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ABSTRACT: 

The concept of the 3D smart city is an integration of smart cities and information technology. One of the data sources of a smart 

city is point cloud data that are produced from various data acquisition tools such as LiDAR, Terrestrial Laser Scanning, and 

Unmanned Aerial Vehicle. Due to the large size of point cloud data input, traditional databases could not handle the data 

efficiently. Alternatively, unstructured databases have become an option. Furthermore, data for smart city applications are 

considered being complex and large. Storing data in the unstructured database can easily be retrieved from various front ends 

such as web and mobile devices. However, unstructured databases do not have fixed schema and data types that often limit the 

uses of 3D point cloud data in relational databases. There are four categories of the data model in the unstructured database: 

document store, key-value, column store, and graph store. Each of the categories has different characteristics and approaches to 

handling data. Thus, this paper aims to summarise an overview of each category and determine the most suitable data 

organisation and environment for a 3D point cloud of a smart city. The overview will aid the developer or user select and 

comparing available data models in the unstructured database to handle 3D point clouds.  

1. INTRODUCTION

Vehicle-borne laser-scanned point clouds and passive imaging 

technologies have become the main provider of 3D data 

sources in mapping fields and their applications. The smart 

city is one of the applications that use point clouds as its data 

input to model buildings. With the combination of smart city 

modelling and Geographical Information systems (GIS), 

various applications can be benefited directly such as tourism 

(Mohd et. al. 2016), virtual smart campus (Salleh et. al. 2021), 

and construction management (Wan et. al. 2018). However, 

before the stable applications are launched, the data need to be 

managed efficiently in the database. Current practice used 

traditional databases in managing spatial data. Recently, the 

bottleneck of relational databases has been discussed. Aiming 

at reducing the technical bottlenecks of 3D point cloud data 

management, this research proposes to organize the data using 

the unstructured database.  

The unstructured database is an alternative to a relational 

database, and each of it is designed for a specific purpose, has 

different characteristics, and follows different approves. There 

are four main unstructured data categories: document store, 

key values, column store, and graph store. Unstructured 

databases support a wide range of fundamentally various data 

models, centering on attaining levels of horizontal and elastic 

scalability, and offer schema flexibility that cannot easily be 

accomplished in relational databases. The database 

functionality is closely tied to the data model used and ranges 

from the simple insert and read operations on key-value pairs 

to graph traversal or even analytical queries on large data sets 

(Reniers, Van Landuyt et al. 2019). These unstructured 

databases emerged at the implementation level and lacked 

well-defined design processes. However, unstructured 

databases can accept a variety of data models, (de la Vega, 

García-Saiz et al. 2020) state that relational database design 

and methodologies, which are typically based on conceptual 

modelling notations such as ER (Entity-Relationship) or UML 

(Unified Modelling Language) are quickly revealed to be 

insufficient. Taking advantage of the benefits provided by data 

nesting and denormalization, developers need to consider not 

only which data will be stored in the database but also how 

these data will be accessed (Mior, Salem et al. 2016). Working 

with the same data set but with different data access patterns 

in the unstructured database might lead to other 

implementations. This is because, in many NoSQL systems, 

design decisions are driven by how data will be accessed. 

3D point cloud data is suitable for storing in the unstructured 

database as it satisfies the data integrity and consistency. This 

study examines different categories of unstructured databases 

for the 3D point cloud datasets. Unstructured database stores 

unstructured data, so it is not required to define in advance 

what data types and categories will be used. From the 3D point 

cloud view, the unstructured database approach provides 
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flexibility in data types and allows easier implementation of 

the 3D models. Unstructured databases have schema-less 

features and a simple interface that enables developers to 

develop databases quickly. It is worth mentioning that this 

paper's objective is to analyze the four categories of the 

unstructured database, identify unstructured databases capable 

of handling 3D point cloud and provide perspectives in the 

field of 3D point cloud handling. This paper offers an 

alternative way for the developers to store 3D point cloud as 

there need to utilize an efficient and scalable geospatial 

database which strongly influences the overall performance of 

the applications. In addition, this paper's contribution is to 

guide developers in choosing the appropriate database. 

