
*  Corresponding author 

EFFICIENT SPARSE STREET FURNITURE EXTRACTION FROM MOBILE LASER 
SCANNING POINT CLOUDS 

 
L. Truong-Hong 1*, R.C. Lindenbergh 1, M.J. Vermeij 2, 

 
1 Dept. of Geoscience & Remote Sensing, Delft University of Technology, Delft, The Netherlands, - (l.truong; 

r.c.lindenbergh)@tudelft.nl  
2 Municipality of Rotterdam City Management Basic information, The Netherlands, - mj.vermeij@rotterdam.nl 

 
Commission IV, WG IV/9 

 
 

KEY WORDS: Point Cloud, Cells, Sub-cell, Voxel, Voxel-Based Region Growing, Kernel Density, Surface Extraction, object 
identification 

 
ABSTRACT: 
 
Current mobile systems are capable of efficiently acquiring dense urban point clouds. Still, operational use of such data is hampered 
by the lack of efficient object extraction methodology. Notably methodology is lacking for automatically extracting objects that do not 
belong to the road furniture like street signs and light poles but do belong to the street furniture. As an example, object we consider 
public garbage bins, that are installed and should be maintained in public areas in every city. However, information about types, 
locations, and condition of these public garbage bins are rarely updated and only obtained through manual measurements. Therefore, 
an efficient way of collecting information on such public objects is of interest not only for urban management but also when developing 
digital twins of a city. This study proposes a new method to automatically extract public garbage bins from large urban mobile laser 
scanning (MLS) point clouds. The proposed method consists of three main steps: (1) cell-, (2) sub-cell-, and (3) surface-based filtering, 
in which both spatial information of the point clouds and contextual knowledge of the public garbage bins are incorporated to efficiently 
remove irrelevant 3D points at an early phase and identify and classify different types of public garbage bins. Contextual knowledge 
includes shape and dimensions, and the relationship between the public garbage bins and the ground surface. A MLS dataset of the 
city centre of Rotterdam, the Netherlands, consisting of 2.84 billion points organised in 166 tiles of 50 x 75m, and covering an area of 
about 750 x 750m was used to test the proposed method. Results show that the method can automatically extract ~90 public garbage 
bins with an overall detection rate of 89.1%. Moreover, the executing time for the entire dataset was only about 163.6 minutes, which 
is equivalent to 3.46 seconds per one million points. Although the method was tested here one public garbage bins, it can be easily 
tuned for the detection of other street furniture objects, like benches, post boxes or bollards. 
 
 

1. INTRODUCTION 

A mobile laser scanner (MLS) system integrated into a moving 
vehicle (e.g., car, train or boat) can acquire three-dimensional 
(3D) topographic information of visible surfaces of objects along 
the route of the vehicle. Because of its high point density with an 
accuracy in the centimetre range, MLS data have become a 
resource for documenting 3D objects and assessing the state of 
objects (Pu et al., 2011). Results of those tasks can be integrated 
into a smart city concept, and BIM environments  and digital 
twins (DT) of a city (Shirowzhan et al., 2020).  
 
In the light of creating digital models  or DT of a city, MLS point 
clouds have been used to extract building facades (Zhou et al., 
2018), road surfaces (Yadav et al., 2017), traffic and light poles 
(Wang et al., 2017), and trees (Weinmann et al., 2017). However, 
other urban utilities along the road environment, for example, 
telephone boxes, electricity control boxes, and public garbage 
bins, have received less attention, although these objects belong 
to a digital model of a city, and in addition require maintenance 
by municipalities. This lack of attention may be caused   because 
the extraction of relatively sparse objects is still challenging. 
Reason could be a lack of training data for extracting such objects 
with machine leaning methods and the geometric complexity and 
variability of these objects. In the DT of a city, both geometric 
models and semantic information of all physical assets must be 
included. As such, to complement existing work toward 
providing geometric models for DTs, this study proposes an 
automatic method to extract point clouds of public garbage bins 
installed along the city streets from MLS data. Resulting point 
clouds can be subsequently used to not only identify type, 

location, and conditional status of the public garbage bins, but 
also to create 3D models for integration in a DT, and asset 
management. Here we like to emphasize that public garbage bins 
are chosen to showcase the methodology, but that the method is 
expected to work equally well on similar urban utility objects.  

