
Organizing Smart City Data based on 3D Point Cloud in

Unstructured Database – An Overview

Shakirah Amirah Mohd Ariff 1, Suhaibah Azri1, Uznir Ujang1, Tan Liat Choon2

1 3D GIS Research Group, Geoinformation, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia,

81310 Johor Bahru, Johor, Malaysia
2 Land Administration and Development Studies (LANDS), Faculty of Built Environment and Surveying, Universiti

Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

KEYWORDS: 3D Point Cloud, Big Data, Database Management, Data Model, Unstructured Database

ABSTRACT:

The concept of the 3D smart city is an integration of smart cities and information technology. One of the data sources of a smart

city is point cloud data that are produced from various data acquisition tools such as LiDAR, Terrestrial Laser Scanning, and

Unmanned Aerial Vehicle. Due to the large size of point cloud data input, traditional databases could not handle the data

efficiently. Alternatively, unstructured databases have become an option. Furthermore, data for smart city applications are

considered being complex and large. Storing data in the unstructured database can easily be retrieved from various front ends

such as web and mobile devices. However, unstructured databases do not have fixed schema and data types that often limit the

uses of 3D point cloud data in relational databases. There are four categories of the data model in the unstructured database:

document store, key-value, column store, and graph store. Each of the categories has different characteristics and approaches to

handling data. Thus, this paper aims to summarise an overview of each category and determine the most suitable data

organisation and environment for a 3D point cloud of a smart city. The overview will aid the developer or user select and

comparing available data models in the unstructured database to handle 3D point clouds.

1. INTRODUCTION

Vehicle-borne laser-scanned point clouds and passive imaging

technologies have become the main provider of 3D data

sources in mapping fields and their applications. The smart

city is one of the applications that use point clouds as its data

input to model buildings. With the combination of smart city

modelling and Geographical Information systems (GIS),

various applications can be benefited directly such as tourism

(Mohd et. al. 2016), virtual smart campus (Salleh et. al. 2021),

and construction management (Wan et. al. 2018). However,

before the stable applications are launched, the data need to be

managed efficiently in the database. Current practice used

traditional databases in managing spatial data. Recently, the

bottleneck of relational databases has been discussed. Aiming

at reducing the technical bottlenecks of 3D point cloud data

management, this research proposes to organize the data using

the unstructured database.

The unstructured database is an alternative to a relational

database, and each of it is designed for a specific purpose, has

different characteristics, and follows different approves. There

are four main unstructured data categories: document store,

key values, column store, and graph store. Unstructured

databases support a wide range of fundamentally various data

models, centering on attaining levels of horizontal and elastic

scalability, and offer schema flexibility that cannot easily be

accomplished in relational databases. The database

functionality is closely tied to the data model used and ranges

from the simple insert and read operations on key-value pairs

to graph traversal or even analytical queries on large data sets

(Reniers, Van Landuyt et al. 2019). These unstructured

databases emerged at the implementation level and lacked

well-defined design processes. However, unstructured

databases can accept a variety of data models, (de la Vega,

García-Saiz et al. 2020) state that relational database design

and methodologies, which are typically based on conceptual

modelling notations such as ER (Entity-Relationship) or UML

(Unified Modelling Language) are quickly revealed to be

insufficient. Taking advantage of the benefits provided by data

nesting and denormalization, developers need to consider not

only which data will be stored in the database but also how

these data will be accessed (Mior, Salem et al. 2016). Working

with the same data set but with different data access patterns

in the unstructured database might lead to other

implementations. This is because, in many NoSQL systems,

design decisions are driven by how data will be accessed.

3D point cloud data is suitable for storing in the unstructured

database as it satisfies the data integrity and consistency. This

study examines different categories of unstructured databases

for the 3D point cloud datasets. Unstructured database stores

unstructured data, so it is not required to define in advance

what data types and categories will be used. From the 3D point

cloud view, the unstructured database approach provides

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W3-2022
The 7th International Conference on Smart City Applications, 19–21 October 2022, Castelo Branco, Portugal

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-87-2022 | © Author(s) 2022. CC BY 4.0 License. 87

flexibility in data types and allows easier implementation of

the 3D models. Unstructured databases have schema-less

features and a simple interface that enables developers to

develop databases quickly. It is worth mentioning that this

paper's objective is to analyze the four categories of the

unstructured database, identify unstructured databases capable

of handling 3D point cloud and provide perspectives in the

field of 3D point cloud handling. This paper offers an

alternative way for the developers to store 3D point cloud as

there need to utilize an efficient and scalable geospatial

database which strongly influences the overall performance of

the applications. In addition, this paper's contribution is to

guide developers in choosing the appropriate database.

The rest of the paper is organized as follows. Section 2

explores related reviews and benchmarking tools used to

compare unstructured databases. Section 3 describes some

preliminary concepts of 4 types of unstructured databases:

document store, key-value, column store, and graph store

database, starting with the description and analysis of the

different implementations of databases available on the

market. Section 4 analysed using a 3D point cloud in the

unstructured database. Section 5 analysed an unstructured

database based on three main concepts: data model, querying,

and scaling. Finally, section 6 discusses the application of

unstructured databases and conclusions on the findings.