The rest of the paper is organized as follows. Section 2 

explores related reviews and benchmarking tools used to 

compare unstructured databases. Section 3 describes some 

preliminary concepts of 4 types of unstructured databases: 

document store, key-value, column store, and graph store 

database, starting with the description and analysis of the 

different implementations of databases available on the 

market. Section 4 analysed using a 3D point cloud in the 

unstructured database. Section 5 analysed an unstructured 

database based on three main concepts: data model, querying, 

and scaling. Finally, section 6 discusses the application of 

unstructured databases and conclusions on the findings. 

2. RELATED WORKS

Previous study shows several attempts on managing large size 

of 3D data using relational database or unstructured database. 

For example, (Azri et al. 2020) proposed a 3D data structure 

for fast retrieval nearest neighbour search in 3D urban 

environment. However, current relational database is proved 

to be ineffective while dealing with large volume of data such 

as point cloud. Many works list the comparison between 

relational and unstructured databases, revealing their virtues 

and weakness. However, there are very few works describe 

how to organize 3D point clouds in unstructured databases. 

Research by (Grolinger, Higashino et al. 2013) titled Data 

Management in Cloud Environments: NoSQL and NewSQL 

Data Stores, focused on the storage aspect of cloud computing 

systems, particular in NoSQL and NewSQL data stores. The 

results are alternatives to traditional relational databases that 

can handle huge volumes of data by utilising the cloud 

environment. In addition, the research reviewed NoSQL and 

NewSQL data stores to provide a perspective and guidance to 

practitioners and researchers in choosing appropriate storage 

solutions and identifying challenges and opportunities in the 

NoSQL field. Thus, from this work, challenges in the domain, 

including terminology diversity and inconsistency, limited 

documentation, sparse comparison and benchmarking criteria, 

occasional immaturity of solutions and lack of support, and 

non-existence of a standard query language, can be identified 

study for future research. This research has helped give 

general knowledge and introduction to unstructured databases 

and their challenges. 

Furthermore, research conducted (Višnjevac, Mihajlović et al. 

2019) on an approach of using an unstructured database and 

JavaScript application for 3D visualisation stated that an 

unstructured database can be used for storing 3D cadastral data 

defined by a data model based on LADM. BASE principles 

protect the stored 3D cadastral data and developed JavaScript 

applications can easily meet basic 3D cadastral requirements 

for 3D visualisation, such as viewing and selecting each 3D 

object. However, no topology validation is done on the model, 

reducing the data integrity. Furthermore, more intuitive 

visualisation approaches are required to enable simpler system 

use for professionals and non-professionals. The prototype is 

a good starting point for developing a modern cadastral system 

that enables 3D registration of real properties, facilitates 

unequivocal registration of complex 3D property situations, 

and provides an intuitive user interface and 3D spatial data 

visualisation methods. 

Then (Liu and Boehm 2015) presented a file-centric storage 

and retrieval system for large collections of LiDAR point 

cloud tiles based on scalable NoSQL technology 2015. The 

system can store large collections of point clouds and use a 

document-based unstructured database to retain a file-centric 

workflow, making many existing tools accessible. The 

suggested system supports spatial queries on the tile geometry. 

Compared to file system operation, it has several overheads on 

inserting and retrieving the files locally, but the remote 

transfer is at par with popular cloud storage. It uses a 

MongoDB application that supports Map-Reduce internally 

for database queries and provides a special adapter to access 

MongoDB from Hadoop. However, this research only focuses 

on data storage and retrieval. The mentioned method can be 

used as a reference for managing 3D spatial objects in an 

unstructured database. 

Lastly,  (Reniers, Van Landuyt et al. 2019) research identifies 

341 frameworks relevant to object-relational impedance 

mismatch and evaluate 11 Object-NoSQL data mappers 

(ONDMs) in detail. The research investigated the ONDMs in 

terms of their mapping strategies for collections, relationships 

and inheritance and compared available mapping strategies 

systematically. The study concludes that the collections and 

object-owned data are typically embedded by default, and 

support for alternate strategies is lacking. Relationships can be 

embedded within the referring object as a set of referred keys 

or identifiers and embedding of relationship data is scarcely 

supported. The results show that object-document mapping 

strategies are more sophisticated and advanced than column 

and graph stores. The presented survey is an important 

steppingstone in our ongoing research on NoSQL abstractions, 

appropriate mapping strategies and schema design, and 

optimised configuration and deployment of highly distributed 

databases. Thus, the framework of this study can be used to 

examine fundamental mapping issues between objects and 

unstructured databases. This research helps manage objects in 

the database. 