2. RELATED WORK 

A mobile laser scanner installed on a vehicle captures 3D 
topographic information of objects surfaces along streets. Such 
data are subsequently used to obtain geometric and semantic 
information of urban objects, which includes building facades, 
road surfaces and road signs, poke-like objects (light poles and 
traffic lights) and trees along the streets. Existing methods are 
mostly focussing to obtain geometric point clouds of roads and 
road facilities (e.g., traffic and light poles) by using geometric 
features derived from MLS point clouds and/or machine learning 
or hybrid methods. As such, this survey roughly classifies these 
methods based on physical assets extracted from the point clouds, 
which include road surfaces and their boundaries, road marking, 
poke-like objects, and trees. 
 
In extracting road surfaces and reconstructing road boundaries, 
Yadav et al. (2017) proposed three consequent steps to obtain 
final points of the road surface. First, intensity and point density 
were applied to extract ground points from MLS data. Second, 
region growing based height and intensity difference was applied 
to remaining points to obtain points of the road surface. Finally, 
a smooth road boundary was created from the points of the 
extracted road surface, which was then used to eliminate 
incorrect points along the road boundary. Zai, et al. (2018) 
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decomposed 3D point clouds into voxels to segment the data 
points into facets by using the tangent plane and smoothness of 
points. Subsequently, the points on the road boundary were 
extracted by the alpha-shape algorithm (Edelsbrunner et al., 
1983), while graph cut-based energy minimization was 
implemented to refine the road boundary. 
 
Additionally, from the points of the road surfaces, the road 
marking was extracted using clustering techniques based on the 
intensity values of the data points (Soilán et al., 2017). These 
approaches were applied directly to data points (Yang et al., 
2018) or indirectly through an intensity image created from the 
point cloud (Soilán et al., 2017). Different road markings were 
achieved based on analysing geometric features (e.g., length, 
width, and area, etc.) of the clusters (Soilán et al., 2017). 
Interestingly, deep learning has been employed to detect and 
classify road markings based on raster images, for example, Tian 
et al. (Tian et al., 2018) used a modified Faster R-CNN and Wen 
et al. (Wen et al., 2019) used a Generative Adversarial 
Network (GAN). In the work of Wen et al. (2019), a context-
based method is used to add missing road marking, while Bai et 
al. (2021) used the 3D deep learning method RandLA-Net, to 
provide a full functional classification of road surfaces, including 
road lanes, bicycle paths and pavements.  
 
MLS data is also used to extract poke-like objects including light 
poles, traffic lights and trees. Liu et al. (2020) extracted pole-like 
objects by identifying point in  arc-like configurations in cross-
sections using RANSAC while analysis of eigenvalues and 
principal directions was implemented to classify objects as lamp 
posts, traffic lights and traffic signs. Yadav et al. (2022) classified 
pole and non-pole like objects from non-ground point clusters 
using random forest with features including height, area, 
eigenvalues, linearity, planarity, and sphericity. Additionally, 
Wang et al. (2021) roughly extracted rod-shaped parts of pole-
like objects based on the vertical continuity of voxels generated 
from non-ground points, while the random forest model was used 
to classify the pole-like objects based on local- and global-scale 
features. Shi et al. (2018) extracted pole like objects based on 
cylindrical or linear feature detection followed by shape 
matching between the point clouds of extracted objects and 
templates to classify each cluster as street lamp, traffic sign, or 
utility pole. 
 
