at their infancy but 

have a great potential to facilitate big trajectory analysis.  

 

3.  SURVEY ON BIG TRAJECTORY DATA 

This section describes the literature review conducted on 

Scopus by searching the phrase “big trajectory data” on 24 June 

2022. The outcome of this inquiry revealed that the search 

phrase was present in 75 papers’ title, abstract or keyword. The 

number of papers published each year are illustrated in Figure 

2.  

 

 
Figure 2. Number of papers appear on Scopus by searching 

‘big trajectory data’ 

 

Due to space limitations, 24 papers published in 2020, and 

onwards, were collected and analysed. Three of those papers 

were written in Chinese, which are entitled: i) ‘Fast and 

Distributed Map-Matching Based on Contraction Hierarchies’, 

ii) ‘Integrating Human Mobility into the Epidemiological 

Models of COVID-19: Progress and Challenges’, and iii) ‘kNN 

Query Processing for Trajectory Big Data Based on Distributed 

Column-Oriented Storage’. These papers were not understood; 

hence, they were removed from the analysis. Out of the 

remaining 21 papers, two of them were review papers (Chekol 

and Fufa 2022; D. Wang et al. 2020), and there was no access 

to two papers (G. Wang et al. 2020; L.-W. Wang et al. 2022). 

The remaining 17 papers were analysed in detail, and the results 

are illustrated in Table 3. The table reveals information about 

the type of the trajectory (Implicit or Explicit), a brief purpose, 

whether a Centralised or Distributed system was used, whether 

a spatial index was utilised, and information about the 3Vs of 

Big Data: Volume (or data size), Velocity (temporal granularity 

of the trajectory data) and Variety (data source(s) utilised). 

 

Majority of the papers relied on implicit trajectory data (8/17), 

which is motivating; since having the opportunity to observe an 

object’s location on a continuous space using GNSS data would 

provide more insights than observing object’s location at places 

where some specific sensors are installed. Research on big 

trajectory data was on several research areas ranging from smart 

transportation governance to animal movement analysis. Data 

obtained by Automatic Identification System (AIS) constitute as 

a valuable research in understanding marine traffic. 

 

One of the staggering outcomes of the survey is that the 

majority of the papers actually relied on a centralised system to 

manage their data. Some of the research have not stated the 

computational environment and they are indicated as Not 

Available, N.A. For instance, even though Yongdong et al. 

(2020) have not stated the details of the computational 

environment, one could actually infer that they relied on a 

centralised environment as it is the traditional method for data 

analysis, and also that they relied on Postgres. Therefore, 

including the N.As, only almost one-third (5/17) of the papers 

relied on a distributed environment. 
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It should also be noted that the details of the distributed 

environment may not be specified as well. For instance, Chen, 

Fu, and Zhu (2020) relied on Hadoop Distributed File System 

(HDFS), whereas they have not specified the number of nodes 

utilised in their experiments. Volume of the analysed data 

ranges substantially but the largest dataset was analysed by Li et 

al. (2020) amounting to almost 1.5 TB. Velocity of the data also 

varied substantially from one second to one hour.  

 

The other important outcome is that majority of the research on 

big trajectory data relied on a single data source. Consequently, 

the variety component of big data has almost always been 

overlooked.  

 

4. DISCUSSION 

In a smart city context trajectory data are being collected to 

manage road or marine transportation more efficiently, reduce 

costs and improve safety, and provide reliable journey times. 

The literature review conducted in this paper revealed that two 

important components of ‘Big Data’ have usually been 

overlooked by researchers. Most of the research relied on a 

centralised environment (violating the Volume principle), and 

relied on a single data source (violating the Variety principle). It 

can also be argued that the Velocity principle is by default 

supported when working with implicit trajectory data due to the 

continuous collection of location of the object.  

 

There may be literature relevant to this paper, but not included 

in Table 3 due to the use of different terminology. For example, 

Mao et al. (2021) relied on the keyword ‘distributed trajectory 

streams’ and indeed utilised Spark to detect outlier trajectories. 

Furthermore, trajectory data analysis is actually an 

interdisciplinary research endeavour. For example, 

Gudmundsson and Horton (2017) provided a thorough coverage 

on the use of trajectories in sports sciences, and specifically in 

invasion sports such as football or basketball. Similarly, Niu et 

al. (2021) stated that streaming trajectory, incremental 

trajectory or parallel trajectory are all used to address research 

conducted on a distributed environment. Finally, researchers 

may not have explicitly emphasised the trajectory keyword, and 

only used ‘big data’ in their papers, which may also lead to the 

omission of relevant papers. The Strengths-Weaknesses-

Opportunities-Threats of research on big trajectory data is 

summarised in Table 4. 

 

Strengths 

• Big trajectory data sets are 

readily available. 

• There is a growing research 

community designing 

distributed systems to handle 

big trajectory data. 

Weaknesses 

• Lack of educational material 

to configure a distributed 

environment. 

• Keeping up with literature 

written in languages apart from 

English. 

• Requires a research budget. 

Opportunities 

• Leading companies support 

research and education by 

providing credits. 

Threats 

• Governments restricting the 

distribution of big trajectory 

data (for privacy concerns or 

economic issues). 

Table 4. SWOT analysis on research utilising big trajectory 

data 

 

5. CONCLUSION 

Big geospatial data are being collected on a daily basis. One of 

the common forms of big geospatial data is trajectory data, 

which is often encountered in a smart-city context. Various 

domains ranging from intelligent transportation systems to 

animal movement analysis, and to sports science rely on 

trajectory data. Openly available datasets provide a good 

starting point; however, it is difficult to setup a distributed 

computational environment. Recent technological advances 

(e.g. Citus extension to Postgres) enable researchers to scale-out 

computations from a centralised computing environment to a 

distributed environment. However, there is lack of effective 

learning material for newcomers, and research on distributed 

computing environment usually requires a research budget.  
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