3. 3D POINT CLOUD MANAGEMENT IN AN

UNSTRUCTURED DATABASE 

The 3D point cloud is a set of data points in space that 
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represent 3D space or an object. It contains rich geographic 

information such as three-dimensional coordinates, RGB 

information, colour and reflection strength (Xu and Guo 

2016). MongoDB and HBase are the most popular 

unstructured database applications for 3D point cloud 

handling. This can be seen in a study by (Azri, Ujang et al. 

2021), MongoDB uses outpaces relational databases during 

the data retrieval and updating of the 3D point cloud. 

Furthermore, the study also visualises the point cloud from the 

database into PotreeViewer. (Višnjevac, Mihajlović et al. 

2019) created a prototype of the 3D cadastral system based on 

the unstructured database and JavaScript application for 

storing and visualisation. (Zhang, Wang et al. 2019) use 

HBase to distribute architecture for massive remote sensing 

data based on the metadata file, pyramid model, and Hilbert 

curve. It is proved efficient compared to the traditional 

database. (Xu and Guo 2016) established a sharding cluster for 

MongoDB under a distributed environment while distributing 

storage, spatial query, and MapReduce for point cloud data 

through scope sharding, and Hash-based sharding successfully 

reflects huge advantages of MongoDB in storage and 

processing for geospatial data. Then, (Luan, Yachun et al. 

2014) proposed a 3D model management strategy based on 

Hadoop to deal with the big data problem of 3D model 

management. (Park, Yun et al. 2011) used MapReduce and 

utilised the unstructured database to increase the analysis 

velocity. It is suitable for geospatial big data applications such 

as 3D point cloud overview and visualisation.  

Unstructured database systems are now an efficient way to 

manage massive data volumes distributed across numerous 

servers (Atzeni, Bugiotti et al. 2020). It is appropriate for big 

data applications like the generalisation and visualisation of 

3D city models (Mao, Harrie et al. 2014). There are commonly 

4 types of model stores in unstructured databases (Li 2018). 

The data store is divided into document-store, key-value store, 

column-store, and graph-store categories based on their data 

models (Cattell 2011).  

The Document store unstructured database stores the data in a 

collection of key-value pairs that are compressed as a 

document and required its values stored, providing structure, 

and encoding the metadata. All document keys must be 

unique, and every document contains a unique key of "ID" that 

unique in the collection of documents and identifies a 

document unambiguously. Document stores also did not 

restrict the schema and can support multi-attribute search 

records containing various key-value pairs (Makris, Tserpes et 

al. 2016). The document store is more efficient in managing 

geospatial data than key-value because the geospatial data 

inside the document store can be retrieved using flexible 

queries. In multiple cases, they can be used in storing and 

handling geospatial data, thus allowing some queries such as 

proximity to be implemented. (Amirian, Basiri et al. 2014). As 

document store does not support relationships and join the way 

relational databases are, the document store database nature 

has a major effect on the data retrieval. For instance, when the 

database stores millions of 3D point cloud data inside a 

collection, the queries will be very fast as it is stored in a 

document containing the same schema.   

Key-Values Stores stored every data item as a key-value pair 

in schema-less format. A key is a string type unique ID that 

points to the data with which it is associated that stored values 

in any data type or without any predefined schema of BLOB 

(Binary Large Object). The values are stored as uninterrupted 

byte arrays, thus only allowing the key as the only route for 

data retrieval. The key-value pair is grouped into a collection 

to structure the data model. Thus, allowing it to support simple 

query operations that are applied on the attribute key only. The 

key-value stores all the data in-memory key-value stores 

(IMKVS), making them great databases for massive 3D point 

cloud data as the data is stored in the cache and contains high 

throughput system requirements. The application is 

responsible for understanding the object type and parsing it 

accordingly.  

Column Stores maintain data as a set of columns and data 

distribution based on columns instead of rows, an arrangement 

usually enhanced for queries throughout large datasets. The 

column has the smallest data unit, containing a key, value, and 

timestamp. Besides the column name, the database stores all 

values, and the null values are stored by ignoring the column. 

Columns that are related to each other create a column family. 