Furthermore, tree extraction from MLS data has attracted 
attention from many researchers. Zhong, et al. (2017) clustered 
candidate points of trees based on octree’s nodes connectivity, in 
which an octree was generated from a subset after removing data 
points of building facades and road surfaces. Subsequently, the 
histogram-based octree’s nodes were used to detect a stem while 
overlapping canopy segmentation was used to separate a tree 
from its neighbour. Similarly, Weinmann et al. (2017) used a 
random forest to classify MLS point clouds based on a set of 
point-based features computed by using principal component 
analysis with different neighbourhood scales. A mean shift 
segmentation was used to cluster the points of individual trees 
while shape analysis was employed to remove unreal trees. 
Interestingly, Guan et al. (2015) extracted MLS points of 
individual trees using Euclidean distance clustering from non-
ground points, while  deep learning was applied to artificial 
waveforms of tree clusters generated in vertical direction for tree 
classification. Also using a deep learning framework, Luo et al. 
(2021) developed a pointwise direction embedding deep network 
(PDE-net) to predict direction vectors of tree’s points to enhance 
the boundary of the tree, in which the tree’s points were obtained 
using an Euclidean distance clustering approach. Each cluster 

was classified as single or multi-tree cluster based on the number 
of detected tree centres. Subsequently, region growing and the 
embedded pointwise directions were used to decompose a multi-
tree cluster into single tree clusters corresponding to individual s 
ingle tree. 
 
In summary, existing methods are mainly focussing in extracting 
the main objects (e.g., road surface, light poles, and traffic poles) 
of urban streets. These methods mostly use point features to 
extract objects of interest, which requires intensive 
computational resources, as typically properties of all individual 
points are required. Moreover, other utilities along urban streets, 
for example telecom and electricity control boxes or public 
garbage bins have not yet received attention in research and 
practical point cloud based urban management. As such, this 
study proposes a new method to automatically extract point 
clouds of public garbage bins installed along urban streets from 
MLS data. 

3. PROPOSED METHOD 

As data points of public garbage bins often account for only a 
small percentage of an entire urban 3D point cloud, the use of 
features of data points may require intensive computation. 
Moreover, it would be difficulty to establish thresholds to 
distinguish point clouds of the public garbage bins from others. 
As such, this study proposes a new method combining spatial 
point cloud information and contextual knowledge to extract the 
points of the public garbage bins in three consecutive steps. Step 
1, cell-based filtering aims to retrieve 2D cells in the xy plane, 
which possibly contain points of the public garbage bins, which 
also enables the quick elimination of many unneeded points. Step 
2, sub-cell-based filtering extracts cluster points of vertical 
surfaces of the garbage bins. Finally, Step 3 employs a 
segmentation method to extract points of surfaces from the 
cluster points, and identifies if the cluster is a public garbage bin 
and of what type (Figure 1). In each step, contextual knowledge 
is integrated to (1) roughly extract a subset containing data points 
of the garbage bin, and (2) to eliminate incorrect clusters or 
surfaces of the public garbage bins. 
 

  
a) Type 1 c) Type 3 

  
b) Type 2 d) Type 4 

 
Figure 1. Public garbage bins used in Rotterdam city, The 

Netherland
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3.1 Contextual knowledge 

As the proposed method is tested to extract public garbage bins 
along urban streets of Rotterdam city, The Netherlands, 
contextual knowledge derived from configuration and geometric 
features of the public garbage bins in this city is incorporated into 
the proposed method (Figure 2). The contextual knowledge 
herein includes lower and upper bounds of dimensions of the 
garbage bin, and a relationship between surfaces of the garbage 
bin and these surfaces and a ground surface. Following features 
obtained from designed documents and available points clouds of 
garbage bins are used in this study. 
 

Feature 1: A public garbage bin is installed on top of a flat ground 
surface, but there is often a small gap between vertical surfaces 
of the garbage bin and the ground surface.  
 
Feature 2: As the MLS scanning line is often perpendicular to 
the road central line, geometries of only a front and/or two side 
surfaces of the public garbage bins are usually captured. As such, 
point clouds of two or three vertical surfaces are available. The 
points of each vertical surface continuously distribute in the 
vertical direction from the ground level.  
 