2. RELATED WORKS

Previous study shows several attempts on managing large size

of 3D data using relational database or unstructured database.

For example, (Azri et al. 2020) proposed a 3D data structure

for fast retrieval nearest neighbour search in 3D urban

environment. However, current relational database is proved

to be ineffective while dealing with large volume of data such

as point cloud. Many works list the comparison between

relational and unstructured databases, revealing their virtues

and weakness. However, there are very few works describe

how to organize 3D point clouds in unstructured databases.

Research by (Grolinger, Higashino et al. 2013) titled Data

Management in Cloud Environments: NoSQL and NewSQL

Data Stores, focused on the storage aspect of cloud computing

systems, particular in NoSQL and NewSQL data stores. The

results are alternatives to traditional relational databases that

can handle huge volumes of data by utilising the cloud

environment. In addition, the research reviewed NoSQL and

NewSQL data stores to provide a perspective and guidance to

practitioners and researchers in choosing appropriate storage

solutions and identifying challenges and opportunities in the

NoSQL field. Thus, from this work, challenges in the domain,

including terminology diversity and inconsistency, limited

documentation, sparse comparison and benchmarking criteria,

occasional immaturity of solutions and lack of support, and

non-existence of a standard query language, can be identified

study for future research. This research has helped give

general knowledge and introduction to unstructured databases

and their challenges.

Furthermore, research conducted (Višnjevac, Mihajlović et al.

2019) on an approach of using an unstructured database and

JavaScript application for 3D visualisation stated that an

unstructured database can be used for storing 3D cadastral data

defined by a data model based on LADM. BASE principles

protect the stored 3D cadastral data and developed JavaScript

applications can easily meet basic 3D cadastral requirements

for 3D visualisation, such as viewing and selecting each 3D

object. However, no topology validation is done on the model,

reducing the data integrity. Furthermore, more intuitive

visualisation approaches are required to enable simpler system

use for professionals and non-professionals. The prototype is

a good starting point for developing a modern cadastral system

that enables 3D registration of real properties, facilitates

unequivocal registration of complex 3D property situations,

and provides an intuitive user interface and 3D spatial data

visualisation methods.

Then (Liu and Boehm 2015) presented a file-centric storage

and retrieval system for large collections of LiDAR point

cloud tiles based on scalable NoSQL technology 2015. The

system can store large collections of point clouds and use a

document-based unstructured database to retain a file-centric

workflow, making many existing tools accessible. The

suggested system supports spatial queries on the tile geometry.

Compared to file system operation, it has several overheads on

inserting and retrieving the files locally, but the remote

transfer is at par with popular cloud storage. It uses a

MongoDB application that supports Map-Reduce internally

for database queries and provides a special adapter to access

MongoDB from Hadoop. However, this research only focuses

on data storage and retrieval. The mentioned method can be

used as a reference for managing 3D spatial objects in an

unstructured database.

Lastly, (Reniers, Van Landuyt et al. 2019) research identifies

341 frameworks relevant to object-relational impedance

mismatch and evaluate 11 Object-NoSQL data mappers

(ONDMs) in detail. The research investigated the ONDMs in

terms of their mapping strategies for collections, relationships

and inheritance and compared available mapping strategies

systematically. The study concludes that the collections and

object-owned data are typically embedded by default, and

support for alternate strategies is lacking. Relationships can be

embedded within the referring object as a set of referred keys

or identifiers and embedding of relationship data is scarcely

supported. The results show that object-document mapping

strategies are more sophisticated and advanced than column

and graph stores. The presented survey is an important

steppingstone in our ongoing research on NoSQL abstractions,

appropriate mapping strategies and schema design, and

optimised configuration and deployment of highly distributed

databases. Thus, the framework of this study can be used to

examine fundamental mapping issues between objects and

unstructured databases. This research helps manage objects in

the database.

3. 3D POINT CLOUD MANAGEMENT IN AN

UNSTRUCTURED DATABASE

The 3D point cloud is a set of data points in space that

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W3-2022
The 7th International Conference on Smart City Applications, 19–21 October 2022, Castelo Branco, Portugal

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-87-2022 | © Author(s) 2022. CC BY 4.0 License. 88

represent 3D space or an object. It contains rich geographic

information such as three-dimensional coordinates, RGB

information, colour and reflection strength (Xu and Guo

2016). MongoDB and HBase are the most popular

unstructured database applications for 3D point cloud

handling. This can be seen in a study by (Azri, Ujang et al.

2021), MongoDB uses outpaces relational databases during

the data retrieval and updating of the 3D point cloud.

Furthermore, the study also visualises the point cloud from the

database into PotreeViewer. (Višnjevac, Mihajlović et al.