All the data in a single column family is stored in a physical 

set of files and sorted in chronological order. This makes it 

easier to support versioning and achieve performance. Thus, 

providing higher performance on data retrieval and query 

operation. Querying over rows is memory intensive and 

requires huge disk access, particularly when each row 

comprises many columns. In a column store, columns are 

grouped into column families, and each column family can 

have an unlimited number of columns, and in Cassandra a 

super column is a column containing other columns but cannot 

include other super columns. The column family aids in 

supporting organisation and partitioning. This way, it is easier 

to query the entire collection of columns for all the rows.  

Graph-store stores network data consisting of nodes (entities), 

edges (relationships) and properties. Various nodes might 

contain multiple properties. Graph stores are suitable for 

network data models such as social networks, road networks, 

and IT networks, where entities are highly connected through 

relationships. The graph store highlights that each node 

contains a direct indication of its adjoining node. Thus, index 

lookups are not required for navigating data connected. 

Consequently, the massive amount of well-connected data can 

be handled, as the expensive joint operation is unnecessary. 

Graph stores support transactions in the way that relational 

databases support them. The graph store allows the update in 

the database in an isolated location, hiding them from other 

processes until the transaction is executed. 

Relationships are the priority in graph store database. Each 

entity contains a list of relationship records linked to other 

nodes. When performing a query to find those relationships, 

the database will use this list to find connecting nodes, 

reducing the time from searching and matching. Available 

graph databases include Neo4J, InfiniteGraph, and OrientDB. 

(Amirian, Basiri et al. 2014) state that geospatial data can be 

modelled as graphs. Graph stores support native topology, thus 

allowing the management of the relationship and connectivity 
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between geospatial data. The topological relationship has a 

major role in the geospatial data workflow. The graph store 

allows each edge to contain various properties, thus providing 

flexibility to navigate the network based on various properties 

such as, time, distance, number of points of interest based on 

user preferences in acquiring the best path and the unique path 

for every user.  

4. UNSTRUCTURED DATABASE ANALYSIS

Unstructured databases represent an alternative to relational 

databases. Generally, they aim to tackle the drawbacks of 

relational databases in terms of schema rigidity, the limitations 

to horizontal and elastic scalability, and the support of specific 

data models. We analysed the storage environment for the 3D 

point cloud based on the three concepts above. Then, the 

unstructured database application is examined and compared 

to determine the capability for storing 3D point cloud data and 

which one has the best performance for database operations. 

4.1 Data Model 

The data model is a visual representation of the data and its 

connectivity. The data model for the unstructured database is 

different for every unstructured database category. Below, we 

explain the data model for four categories of the unstructured 

database. 

4.1.1 Document Store 

Document store data model using keys to locate documents 

inside the database. Most document stores represent 

documents using JSON (JavaScript Object Notation) or BSON 

(Binary JSON), which format is derived from it. The 3D point 

cloud contains massive data, which requires it to be stored in 

BSON format that encodes type and length information, 

allowing data to be analysed quicker. BSON support complex 

mathematics which is perfect for point cloud data from various 

sources that normally have different sized integers such as 

"ints" and "longs" or various decimal precision level such as 

"float" and "double" and "decimal". It is beneficial as it allows 

comparisons and calculations to happen in the data directly to 

distinct guise data stored that shorten consuming code. 

In addition, the document stores are suitable for applications 

where the input data can be represented in a document format, 

such as a 3D point cloud. It can contain complex data 

structures such as nested objects and does not need adherence 

to a fixed schema. MongoDB is one of the popular applications 

for document storage in unstructured databases. It provides the 

extra functionality of grouping the documents into collections, 

in this case, a 3D point cloud. Inside each collection, the 3D 

point cloud document has a unique key unique to each 

coordinate point.  

Figure 1 shows the data model for the document store 

database. Document store database store 3D point cloud in 

documents orientation, thus allowing each document to have a 

different structure. Each entity, specifically the 3D point cloud 

data, will be stored in one document, and documents are stored 

together in a collection. Each data in a document will have a 

unique identifier; Documet_Id-1, Documet_Id-2, 

Documet_Id-3, and Documet_Id-4. This is used to access 

documents in the collection. Document: Document-1, 

Document-2, Document-3, and Document-4 contain all the 

necessary information to describe the entity.   