Feature 3: As alignment error and noisy data are inevitable, 
dimensions of the garbage bin based on its point cloud can be 
different those from the design document. In this study, the 
tolerance is added to compensate to an accumulate error of data.  

 

Figure 2. Workflow of the proposed method to extract recycle bins 

Step 1: Cell-based filtering 
 
Step 1 starts with Step 1.1 employs a cell grid to divide an initial 
bounding box of MLS data points (P = {pi = (xi, yi, zi) Î R3, i = 
[1, N]}) into smaller 2D cells (C = {ci}, i = [1, Nc]) in the xy 
plane, in which the cell size is equal to a predefined cell size (ce0). 
Next, Step 1.2 roughly eliminates cells that do not possess data 
points of side surfaces of the garbage bin, which are the cells have 
heights less than the minimum height (B.Hmin) of the garbage bin 
(Eq. 1).  
 
cj.H = max(pj.z) - min(pj.z)    (1) 
 
where  pj.z = z coordinate of the point pj Î cj. 
 
Subsequently, Step 1.3 extracts candidate points of the vertical 
surfaces of the garbage bins within each remaining cell ci. 
Vertical blocks (cbij) of points within each cell (ci), in which the 
distance between two consecutive points is no larger than the 
threshold D.g0, are extracted. The cell ci is considered for further 
processing if it has at least one cell block having the height no 
less than B.Hmin, in which Eq. 1 is used to compute the cell block 
height.  Next, a valley-peak-valley pattern (Truong-Hong and 
Lindenbergh, 2022b) based on kernel density estimation (KDE) 
(Laefer and Truong-Hong, 2017) generated from pj.z Î ci is 
applied to extract points of horizontal planes (sij = (pij,0, nij)), in 
which principal component analysis (PCA) was used to estimate 
the plane parameters. Finally, the ground plane (sg,i) is the plane 
satisfying Eq. 2: 
 

𝑠!" → 𝑠#,!𝑖𝑓 %
∠𝑛!"𝑛% ≤ 𝛼#,&	

𝑝!",&. 𝑧	 ⟶ min𝑎𝑛𝑑	𝑠!" . 𝑎𝑟𝑒𝑎	 ⟶ 𝑚𝑎𝑥	  (2) 

 

where  sij.area = an area of a convex hull created from pij = {x, 
y}Î sij 
 nz = the unit vector of the z axis 
 ag,0 = the maximum angle of the ground surface 
 

   
a) Data points within 

a cell 
b) Points of a 

block within a cell 
c) Resulting ground 
point cloud (in red) 

 
Figure 3. Extracting ground points within a cell 

Step 2: Sub-cell-based filtering 
 
As a cell ci may contain points of a garbage bin and other adjacent 
objects (e.g., a bike and light pole), the cell ci is again subdivided 
into smaller cells scij = {pij} (Step 2.1), in which a sub-cell size 
(sce0) equal to 1/10ce0 is used. Next, each sub-cell scij Î ci is 
considered to represent a part of the vertical surface of the 
garbage bin if the points pij Î scij satisfy Eq. 3, which reflects that 
the garbage bin installed on the ground. 

𝑠𝑐!" = :𝑝!";	𝑖𝑓	 <
𝑚𝑖𝑛 =𝑑>𝑝!" , 𝑠#,!@A ≤ 𝐷. 𝑔&

𝑚𝑎𝑥 =𝑑>𝑝!" , 𝑠#,!@A ≤ 𝐵.𝐻'()
   (3) 

where  d(pij, sg,i) = distances from the points pij to the ground 
plane sg,i  
 B.Hmax = the maximum height of the public garbage bins. 
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a) Sub-cells within 
the cell in Figure 

3a 

b) Centres and heights 
of sub-cells 

c) Result of 
filtering sub-cells 

 
Figure 4. Extract sub-cells representing vertical surfaces 

Next, Step 2.2 groups remaining sub-cells scij into a set of regions 
R = (Ri, i = [1, Nb], Ri = {scij}), and each cluster represents 
vertical surfaces of one garbage bin. The process randomly 
selects an initial sub-cell scij to search adjoined neighbouring 
sub-cells sckl and adds to the region if the different height of the 
sub-cells is no more than a predefined height threshold (DHsc). 
The process is completed when all sub-cells are checked. 