2019) created a prototype of the 3D cadastral system based on

the unstructured database and JavaScript application for

storing and visualisation. (Zhang, Wang et al. 2019) use

HBase to distribute architecture for massive remote sensing

data based on the metadata file, pyramid model, and Hilbert

curve. It is proved efficient compared to the traditional

database. (Xu and Guo 2016) established a sharding cluster for

MongoDB under a distributed environment while distributing

storage, spatial query, and MapReduce for point cloud data

through scope sharding, and Hash-based sharding successfully

reflects huge advantages of MongoDB in storage and

processing for geospatial data. Then, (Luan, Yachun et al.

2014) proposed a 3D model management strategy based on

Hadoop to deal with the big data problem of 3D model

management. (Park, Yun et al. 2011) used MapReduce and

utilised the unstructured database to increase the analysis

velocity. It is suitable for geospatial big data applications such

as 3D point cloud overview and visualisation.

Unstructured database systems are now an efficient way to

manage massive data volumes distributed across numerous

servers (Atzeni, Bugiotti et al. 2020). It is appropriate for big

data applications like the generalisation and visualisation of

3D city models (Mao, Harrie et al. 2014). There are commonly

4 types of model stores in unstructured databases (Li 2018).

The data store is divided into document-store, key-value store,

column-store, and graph-store categories based on their data

models (Cattell 2011).

The Document store unstructured database stores the data in a

collection of key-value pairs that are compressed as a

document and required its values stored, providing structure,

and encoding the metadata. All document keys must be

unique, and every document contains a unique key of "ID" that

unique in the collection of documents and identifies a

document unambiguously. Document stores also did not

restrict the schema and can support multi-attribute search

records containing various key-value pairs (Makris, Tserpes et

al. 2016). The document store is more efficient in managing

geospatial data than key-value because the geospatial data

inside the document store can be retrieved using flexible

queries. In multiple cases, they can be used in storing and

handling geospatial data, thus allowing some queries such as

proximity to be implemented. (Amirian, Basiri et al. 2014). As

document store does not support relationships and join the way

relational databases are, the document store database nature

has a major effect on the data retrieval. For instance, when the

database stores millions of 3D point cloud data inside a

collection, the queries will be very fast as it is stored in a

document containing the same schema.

Key-Values Stores stored every data item as a key-value pair

in schema-less format. A key is a string type unique ID that

points to the data with which it is associated that stored values

in any data type or without any predefined schema of BLOB

(Binary Large Object). The values are stored as uninterrupted

byte arrays, thus only allowing the key as the only route for

data retrieval. The key-value pair is grouped into a collection

to structure the data model. Thus, allowing it to support simple

query operations that are applied on the attribute key only. The

key-value stores all the data in-memory key-value stores

(IMKVS), making them great databases for massive 3D point

cloud data as the data is stored in the cache and contains high

throughput system requirements. The application is

responsible for understanding the object type and parsing it

accordingly.

Column Stores maintain data as a set of columns and data

distribution based on columns instead of rows, an arrangement

usually enhanced for queries throughout large datasets. The

column has the smallest data unit, containing a key, value, and

timestamp. Besides the column name, the database stores all

values, and the null values are stored by ignoring the column.

Columns that are related to each other create a column family.

All the data in a single column family is stored in a physical

set of files and sorted in chronological order. This makes it

easier to support versioning and achieve performance. Thus,

providing higher performance on data retrieval and query

operation. Querying over rows is memory intensive and

requires huge disk access, particularly when each row

comprises many columns. In a column store, columns are

grouped into column families, and each column family can

have an unlimited number of columns, and in Cassandra a

super column is a column containing other columns but cannot

include other super columns. The column family aids in

supporting organisation and partitioning. This way, it is easier

to query the entire collection of columns for all the rows.

Graph-store stores network data consisting of nodes (entities),

edges (relationships) and properties. Various nodes might

contain multiple properties. Graph stores are suitable for

network data models such as social networks, road networks,

and IT networks, where entities are highly connected through

relationships. The graph store highlights that each node

contains a direct indication of its adjoining node. Thus, index

lookups are not required for navigating data connected.

Consequently, the massive amount of well-connected data can

be handled, as the expensive joint operation is unnecessary.

Graph stores support transactions in the way that relational

databases support them. The graph store allows the update in

the database in an isolated location, hiding them from other

processes until the transaction is executed.

Relationships are the priority in graph store database. Each

entity contains a list of relationship records linked to other

nodes. When performing a query to find those relationships,

the database will use this list to find connecting nodes,

reducing the time from searching and matching. Available

graph databases include Neo4J, InfiniteGraph, and OrientDB.

(Amirian, Basiri et al. 2014) state that geospatial data can be

modelled as graphs. Graph stores support native topology, thus

allowing the management of the relationship and connectivity

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W3-2022
The 7th International Conference on Smart City Applications, 19–21 October 2022, Castelo Branco, Portugal

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-87-2022 | © Author(s) 2022. CC BY 4.0 License. 89

between geospatial data. The topological relationship has a

major role in the geospatial data workflow. The graph store

allows each edge to contain various properties, thus providing

flexibility to navigate the network based on various properties

such as, time, distance, number of points of interest based on

user preferences in acquiring the best path and the unique path

for every user.