4.1.2 Key-Value 

The data model for key-value stores is a simple model based 

on key-value pairs (Ramzan, Bajwa et al. 2019), which look 

like an associative map or a dictionary. The data model used 

the key with unique identifiers value to call the data in the 

database. The database value is obscure and is used to store 

data, such as an integer, a string, an array, or an object, thus 

delivering a schema-less data model. Besides being schema-

free, key-value stores are very efficient in storing distributed 

data but are unsuitable for scenarios requiring relations or 

structures. All the functions needed relations or structures to 

be implemented in the application. Furthermore, the database 

cannot manage data-level querying and indexing because the 

values are obscure. 

Figure 2 shows the data model for the key-value database. The 

value of each key can be anything from PDFs and JPEGs to 

JSON or XML documents, while the key itself specifies the 

element's URL. In this approach, the nodes in a cluster of 

machines can be used by the application designers to manage 

a lot of requests and online content. 

4.1.3 Column Store 

Figure 1. Document Store Database (Grolinger et al., 2013) 

Figure 2. Key-value Database (Corbellini, Mateos et al. 

2017) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W3-2022 
The 7th International Conference on Smart City Applications, 19–21 October 2022, Castelo Branco, Portugal

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-87-2022 | © Author(s) 2022. CC BY 4.0 License. 90



The data model for column stores is suitable for 3D point cloud 

data that deals with massive amounts of data stored on huge 

instances because the data model can be partitioned adeptly. 

The data model for the column store database is shown in 

Figure 3. The dataset consists of several rows referred to by a 

unique "Row-Key". Row-Key is known as a primary key. 

Each row is made of a set of "Column-Family", and each row 

can have a different "Column-Family". The 3D point cloud 

data is stored in "Column Name". 

Makris, Tserpes et al. (2016) state that column stores can be 

visualised similarly to relational databases due to the table 

format. The major difference is handling the null value; a 

relational database stores a null value in each column while 

column stores only store a key-value pair in a row when the 

database needs it. In column stores, the column configuration 

is performed during the start. However, columns' prior 

definition is not required, which presents huge flexibility in 

inserting any 3D point cloud data type. Column stores offer 

more effective indexing and querying than key-value stores as 

they are based on column and row keys.  

4.1.4 Graph Store 

The data model in the graph store uses graphs as it originated 

from graph theory. Figure 4 shows the data model for the 

graph store database. The relationship in graph store is 

important as it relates two pieces of information. The data or 

the information are stored in "Key-Value Node", and the 

connections between Key-Value Node are called "Key-

Value". The Key-Value is formed between each Key-Value 

Node, as shown in Figure 4.  

The vertices, nodes, and edges that interconnect the vertices 

used the graph as a mathematical theory to represent a set of 

objects. Graph stores have a completely different data model 

than document, key-value, and column stores. Thus, it can 

efficiently store the links between other data nodes. In the 

graph store, the nodes and edges contain individual properties 

containing key-value pairs. It specialises in managing highly 

interconnected data and efficiently navigating relationships 

among different entities. This is unsuitable for 3D point cloud 

data as it does not focus on the relationship between the other 

entities. They are more appropriate for social networking 

applications, dependency analysis, and recommendation 

systems. Furthermore, the graph store is not as efficient as 

other unstructured databases in situations other than managing 

graphs and their relationships. Additionally, it is not efficient 

at horizontal scaling, reducing the performance as related 

nodes are stored on different servers, thus requiring navigating 

multiple servers. 

4.2 Querying 

Database querying capabilities are important when selecting a 

database based on a particular situation. Different databases 

offer different APIs and interfaces interaction. This is directly 

dependent on the data model that a specific database has. The 

important feature of an unstructured database query is 

MapReduce; it can perform distributed data processing on a 

cluster of computers. Thus, allowing unstructured databases to 

achieve one of the objectives: to scale over many computers. 

In addition, the REST-based API is a popular application 

because of it (Grolinger, Higashino et al. 2013). In the 

unstructured database, a REST-based interface offered a 

solution directly or indirectly through third-party APIs. We 

will explain the query methods for unstructured databases 

below.  

4.2.1 Document Store 

Document stores embed attribute metadata linked with values 

that the querying support range queries, indexing, and nested 

documents. Also, it allows the use of operations like OR, 

AND, BETWEEN, and queries that can be executed as 

MapReduce. For example, MongoDB supports creating, 

inserting, reading, updating, and removing operators. In 

addition to supporting manual indexing, indexing on 

embedded documents and indexing location-based data 

(Makris, Tserpes et al. 2016). The queries are flexible, as there 

is no need to stick to a predefined schema to store data. 