 Additionally, Step 2.3 estimates 2D minimum bounding box in 
the xy plane of the cluster Ri to determine its width and length. 
The cluster Ri is roughly considered as the candidate garbage bin 
if the cluster width and length are within tolerances of lower and 
upper bounds of dimensions of the public garbage bins. 

Step 3: Surface-based filtering 
 
Step 3 consisting of 3 sub-steps aims to extract data points of 
vertical surfaces from the sub-cell cluster Ri and then identifies if 
the Ri is the garbage bin. Step 3.1, is employed voxel-based 
region growing (VRG) (Truong-Hong and Lindenbergh, 2022a) 
to segment the data points of the sub-cell cluster Ri = {Sb,i, i = [1, 
Ns]}. VRG is used a voxel grid to decomposing the points of the 
cluster Ri into multiple connected voxels (vi) with the voxel size 
(ve0), and the data points pvi Î vi assuming to represent a plane 
vsi = (vps0,i, vni), in which vpsi,0 is the centroid of the points, the 
normal vector vni is estimated using PCA. Notably, the voxel is 
considered for segmentation if the number of points within the 
voxel is larger than a predefined threshold vmin_ptc. Adjoined 
voxels (vi and vj) are considered to belong to the same segment 
Sb,i if the angle between normal vectors (vni and vnj) and a 
distance (d(vps0,j, vsi)) between vsi and vsj are less than both angle 
(va0) and distance (vd0) thresholds. Moreover, the voxel vi is 
selected as the seeding voxel if the residual of a fitting plane of 
pvi Î vi is no larger than the residual threshold (vres0). Details of 
the VRG can refer to (Truong-Hong and Lindenbergh, 2022a). 

Next, Step 3.2 aims to determine vertical surfaces of the garbage 
bin from a set of segmented planes (Sb,i) through a following 
procedure. First, a fitting plane (Sb,i ® sbi = (pbi,0, nb,i)), and the 
width (Sb,i.W) and length (Sb,i.L) are estimated. The segment Sb,i 
classifies as a vertical plane (Sbv,i), a candidate vertical surface of 
the garbage bin, if the segment features satisfy Eq. 12; otherwise, 
the segment is known as a non-vertical plane (Sbn,i). 
 

𝑆*,! → 𝑆*+,!𝑖𝑓 %
∠𝑛*,!𝑛% ≥ 𝛼+,

𝐵.𝑊- 𝐻-⁄ ≤ 𝑆*,! .𝑊 𝐿⁄ ≤ 𝐵.𝑊. 𝐻.⁄   (4) 

where av0 = the maximum angle between vertical surfaces of 
the garbage bin and the oz axis.  
 
Second, the non-vertical plane (Sbn,i) is considered as the ground 
plane Sbg,i around the garbage bin (Eq. 13). This condition reflects 
the ground is located beneath a vertical plane. 
 

𝑆*/,! → 𝑆*#,!𝑖𝑓 %
∠𝑛*/,!𝑛% ≤ 𝛼#,&

𝑝0! . 𝑧 ≤ 𝑝*+,! . 𝑧'!/ +𝐷. 𝑔&
  (5) 

 
where  psi.z = z-coordinates of the points psi Î 𝑆*/,! 
 pbv,i.zmin = the minimum z coordinate of pbv,i Î 𝑆*+,! 
   