4. UNSTRUCTURED DATABASE ANALYSIS

Unstructured databases represent an alternative to relational

databases. Generally, they aim to tackle the drawbacks of

relational databases in terms of schema rigidity, the limitations

to horizontal and elastic scalability, and the support of specific

data models. We analysed the storage environment for the 3D

point cloud based on the three concepts above. Then, the

unstructured database application is examined and compared

to determine the capability for storing 3D point cloud data and

which one has the best performance for database operations.

4.1 Data Model

The data model is a visual representation of the data and its

connectivity. The data model for the unstructured database is

different for every unstructured database category. Below, we

explain the data model for four categories of the unstructured

database.

4.1.1 Document Store

Document store data model using keys to locate documents

inside the database. Most document stores represent

documents using JSON (JavaScript Object Notation) or BSON

(Binary JSON), which format is derived from it. The 3D point

cloud contains massive data, which requires it to be stored in

BSON format that encodes type and length information,

allowing data to be analysed quicker. BSON support complex

mathematics which is perfect for point cloud data from various

sources that normally have different sized integers such as

"ints" and "longs" or various decimal precision level such as

"float" and "double" and "decimal". It is beneficial as it allows

comparisons and calculations to happen in the data directly to

distinct guise data stored that shorten consuming code.

In addition, the document stores are suitable for applications

where the input data can be represented in a document format,

such as a 3D point cloud. It can contain complex data

structures such as nested objects and does not need adherence

to a fixed schema. MongoDB is one of the popular applications

for document storage in unstructured databases. It provides the

extra functionality of grouping the documents into collections,

in this case, a 3D point cloud. Inside each collection, the 3D

point cloud document has a unique key unique to each

coordinate point.

Figure 1 shows the data model for the document store

database. Document store database store 3D point cloud in

documents orientation, thus allowing each document to have a

different structure. Each entity, specifically the 3D point cloud

data, will be stored in one document, and documents are stored

together in a collection. Each data in a document will have a

unique identifier; Documet_Id-1, Documet_Id-2,

Documet_Id-3, and Documet_Id-4. This is used to access

documents in the collection. Document: Document-1,

Document-2, Document-3, and Document-4 contain all the

necessary information to describe the entity.

4.1.2 Key-Value

The data model for key-value stores is a simple model based

on key-value pairs (Ramzan, Bajwa et al. 2019), which look

like an associative map or a dictionary. The data model used

the key with unique identifiers value to call the data in the

database. The database value is obscure and is used to store

data, such as an integer, a string, an array, or an object, thus

delivering a schema-less data model. Besides being schema-

free, key-value stores are very efficient in storing distributed

data but are unsuitable for scenarios requiring relations or

structures. All the functions needed relations or structures to

be implemented in the application. Furthermore, the database

cannot manage data-level querying and indexing because the

values are obscure.

Figure 2 shows the data model for the key-value database. The

value of each key can be anything from PDFs and JPEGs to

JSON or XML documents, while the key itself specifies the

element's URL. In this approach, the nodes in a cluster of

machines can be used by the application designers to manage

a lot of requests and online content.

4.1.3 Column Store

Figure 1. Document Store Database (Grolinger et al., 2013)

Figure 2. Key-value Database (Corbellini, Mateos et al.

2017)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W3-2022
The 7th International Conference on Smart City Applications, 19–21 October 2022, Castelo Branco, Portugal

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-87-2022 | © Author(s) 2022. CC BY 4.0 License. 90

The data model for column stores is suitable for 3D point cloud

data that deals with massive amounts of data stored on huge

instances because the data model can be partitioned adeptly.

The data model for the column store database is shown in

Figure 3. The dataset consists of several rows referred to by a

unique "Row-Key". Row-Key is known as a primary key.

Each row is made of a set of "Column-Family", and each row

can have a different "Column-Family". The 3D point cloud

data is stored in "Column Name".

Makris, Tserpes et al. (2016) state that column stores can be

visualised similarly to relational databases due to the table

format. The major difference is handling the null value; a

relational database stores a null value in each column while

column stores only store a key-value pair in a row when the

database needs it. In column stores, the column configuration

is performed during the start. However, columns' prior

definition is not required, which presents huge flexibility in

inserting any 3D point cloud data type. Column stores offer

more effective indexing and querying than key-value stores as

they are based on column and row keys.

4.1.4 Graph Store

The data model in the graph store uses graphs as it originated

from graph theory. Figure 4 shows the data model for the

graph store database. The relationship in graph store is

important as it relates two pieces of information. The data or

the information are stored in "Key-Value Node", and the

connections between Key-Value Node are called "Key-

Value". The Key-Value is formed between each Key-Value

Node, as shown in Figure 4.