MongoDB supports standard GeoJSON data types for 3D 

point cloud data, including Point, Polygon, MultiPolygon, and 

GeometryCollection. It can implement a subset of basic spatial 

operations using 3D point cloud data for inclusion, 

intersection, and proximity.  

4.2.2 Key-Value 

The query operations for the database are linked with a key. It 

is accessible through APIs, including functions like GET, PUT 

and DELETE. However, the interfaces only facilitate simple 

queries to be executed as complex queries are not supported, 

rendering the query language unnecessary (Makris, Tserpes et 

al. 2016). Thus, reducing the chances of 3D point cloud 

handling as it does not support complex spatial queries such as 

intersection and proximity. The key value can be used to store 

3D point cloud data, but the complexity of geospatial data 

obstructs spatial searches, particularly for polylines and 

Figure 3. Column Store Database (Grolinger et al., 2013) 

Figure 4. Graph Store Database (Grolinger et al., 2013) 
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polygons. Consequently, spatial indexed is required for fast 

data retrieval, affecting performance.  

4.2.3 Column Store 

Column stores query using a regular expression on the indexed 

values or the row keys. The impact on the databases is the 

operations are only affecting the query related rather than the 

entire row from the storage (Makris, Tserpes et al. 2016). 

Column stores use distributed environments to store data 

storage, support horizontal scalability, and are designed to run 

on many devices. However, the queries are limited to keys and 

usually do not execute the query by column or value. 

Nevertheless, limiting queries to just keys ensures faster 

locating the device containing actual data. Since it includes 

limited transaction support, there are no joint operations in the 

column store as in other unstructured databases. Column stores 

are ideal for storing huge 3D point cloud data when high 

availability is required. Like document store, there are many 

columns store that supports geospatial data management and 

simple analysis. 3D point cloud data handling requires heavy 

data insertion and quick data retrieval efficiently uses column 

stores with simple queries.  

4.2.4 Graph Store 

The graph store is suitable for applications based on data with 

many relationships because expensive operations like joins are 

substituted by efficient navigation such as graph and graph 

pattern matching technique. In the graph store, the query 

processing begins from one node and then travels to the other 

nodes per the query description. They define pattern locate 

graph pattern matching technique in the original graph. 

Makris, Tserpes et al. (2016) give the instance for Neo4j, 

where each vertex and edge in the graph store a "mini-index" 

of the connected objects. This implies that the graph size does 

not affect the performance upon a traversal and the local hop 

cost remains the same. The global adjacency index is only used 

when trying to locate a traversal's beginning point. Indexes 

must promptly retrieve vertices based on their values and 

provide a traversal beginning point. 

4.3 Scaling 

Unstructured databases are designed for horizontal scaling. 

The data is distributed, which increases database capacity by 

adding nodes to the database. Sharding is often used to achieve 

horizontal scaling, which involves splitting the data records 

into several independent partitions or shards using a given 

condition. Unstructured databases do not support the join 

function; thus, the developer can decide whether to perform 

joins at the application level, which may involve gathering 

data from several physical nodes based on some conditions 

and then joining or combining the collected denormalise data. 

This requires more development effort, but frameworks such 

as MapReduce can considerably lessen the task by providing 

a programming model for distributed and parallel processing 

(R 2020). There are four methods of scaling: partition, 

replication, consistency, and concurrency.  

4.3.1 Partitioning 

In the context of big geospatial data, the volume of information 

used to store 3D point cloud data is challenging. For a single-

node system, increasing the storage capacity of any 

computational node means adding more RAM or disk space 

under the constraints of the underlying hardware. Once a node 

reaches its storage limit, there is no alternative but to distribute 

the data among different nodes. The data partition is a common 

method to store and process massive 3D point clouds, and the 

partitions are stored across various server nodes. The 

unstructured database implements high availability and 

scalability solutions leveraged in cloud environments. 

Partitioning means that every instance will only hold a subset 

of keys. Two main partition ways are range, hash partitioning, 

and consistent hashing. Previous study by Azri et. al. (2014) 

and Azri et. Al. (2016) successfully shows 3D points are 

portioned using segmentation and clustering approaches. The 

study described how 3D points can be group into several 

partions for efficient data retrieval. 