Third, as vertical planes of the garbage bin are above the ground 
plane, vertical planes (Sbv,i) are again filtered by examining the 
minimum distance from the points pbv, i Î Sbv,i to the ground plane 
Sbg, i (Eq. 14). Notably, if the number of vertical planes (Sgv,i) is 
less than 2, the process is immediately terminated, and the sub-
cell cluster Ri is discarded. 
 
𝑆*+,! → 𝑆*+,!	𝑖𝑓𝑚𝑖𝑛 =𝑑>𝑝*+,! , 𝑆#@A ≤ 𝐷. 𝑔,   (6) 
 
Four, the vertical planes (Sbv,i) are vertical planes of the garbage 
bin if they connects together, which is determined by using 
connected surface component (CSC) analysis (Truong-Hong and 
Lindenbergh, 2022a). Two vertical planes (Sbv,i and Sbv,j) are 
connected if Eq.s 15 and 16 are satisfied: 
 
∠𝑛*+,! , 𝑛*+," ≥ 𝛼0&      (7) 

L
𝑛1 ≤ |𝑝!2|	𝑖𝑓	𝑑>𝑝!2, 𝐿!"@ ≤ 𝑑*34456
𝑛1 ≤ N𝑝"2 N	𝑖𝑓	𝑑>𝑝"2 , 𝐿!"@ ≤ 𝑑*34456

    (8) 

 
where  nbv,i and nbv,j = normal vectors of Sbv,i and Sbv,j 

as0 = the minimum angle between two adjoined 
vertical planes of the public garbage bin 

Lij = the intersection line between Sbv,i and Sbv,j 
p’i and p’j = projected points of pbv,i and pbv, j onto Sbv,i 

and Sbv,j, respectively. 
dbuffer = 0.5B.Wmin is a predefined threshold 
np = the minimum number of points  
|   | = the number of points 
 

  
a) Data points of cluster Ri b) Segmentation obtained 

by VRG 

  
c) Ground plane d) Final vertical planes 

 
Figure 5. Extracting vertical planes of a bin 

Subsequently, Step 3.3 computes geometric characteristics of the 
garbage bin from its vertical surfaces, which consists of a primary 
dimensions (width – Bi.W, length – Bi.L, and height – Bi.H) and 
a secondary dimensions (area – Bi.A = Bi.W x Bi.L, and  an edge 
ratio – Bi.R = Bi.W/Bi.L). These features are computed from point 
clouds of cross-sections along the vertical direction, in which the 
number of sections and thickness of each section are empirically 
selected as nsect = 10 and tsect = 0.02 m. Finally, these features are 

Sub-cell 
center
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compared to ones derived from the design document to (1) 
identify if the candidate cluster is a real public garbage bin, and 
(2) then classify the Bin type.  
 

 

 

a) Point clouds of cross-
sections 

b) 2D minimal bounding box 
of a cross-section 

 
Figure 6. Illustrate estimation of primary geometric dimensions 

of a candidate garbage bin 

4. EXPERIMENTAL TEST, RESULTS AND 
DISCUSSIONS 

To demonstrate the proposed method, MLS data of Rotterdam 
city, The Netherlands, were used. The data set was acquired for 
digitized urban streets of the Rotterdam city, from a MLS system 
consisting of 2 RIEGL VUX 1 laser scanners, and a Ladybug5 
spherical image system of 30 MP. The RIEGL sensors can 
capture up to 1 million points per second with an accuracy of 
about 5mm. After processing data (e.g., data registration), a total 
of 166 tiles of LiDAR data was stored in LAZ format occupying 
14.1 GB of storage. The data consists of a total of 2.84 billion 
points with x-, y-, and z-coordinates. Each tile covers an area of 
about 50m by 75m, while the number of points in a tile varies 
between 0.54 million and 66.6 million points (Figure 7). As the 
goal of the data acquisition was not meant for detecting public 
garbage bins, not all bins in the area are covered. 
 