The vertices, nodes, and edges that interconnect the vertices

used the graph as a mathematical theory to represent a set of

objects. Graph stores have a completely different data model

than document, key-value, and column stores. Thus, it can

efficiently store the links between other data nodes. In the

graph store, the nodes and edges contain individual properties

containing key-value pairs. It specialises in managing highly

interconnected data and efficiently navigating relationships

among different entities. This is unsuitable for 3D point cloud

data as it does not focus on the relationship between the other

entities. They are more appropriate for social networking

applications, dependency analysis, and recommendation

systems. Furthermore, the graph store is not as efficient as

other unstructured databases in situations other than managing

graphs and their relationships. Additionally, it is not efficient

at horizontal scaling, reducing the performance as related

nodes are stored on different servers, thus requiring navigating

multiple servers.

4.2 Querying

Database querying capabilities are important when selecting a

database based on a particular situation. Different databases

offer different APIs and interfaces interaction. This is directly

dependent on the data model that a specific database has. The

important feature of an unstructured database query is

MapReduce; it can perform distributed data processing on a

cluster of computers. Thus, allowing unstructured databases to

achieve one of the objectives: to scale over many computers.

In addition, the REST-based API is a popular application

because of it (Grolinger, Higashino et al. 2013). In the

unstructured database, a REST-based interface offered a

solution directly or indirectly through third-party APIs. We

will explain the query methods for unstructured databases

below.

4.2.1 Document Store

Document stores embed attribute metadata linked with values

that the querying support range queries, indexing, and nested

documents. Also, it allows the use of operations like OR,

AND, BETWEEN, and queries that can be executed as

MapReduce. For example, MongoDB supports creating,

inserting, reading, updating, and removing operators. In

addition to supporting manual indexing, indexing on

embedded documents and indexing location-based data

(Makris, Tserpes et al. 2016). The queries are flexible, as there

is no need to stick to a predefined schema to store data.

MongoDB supports standard GeoJSON data types for 3D

point cloud data, including Point, Polygon, MultiPolygon, and

GeometryCollection. It can implement a subset of basic spatial

operations using 3D point cloud data for inclusion,

intersection, and proximity.

4.2.2 Key-Value

The query operations for the database are linked with a key. It

is accessible through APIs, including functions like GET, PUT

and DELETE. However, the interfaces only facilitate simple

queries to be executed as complex queries are not supported,

rendering the query language unnecessary (Makris, Tserpes et

al. 2016). Thus, reducing the chances of 3D point cloud

handling as it does not support complex spatial queries such as

intersection and proximity. The key value can be used to store

3D point cloud data, but the complexity of geospatial data

obstructs spatial searches, particularly for polylines and

Figure 3. Column Store Database (Grolinger et al., 2013)

Figure 4. Graph Store Database (Grolinger et al., 2013)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W3-2022
The 7th International Conference on Smart City Applications, 19–21 October 2022, Castelo Branco, Portugal

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-87-2022 | © Author(s) 2022. CC BY 4.0 License. 91

polygons. Consequently, spatial indexed is required for fast

data retrieval, affecting performance.

4.2.3 Column Store

Column stores query using a regular expression on the indexed

values or the row keys. The impact on the databases is the

operations are only affecting the query related rather than the

entire row from the storage (Makris, Tserpes et al. 2016).

Column stores use distributed environments to store data

storage, support horizontal scalability, and are designed to run

on many devices. However, the queries are limited to keys and

usually do not execute the query by column or value.

Nevertheless, limiting queries to just keys ensures faster

locating the device containing actual data. Since it includes

limited transaction support, there are no joint operations in the

column store as in other unstructured databases. Column stores

are ideal for storing huge 3D point cloud data when high

availability is required. Like document store, there are many

columns store that supports geospatial data management and

simple analysis. 3D point cloud data handling requires heavy

data insertion and quick data retrieval efficiently uses column

stores with simple queries.

4.2.4 Graph Store

The graph store is suitable for applications based on data with

many relationships because expensive operations like joins are

substituted by efficient navigation such as graph and graph

pattern matching technique. In the graph store, the query

processing begins from one node and then travels to the other

nodes per the query description. They define pattern locate

graph pattern matching technique in the original graph.

Makris, Tserpes et al. (2016) give the instance for Neo4j,

where each vertex and edge in the graph store a "mini-index"

of the connected objects. This implies that the graph size does

not affect the performance upon a traversal and the local hop

cost remains the same. The global adjacency index is only used

when trying to locate a traversal's beginning point. Indexes

must promptly retrieve vertices based on their values and

provide a traversal beginning point.

4.3 Scaling

Unstructured databases are designed for horizontal scaling.

The data is distributed, which increases database capacity by

adding nodes to the database. Sharding is often used to achieve

horizontal scaling, which involves splitting the data records

into several independent partitions or shards using a given

condition. Unstructured databases do not support the join

function; thus, the developer can decide whether to perform

joins at the application level, which may involve gathering

data from several physical nodes based on some conditions

and then joining or combining the collected denormalise data.