MongoDB, a document store database, supports horizontal 

scalability, and the queries are distributed by exploiting the 

sharding. MongoDB partition supports geospatial attributes as 

sharding attributes. It is accomplished through sharding, either 

manual or automatic. In manual sharding 3D point, cloud data 

are set up to two MongoDB main servers. Half of the 3D point 

cloud data is stored on one and the remainder of point cloud 

data on the other. The application component takes care of all 

the 3D point cloud data splitting and recombination in auto-

sharding. For efficient point cloud retrieval and queries, the 

application will ensure that the data is inserted into the right 

server. The 3D point cloud data collection will be stored in 

chunks, and each chunk will be stored on a different server. 

Each server executes the query on its data chunk when 

executing a query, thus parallelising the execution. The data 

partition is based on the value of the selected geospatial 

sharding attribute. Hence, the choice of the geospatial sharding 

attribute is crucial for the server to attain a balanced data 

distribution. The geospatial sharding attribute is selected based 

on the predicates of the expected queries that are frequently 

used (Baralis, Dalla Valle et al. 2017).  

In Dynamo the key-value database, the partition depends on 

consistent hashing. The output of consistent hashing is called 

a "ring", and each node is given a random value in the ring. A 

key identifies each 3D point cloud data given to a node by 

hashing the point cloud key to generate its position on the ring, 

then moving the ring clockwise to find the first node with a 

position larger than the point cloud data item's position. Hence, 

it becomes each node's responsibility for the region in the ring, 

between the ring and the predecessor node of the ring. To 

ensure data consistency and avoid redundancy, each node is 

mapped to multiple points in the ring instead of a single point, 

called virtual nodes. Every virtual node seems like a single 

node in the network, but each node will oversee more than one 

virtual node. In Cassandra, a column store database, the data 

partition across the instances is achieved through consistent 

hashing using an order-preserving hash function. The 

consistent algorithm that is used is the same as in the case of 

Dynamo without virtual nodes. For the graph store database, 
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Neo4j, the data partition is direct reads to instances where the 

database will already have those 3D point clouds in memory. 

This approach is significantly beneficial when the active 3D 

point cloud data is larger than its capability to fit into memory 

in any instance.  

4.3.2 Replication 

Replication is an important operation related to an 

unstructured database's dependability and data consistency. It 

is the process that stores the same data on several servers, thus 

distributing the read and write operations. MongoDB uses 

main-sub replication, which indicates that only one database is 

active for inserting at any given time. By passing the data into 

the main database and to a replica, the sub-database of the 

main database, there is no need to worry if the main database 

fails as the sub-database can substitute it. In Dynamo, data 

replication is used to provide availability and durability. Each 

3D point cloud data is replicated for N-times where N can be 

configured "per instance". The node will oversee the data with 

key-value k and store the updated replicas in N-1 nodes. For 

each k, there will be a reference list containing nodes where 

the data item with k must be stored. Each data for Cassandra 

is duplicated over N hosts, where N is the defined "per-

instance" replication factor". Each k is assigned to a 

coordinator node. The coordinator oversees the replication of 

the data items within its range. The replication in Neo4j 

follows a main – sub architecture, where all insert is 

committed from a single main instance. Thus, the sub will 

receive it before persevered to other cluster instances.  

4.3.3 Consistency 

Consistency ensures that a transaction brings into the database 

from one valid state to another. The key consistency models 

are strong and eventual consistency. Strong consistency 

ensures that the updated 3D point cloud data are visible to all 

following read requests when write requests are verified. 

However, although synchronous ensures strong consistency, it 

also creates latency. Asynchronous replication led to 

subsequent consistency as there is a lag between write 

verification and transmission. In the eventual consistency 

model, alterations eventually reproduce through the 

application for sufficient time. Hence, some server nodes may 

contain inconsistent data for a period.  

MongoDB supports immediate consistency, which means the 

application limitations of updates to a single main node for a 

given data part. All the updates are made in place. Thus, 

MongoDB allows chances in 3D point cloud data update 

wherever it happens. Hence, all the changes in the 3D point 

cloud are displayed simultaneously in all database servers. In 

Dynamo, consistency is assisted by object versioning. A 

quorum-like technique and a decentralised replica 

synchronisation protocol support the consistency among 

replicas during updates. In Cassandra instances a read and 

write request for a key is transmitted to any node. For writing, 

the system routes the requests to the replicas and waits for a 

quorum of replicas to acknowledge the end of the writing. 