 
 

Figure 7. MLS data of the study area 

Generally, MLS point clouds of a city are acquired in different 
trajectories, which require additional   alignment in a common 
coordinate system. Although some alignment error is inevitable, 
there is considerable variation in this data set. For example, 
Figure 8 shows that the alignment errors of two tiles (two data 
files) are 4.4cm and 89 cm. This error can cause large deviations 

of dimensions of recycle bins based on the point clouds compared 
to the design document. Therefore, lower and upper bounds of 
dimensions of the public garbage bin are empirically selected 
based on the design documents (Figure 1) with a tolerance of 
25%.  
 

  
a) Cross-section of 

a garbage bin 
b) Road segment on the horizontal 

plane 

Figure 8. Data errors due to mis-alignment 

As the proposed method combines spatial information from point 
clouds and contextual knowledge, input information consists of 
(1) x-, y- and z-coordinates of the point clouds, (2) lower and 
upper bounds of the dimensions of the garbage bins. Moreover, 
the set of input parameters used to process the point clouds can 
be divided into 3 main groups: (i) to extract candidate points of 
the public garbage bins (Step 1 and 2), (ii)   to obtain final points 
of the surfaces of the garbage bins (Step 3), (iii) to check relative 
positions of surfaces of the garbage bins and the ground surface. 
 
In this proposed method, each data tile is processed separately 
and in sequential order. Figure 9 illustrates the procedure of 
extraction of public garbage bins within the data tile. Step 1 and 
2 extract candidate points of the garbage bins from an entire data 
and then the final points of vertical surfaces of the garbage bin 
are obtained through Step 3. 
 

Table 1. Input parameters used in the proposed method 

Name  Notation  Value  
(i) for extracting candidate points of public garbage bins 

Cell size ce0 1.0 m 
Min. number of points of a cell cmin_ptc 25 points 
Sub-cell size sce0 0.1 m 

Max. gap between two consecutive 
points in the vertical direction 

D.g0 0.1 m 

(ii) for obtaining final points of surfaces of the garbage bins 
 Voxel size ve0 0.15 m 
Min. number of points of a voxel vmin_ptc 5 points 
Angle threshold va0 100 

Distance threshold vd0 0.02 m 
Residual threshold vres0  0.02 m 
(iii) For checking relative positions of surfaces 
Max. angle of a ground surface ag,0 100 
Max. different height between 
adjoined sub-cells 

DHsc 0.3 m 

The angle between vertical surfaces 
and the oz axis 

av0 100 

The minimum angle between two 
vertical planes 

as0 450 

 
An object-based strategy (Truong-Hong and Laefer, 2015) was 
employed to evaluate the quality of the public garbage bin 
extraction of the proposed method. An extracted garbage bin is 
considered as correct if its 2D footprint has more than 50% 
overlap to the ground truth. Moreover, the type of garbage bin is 
manually evaluated by comparing to the ground truth. 
 
The study area has a total of 91 recycle bins including 44, 24, 18, 
5 bins for Bin type 1, 2, 3 and 4, respectively, which was 
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manually extracted from the point cloud. The proposed method 
automatically processes MLS data points of 166 tiles to extract 
92 garbage bins consisting of 47, 26, 14, and 5 for Bin type 1, 2, 
3, and 4 (Figure 10). 10 of the extracted garbage bins were false 
extractions, while 7 garbage bins were classified into an incorrect 
type. 
 

 
 

Figure 9. Recycle bin extraction from MLS data 
 
 
Figure 10 shows the confusion matrix for extracting each type of 
public garbage bin. For the dominating Type 1 garbage bin, the 
proposed method detects bins with an accuracy of 0.872 and a 
F1-score of 0.932. however, the performance of detection is 
reduced for Type 2, for which the accuracy is 0.774. The main 
reason is that there is a high similarity between Type 1 and 2. 
Moreover, to consider overall detection, the proposed method 
extracts the public garbage bins with a detection rate of 89.1% 
(81 vs. 91). 
 

  
a) Type 1 b) Type 2 

  
c) Type 3 d) Type 4 

Figure 10. Confusion matrix  

Although a large data set was processed, the executing time for 
the entire data set was only about 163.6 minutes, in which Step 
2.1 and Step 3.1 took respectively 90.2 minutes and 51.0 minutes. 
This running time is equivalent to 3.46 seconds per million 
points. Notably, the proposed method was implemented in 
Python and the experiment was processed on a Dell Precision 

Workstation with the following main system configuration: 
Intel(R) Xeon(R) W-2123 CPU @ 3.6GHz with 32GB RAM.  
 