This requires more development effort, but frameworks such

as MapReduce can considerably lessen the task by providing

a programming model for distributed and parallel processing

(R 2020). There are four methods of scaling: partition,

replication, consistency, and concurrency.

4.3.1 Partitioning

In the context of big geospatial data, the volume of information

used to store 3D point cloud data is challenging. For a single-

node system, increasing the storage capacity of any

computational node means adding more RAM or disk space

under the constraints of the underlying hardware. Once a node

reaches its storage limit, there is no alternative but to distribute

the data among different nodes. The data partition is a common

method to store and process massive 3D point clouds, and the

partitions are stored across various server nodes. The

unstructured database implements high availability and

scalability solutions leveraged in cloud environments.

Partitioning means that every instance will only hold a subset

of keys. Two main partition ways are range, hash partitioning,

and consistent hashing. Previous study by Azri et. al. (2014)

and Azri et. Al. (2016) successfully shows 3D points are

portioned using segmentation and clustering approaches. The

study described how 3D points can be group into several

partions for efficient data retrieval.

MongoDB, a document store database, supports horizontal

scalability, and the queries are distributed by exploiting the

sharding. MongoDB partition supports geospatial attributes as

sharding attributes. It is accomplished through sharding, either

manual or automatic. In manual sharding 3D point, cloud data

are set up to two MongoDB main servers. Half of the 3D point

cloud data is stored on one and the remainder of point cloud

data on the other. The application component takes care of all

the 3D point cloud data splitting and recombination in auto-

sharding. For efficient point cloud retrieval and queries, the

application will ensure that the data is inserted into the right

server. The 3D point cloud data collection will be stored in

chunks, and each chunk will be stored on a different server.

Each server executes the query on its data chunk when

executing a query, thus parallelising the execution. The data

partition is based on the value of the selected geospatial

sharding attribute. Hence, the choice of the geospatial sharding

attribute is crucial for the server to attain a balanced data

distribution. The geospatial sharding attribute is selected based

on the predicates of the expected queries that are frequently

used (Baralis, Dalla Valle et al. 2017).

In Dynamo the key-value database, the partition depends on

consistent hashing. The output of consistent hashing is called

a "ring", and each node is given a random value in the ring. A

key identifies each 3D point cloud data given to a node by

hashing the point cloud key to generate its position on the ring,

then moving the ring clockwise to find the first node with a

position larger than the point cloud data item's position. Hence,

it becomes each node's responsibility for the region in the ring,

between the ring and the predecessor node of the ring. To

ensure data consistency and avoid redundancy, each node is

mapped to multiple points in the ring instead of a single point,

called virtual nodes. Every virtual node seems like a single

node in the network, but each node will oversee more than one

virtual node. In Cassandra, a column store database, the data

partition across the instances is achieved through consistent

hashing using an order-preserving hash function. The

consistent algorithm that is used is the same as in the case of

Dynamo without virtual nodes. For the graph store database,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W3-2022
The 7th International Conference on Smart City Applications, 19–21 October 2022, Castelo Branco, Portugal

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-87-2022 | © Author(s) 2022. CC BY 4.0 License. 92

Neo4j, the data partition is direct reads to instances where the

database will already have those 3D point clouds in memory.

This approach is significantly beneficial when the active 3D

point cloud data is larger than its capability to fit into memory

in any instance.

4.3.2 Replication

Replication is an important operation related to an

unstructured database's dependability and data consistency. It

is the process that stores the same data on several servers, thus

distributing the read and write operations. MongoDB uses

main-sub replication, which indicates that only one database is

active for inserting at any given time. By passing the data into

the main database and to a replica, the sub-database of the

main database, there is no need to worry if the main database

fails as the sub-database can substitute it. In Dynamo, data

replication is used to provide availability and durability. Each

3D point cloud data is replicated for N-times where N can be

configured "per instance". The node will oversee the data with

key-value k and store the updated replicas in N-1 nodes. For

each k, there will be a reference list containing nodes where

the data item with k must be stored. Each data for Cassandra

is duplicated over N hosts, where N is the defined "per-

instance" replication factor". Each k is assigned to a

coordinator node. The coordinator oversees the replication of

the data items within its range. The replication in Neo4j

follows a main – sub architecture, where all insert is

committed from a single main instance. Thus, the sub will

receive it before persevered to other cluster instances.

4.3.3 Consistency

Consistency ensures that a transaction brings into the database

from one valid state to another. The key consistency models

are strong and eventual consistency. Strong consistency

ensures that the updated 3D point cloud data are visible to all

following read requests when write requests are verified.

However, although synchronous ensures strong consistency, it

also creates latency. Asynchronous replication led to

subsequent consistency as there is a lag between write

verification and transmission. In the eventual consistency

model, alterations eventually reproduce through the

application for sufficient time. Hence, some server nodes may

contain inconsistent data for a period.