While for reading, the system either transmits the requests to 

the closest replica or all replicas and then waits for a quorum 

of responses based on the consistency securities required by 

the client. Hence, it takes longer for the 3D point cloud to 

display. Neo4j supports eventual consistency, where all 

updates eventually transmit from the main database to another 

sub-database, so an insert from one sub-database may not be 

immediately visible on another sub-database. Hence, changes 

on the 3D point cloud in one server will slowly affect the other 

server. 

4.3.4 Concurrency 

All the database environments are no omission to hardware 

failures, including unstructured databases. Nevertheless, the 

unstructured database's distributed architecture ensures no 

single point of failure and the built-in redundancy for both data 

and function. If more than one database server or node 

collapses, the other nodes in the system can resume the tasks 

without data loss, thus demonstrating true fault tolerance. In 

this way, the unstructured database can provide consistent 

uninterrupted 3D point cloud data for the user, whether in a 

single location, throughout the data centres, or in the cloud.  

5. DISCUSSION

Table 1: Overview of Unstructured Database

Unstructur

ed 

Database 

Example Data model Geospatial Query 

Scaling 

Portioning Replication Consistency 

Document-

store 
MongoDB 

Document like 

structure with flexible 

schema and no 

predefined model 

Supports query for Point, 

LineString, Polygon, 

MultiPolygon,MultiLineStri

ng, and 

GeometryCollection. 

Range 

portioning 

based on a 

shard key 

Main-sub, 

asynchronous 

replication 

Immediate 

Key-value Dynamo 

Simple model based on 

key-value pairs which 

look like an associative 

map 

Supports query for Point 
Consistent 

hashing 

Synchronous/ 

asynchronous 
Eventual 
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Column-

store 
Cassandra 

Table format with a 

key-value pair stored 

in a row 

Supports query for Point, 

LineString. And Polygon 

Consistent 

hashing and 

range 

partitioning 

Masterless, 

asynchronous 

replication 

Based on 

read and 

write requests 

Graph-

store 
Neo4j 

The vertices, nodes, 

and edges interconnect 

the vertices 

Neo4j spatial library support 

Point, LineString, Polygon, 

MultiPoint, MultiLineString, 

MultiPolygon and Geometry 

Collection 

Cache-

based 
Master-slave Eventual 

The advantages of using unstructured databases in 3D smart 

cities can be clarified using the geospatial big data challenges 

of volume, variety, and velocity. The massive 3D point cloud 

data is collected from high mobile devices, spatial-temporal 

resolution satellites, and airborne photos. GPS locations 

(Global Positioning System) devices are used to visualise 3D 

smart city. A highly scalable storage solution is needed for the 

massive volume 3D smart city model, which is easy for 

unstructured databases as it allows horizontal scaling across 

the distributed database. An unstructured database supports 

various geospatial data formats from multiple sources, making 

it a flexible database. It can store complex data types that 

contain spatial elements such as geotagged photos or videos 

and timelines associated with places from social media. This 

information falls into unstructured or semi-structured data and 

can be stored in an unstructured database. 3D point cloud 

processing and analysis require a short timeframe, described 

as a velocity demand. 3D point cloud needs fast processing and 

querying for predictive algorithms to be utilised in real-time 

streaming data. In addition, to develop a 3D model, the 

hardware and software selection is important (Ariff, Azri et al. 

2020) thus, selecting the right database and the software for 

the database is important. The unstructured database is a 

splendid solution to the geospatial big data challenges. 

6. CONCLUSION

In 3D point cloud handling, each database has certain crucial 

characteristics designed to achieve high-performance data 

retrieval, availability, and scalability. However, each 

unstructured database has a variety in terms of the data model, 

database interfaces, and features. In this paper, we reviewed 

the four categories of the unstructured database: document 

store, key-value, column store, and graph store, and the 

difference between them in terms of 3D point cloud handling, 

data model, querying, and scaling. Based on the systematic 

comparison, we conclude that a document store is the most 

suitable storage environment for a 3D point cloud from four 

major categories of the unstructured database. This paper's 

contribution assists the developer in understanding the 

differences between all categories of an unstructured database. 
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