 
Figure 11. Positions of extracted public garbage bins overlaid 

on a Google map 

Although the proposed method can extract garbage bins bin with 
an overall detection rate of 89.1%, results vary depending on the 
used input parameters. The size of sub-cell, and parameters for 
VRG (Table 2) have strong impact to results.  The sub-cell size 
allows to separate vertical surfaces of the garbage bin from 
adjacent objects. For example, (Figure 12a), with a sub-cell size 
of 0.2m, the vertical surfaces of the garbage bin cannot be 
separated and the proposed method failed to recognize the 
garbage bin (Figure 12b). However, when a sub-cell size of 
0.10m is used, the garbage bin is successfully detected (Figure 
12c). The sub-cell size is selected mainly depending on the 
minimum distance between the recycle bin and adjacent objects, 
for example light poles, traffic barriers or bicycles.  
 

   
a) Point clouds of a 

candidate points 
b) Sub-cell size of 

20cm 
c) Sub-cell 

size of 10cm 

Figure 12. Impact of sub-cell size on extracted points of public 
garbage bins 

Input parameters for VRG, including voxel size, and angle, 
distance and residual thresholds, also affect to quality of surface 
segmentation. Clearly, failure of extracting points of the garbage 
surfaces can lead to unsuccessful detection. The selecting voxel 
size mainly depends on the minimum size of the plane desired to 
extract, while the angle, distance and residual are strongly 
dominated by the data quality, e.g., noisy data or registration 
errors. For example, Figure 13 illustrates results of segmentation 
using VRG with various values of the voxel size, and angle, 
distance, and residual thresholds. With data quality of the dataset 
used in this study, the over-segmentation increased when the 
voxel size decreased from 0.15m (Figure 13b) to 0.1m (Figure 
13c). Addition to decreasing the voxel size, the garbage bin is 
failed to detect when the angle threshold va0 = 50 (Figure 13c).  
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a) Input data of the cluster 

including the points of the bin 
and surrounding objects 

b) With ve0 = 0.15m, va0 = 
100, vd0 = vres0 = 0.02m, 

the garbage bin is detected 

  
d) With ve0 = 0.1m, av0 = 100, 

vd0 = vres0 = 0.02m, the 
garbage bin is detected 

e) With ve0 = 0.1m, av0 = 
50, vd0 = vres0 = 0.02m, the 
garbage bin is not detected 

Figure 13. Impact of parameters for VRG on plane extraction to 
detect public garbage bins 

 
5.   CONCLUSIONS 

To explore the ability to identify and assess relatively sparse 
urban objects from massive MLS data, this paper proposes a 
method to automatically extract points of urban recycle bins 
through three different filtering steps from cell to sub-cell to 
surface. The proposed method was tested on 2.84 MLS billion 
points, and extracted ~90 public garbage bins from an area of 
~500.000 m2 with an overall detection rate of 89.1%. The 
executing time for the entire dataset was about 163.6 minutes. 

 As MLS data acquisition was not designed to capture geometries 
of public garbage bins, data coverage and alignment errors 
strongly impact the resulting extraction and classification. 
Incomplete and/or sparse distribution of point clouds sometimes 
resulted in failures to detect surfaces of the garbage bins. The 
quality of point cloud alignment may lead to incorrect 
identification of the bins, as alignment issues may result in local 
deviations of design sizes.  
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