MongoDB supports immediate consistency, which means the

application limitations of updates to a single main node for a

given data part. All the updates are made in place. Thus,

MongoDB allows chances in 3D point cloud data update

wherever it happens. Hence, all the changes in the 3D point

cloud are displayed simultaneously in all database servers. In

Dynamo, consistency is assisted by object versioning. A

quorum-like technique and a decentralised replica

synchronisation protocol support the consistency among

replicas during updates. In Cassandra instances a read and

write request for a key is transmitted to any node. For writing,

the system routes the requests to the replicas and waits for a

quorum of replicas to acknowledge the end of the writing.

While for reading, the system either transmits the requests to

the closest replica or all replicas and then waits for a quorum

of responses based on the consistency securities required by

the client. Hence, it takes longer for the 3D point cloud to

display. Neo4j supports eventual consistency, where all

updates eventually transmit from the main database to another

sub-database, so an insert from one sub-database may not be

immediately visible on another sub-database. Hence, changes

on the 3D point cloud in one server will slowly affect the other

server.

4.3.4 Concurrency

All the database environments are no omission to hardware

failures, including unstructured databases. Nevertheless, the

unstructured database's distributed architecture ensures no

single point of failure and the built-in redundancy for both data

and function. If more than one database server or node

collapses, the other nodes in the system can resume the tasks

without data loss, thus demonstrating true fault tolerance. In

this way, the unstructured database can provide consistent

uninterrupted 3D point cloud data for the user, whether in a

single location, throughout the data centres, or in the cloud.

5. DISCUSSION

Table 1: Overview of Unstructured Database

Unstructur

ed

Database

Example Data model Geospatial Query

Scaling

Portioning Replication Consistency

Document-

store
MongoDB

Document like

structure with flexible

schema and no

predefined model

Supports query for Point,

LineString, Polygon,

MultiPolygon,MultiLineStri

ng, and

GeometryCollection.

Range

portioning

based on a

shard key

Main-sub,

asynchronous

replication

Immediate

Key-value Dynamo

Simple model based on

key-value pairs which

look like an associative

map

Supports query for Point
Consistent

hashing

Synchronous/

asynchronous
Eventual

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W3-2022
The 7th International Conference on Smart City Applications, 19–21 October 2022, Castelo Branco, Portugal

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-87-2022 | © Author(s) 2022. CC BY 4.0 License. 93

Column-

store
Cassandra

Table format with a

key-value pair stored

in a row

Supports query for Point,

LineString. And Polygon

Consistent

hashing and

range

partitioning

Masterless,

asynchronous

replication

Based on

read and

write requests

Graph-

store
Neo4j

The vertices, nodes,

and edges interconnect

the vertices

Neo4j spatial library support

Point, LineString, Polygon,

MultiPoint, MultiLineString,

MultiPolygon and Geometry

Collection

Cache-

based
Master-slave Eventual

The advantages of using unstructured databases in 3D smart

cities can be clarified using the geospatial big data challenges

of volume, variety, and velocity. The massive 3D point cloud

data is collected from high mobile devices, spatial-temporal

resolution satellites, and airborne photos. GPS locations

(Global Positioning System) devices are used to visualise 3D

smart city. A highly scalable storage solution is needed for the

massive volume 3D smart city model, which is easy for

unstructured databases as it allows horizontal scaling across

the distributed database. An unstructured database supports

various geospatial data formats from multiple sources, making

it a flexible database. It can store complex data types that

contain spatial elements such as geotagged photos or videos

and timelines associated with places from social media. This

information falls into unstructured or semi-structured data and

can be stored in an unstructured database. 3D point cloud

processing and analysis require a short timeframe, described

as a velocity demand. 3D point cloud needs fast processing and

querying for predictive algorithms to be utilised in real-time

streaming data. In addition, to develop a 3D model, the

hardware and software selection is important (Ariff, Azri et al.

2020) thus, selecting the right database and the software for

the database is important. The unstructured database is a

splendid solution to the geospatial big data challenges.

6. CONCLUSION

In 3D point cloud handling, each database has certain crucial

characteristics designed to achieve high-performance data

retrieval, availability, and scalability. However, each

unstructured database has a variety in terms of the data model,

database interfaces, and features. In this paper, we reviewed

the four categories of the unstructured database: document

store, key-value, column store, and graph store, and the

difference between them in terms of 3D point cloud handling,

data model, querying, and scaling. Based on the systematic

comparison, we conclude that a document store is the most

suitable storage environment for a 3D point cloud from four

major categories of the unstructured database. This paper's

contribution assists the developer in understanding the

differences between all categories of an unstructured database.

ACKNOWLEDGEMENT

This work was supported by Ministry of Education (MOE)

Malaysia, through Fundamental Research Grant Scheme

(FRGS/1/2022/WAB07/UTM/02/3).

REFERENCES

Amirian, P., et al. (2014). Evaluation of Data Management

Systems for Geospatial Big Data. Computational Science and Its

Applications – ICCSA 2014, Cham, Springer International

Publishing.

Ariff, S. A. M., et al. (2020). "Exploratory Study of 3d Point

Cloud Triangulation for Smart City Modelling and

Visualization." The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences XLIV-4/W3-2020: 71-79.

Atzeni, P., et al. (2020). "Data modeling in the NoSQL world."

Computer Standards & Interfaces 67.

Azri, S., Ujang, U., Abdul Rahman, A., 2020. Voronoi classified

and clustered data constellation: A new 3D data structure for

geomarketing strategies. ISPRS Journal of Photogrammetry and

Remote Sensing 162, 1-16

Azri, S., Ujang, U., Rahman, A.A., Anton, F., Mioc, D., 2016.

3D Geomarketing Segmentation: A Higher Spatial Dimension

Planning Perspective. Int. Arch. Photogramm. Remote Sens.

Spatial Inf. Sci. XLII-4/W1, 1-7.

Azri, S., Ujang, U., Anton, F., Mioc, D., Rahman, A.A., 2014.

Spatial Access Method for Urban Geospatial Database

Management: An Efficient Approach of 3D Vector Data

Clustering Technique, 9th International Conference on Digital

Information Management (ICDIM). IEEE, Bangkok, Thailand.

Azri, S., et al. (2021). "Document-Oriented Data Organization

for Unmanned Aerial Vehicle Outputs." Journal of Advances in

Information Technology 12(4).

Baralis, E., et al. (2017). SQL versus NoSQL databases for

geospatial applications. 2017 IEEE International Conference on

Big Data (Big Data): 3388-3397.

Cattell, R. G. G. (2011). "Scalable SQL and NoSQL data stores."

SIGMOD Rec. 39: 12-27.

Corbellini, A., et al. (2017). "Persisting big-data: The NoSQL

landscape." Information Systems 63: 1-23.

de la Vega, A., et al. (2020). "Mortadelo: Automatic generation

of NoSQL stores from platform-independent data models."

Future Generation Computer Systems 105: 455-474.

Grolinger, K., et al. (2013). "Data management in cloud

environments: NoSQL and NewSQL data stores." Journal of

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W3-2022
The 7th International Conference on Smart City Applications, 19–21 October 2022, Castelo Branco, Portugal

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-87-2022 | © Author(s) 2022. CC BY 4.0 License. 94

Cloud Computing: Advances, Systems and Applications 2(1):

22.

Li, Z. (2018). "NoSQL Databases." Geographic Information

Science & Technology Body of Knowledge 2018(Q2).

Liu, K. and J. Boehm (2015). "Classification of Big Point Cloud

Data Using Cloud Computing." The International Archives of

the Photogrammetry, Remote Sensing and Spatial Information

Sciences XL-3/W3: 553-557.

Luan, H., et al. (2014). Towards Effective 3D Model

Management on Hadoop: 131-139.

Mohd, Z.H., Ujang, U., 2016. Integrating Multiple Criteria

Evaluation and GIS In Ecotourism: A Review. Int. Arch.

Photogramm. Remote Sens. Spatial Inf. Sci. XLII-4/W1, 351-

354.

Makris, A., et al. (2016). "A Classification of NoSQL Data

Stores Based on Key Design Characteristics." Procedia

Computer Science 97: 94-103.

Mao, B., et al. (2014). "NoSQL Based 3D City Model

Management System." The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences XL-4: 169-173.

Mior, M. J., et al. (2016). NoSE: Schema design for NoSQL

applications. 2016 IEEE 32nd International Conference on Data

Engineering (ICDE).

Park, J.-W., et al. (2011). Visualization of Urban Air Pollution

with Cloud Computing.

R, B. (2020). "Map Reduce: Data Processing on large clusters,

Applications and Implementations." 05: 214-220.

Ramzan, et al. (2019). "Challenges in NoSQL-Based Distributed

Data Storage: A Systematic Literature Review." Electronics

8(5).

Reniers, V., et al. (2019). "Object to NoSQL Database Mappers

(ONDM): A systematic survey and comparison of frameworks."

Information Systems 85: 1-20.

Salleh, S., Ujang, U., Azri, S., 2021. Virtual 3D Campus for

Universiti Teknologi Malaysia (UTM). ISPRS International

Journal of Geo-Information 10.

Višnjevac, N., et al. (2019). "Prototype of the 3D Cadastral

System Based on a NoSQL Database and a JavaScript

Visualization Application." ISPRS International Journal of Geo-

Information 8(5).

Wan Abdul Basir, W.N.F., Majid, Z., Ujang, U., Chong, A.,

2018. Integration of GIS and BIM techniques in construction

project management - A review, International Archives of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences - ISPRS Archives, 4/W9 ed, pp. 307-316.

Xu, X. and R. Guo (2016). Research on Storage and Processing

of MongoDB for Laser Point Cloud under Distribution.

Zhang, D., et al. (2019). "Improving NoSQL Storage Schema

Based on Z-Curve for Spatial Vector Data." IEEE Access 7:

78817-78829.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W3-2022
The 7th International Conference on Smart City Applications, 19–21 October 2022, Castelo Branco, Portugal

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-87-2022 | © Author(s) 2022. CC BY 4.0 License. 95

