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ABSTRACT: 

The automatic reconstruction of 3D building models from airborne laser scanning point clouds or aerial imagery data in a model-
driven fashion most often consists of a recognition of standardized building primitives with typically rectangular footprints and 
parameterized roof shapes based on a pre-defined collection, and a parameter estimation so that the selected primitives best fit the 
input data. For more complex buildings that consist of multiple parts, several such primitives need to be combined. This paper 
focuses on the reconstruction of such simple buildings, and explores the potential of Deep Learning by presenting a neural network 
architecture that takes a 3D point cloud of a single building as input and outputs the geometric information needed to construct a 3D 
building model in half-space representation with up to four roof faces like saddleback, hip, and pyramid roof. The proposed neural 
network architecture consists of a roof face segmentation module implemented with continuous convolutions as used in ConvPoint, 
which performs feature extraction directly from a set of 3D points, and four PointNet modules that predict from sampled subsets of 
the feature-enriched points the presence of four roof faces and their slopes. Trained with the RoofN3D dataset, which contains roof 
point segmentations and geometric information for 3D reconstruction purposes for about 118,000 simple buildings, the neural 
network achieves a performance of about 80% intersection over union (IoU) for roof face segmentation, 1.8° mean absolute error 
(MAE) for roof slope angles, and 95% overall accuracy (OA) for predicting the presence of faces. 

* Corresponding author

1. INTRODUCTION

For well over two decades, more and more 3D geodata have 
been captured on larger scales in addition to conventional 2D 
geodata. And the topographic objects with a relevant vertical 
extent (like buildings, bridges, trees, etc.) have been modelled 
accordingly, both strictly in their geometric form, but also with 
their semantic structure. 3D city models, which usually consist 
of terrain, buildings, vegetation, and possibly street furniture, 
are just one example for 3D geodata. Applications for 3D city 
models are given, e.g., by Biljecki et al. (2015). 

For the automatic reconstruction of 3D building models from 
airborne laser scanning 3D point clouds or aerial and satellite 
images, mainly methods using deterministic algorithms have 
been applied so far. In many areas of geodata interpretation, one 
observes nowadays the emergence of data-driven and artificial 
intelligence methods that make use of machine learning and, 
more recently, Deep Learning using neural networks. However, 
besides the more general tasks like object classification, object 
detection, and semantic segmentation, etc. one can hardly find 
research on the geometric reconstruction of 3D building models 
from point clouds making use of these recent developments. 

In this paper, an attempt is therefore made to fill this gap and 
derive and model the 3D geometry of simple shaped buildings 
based on airborne laser scanning 3D point clouds using neural 
networks. Simple shaped buildings are considered to be those 
that feature a roughly rectangular footprint and a standard roof 
shape (saddleback, hip, pyramid, etc.) without any roof 
superstructures. These buildings are often reconstructed using 
primitives with parameterized roof shapes, by identifying the 
roof type and estimating the roof parameters that best fit the 

input data. Here, a neural network architecture is proposed that 
performs 3D building reconstruction by predicting a semantic 
segmentation of the input point cloud that labels the roof points 
according to the roof faces they are located in, also referred to 
as part segmentation, and by predicting the roof geometry in 
form of up to four roof face slopes. Based on the (rectangular) 
footprint, the geometries of 3D building models are constructed 
using half-space modelling, where a (convex) 3D polyhedron is 
defined by a set of intersecting planes. 

Besides a 3D reconstruction of simple buildings, the proposed 
approach can be considered the first step towards a model- or 
primitive-based reconstruction of complex building shapes that 
are generated from several parameterized primitives, as it has 
been pursued in 3D building reconstruction for many years. For 
this purpose, the proposed neural network module for simple 
buildings could be embedded in an extended architecture for 
object detection that identifies and localizes the building parts, 
and forwards the detected oriented bounding boxes to the 
proposed reconstruction module to derive the geometries of the 
therein contained building primitives. Object detection neural 
networks for 3D point clouds, like VoteNet (Qi et al., 2019), are 
potential foundations for such a comprehensive 3D building 
reconstruction pipeline. 

2. RELATED WORK

The topic of 3D reconstruction of buildings from airborne laser 
scanning or aerial or satellite images has interested researchers 
for more than two decades. Haala and Kada (2010), e.g., give a 
thorough overview on this topic. The proposed approaches are 
often differentiated into model-driven and data-driven (Maas 
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and Vosselman, 1999). In model-driven approaches, parametric 
roof templates are typically assumed and the methods estimate 
the parameter values and roof types that best fit the input data. 
For buildings with rectangular footprints, Henn et al. (2013), 
e.g., apply a robust estimation of roof parameters to generate 3D 
building model hypothesis for ten standard roof types, and 
verify the best one by a supervised learning approach. Nguatem 
et al. (2013) use importance sampling to derive the roof shape 
parameters. Since buildings often have more complex shapes, 
the respective building models need be composed of several 
such primitives. Haala et al. (1998) decompose the given 
footprints into overlapping rectangles, and determine for each 
rectangle the best fitting parametric roof shape primitive. Kada 
and McKinley (2009) construct cell decompositions of building 
footprints for this purpose. Based on a roof face segmentation, 
Verma et al. (2006) as well as Oude Elberink and Vosselman 
(2009) construct for each building a roof topology graph, and 
identify the roof shapes by subgraph matching. In data-driven 
3D building reconstruction approaches, fewer assumptions are 
made about the building (sub-)shapes, and the 3D models are 
constructed and assembled from a set of low-level geometric 
primitives, typically planes, that are detected in a previous step. 
From a set of candidate faces that result from a pairwise 
intersection of extracted planes, Nan and Wonka (2017) use a 
binary linear programming approach to find a suitable subset of 
faces that describes a manifold and watertight polyhedral 3D 
building model.  
 
In this paper, the focus is on the 3D reconstruction of simple 
buildings with rectangular footprints for which the roof shape 
parameters are determined by predicting the slope and position 
of up to four planar roof faces from a 3D point cloud. For this 
purpose, a Deep Learning approach is proposed using point 
cloud based neural networks. For more complex buildings, the 
proposed reconstruction module can be combined with a 
footprint decomposition approach or integrated into an object 
detection neural network that finds and localizes the necessary 
building components. Although Deep Learning is a large field, 
the interest for the proposed method is on neural networks that 
work directly on 3D point cloud data, and do not need to 
transform the input data into another representation first. In the 
past years, several neural network architectures have been 
proposed for object classification, part and semantic 
segmentation like PointNet (Qi et al., 2017a), PointNet++ (Qi et 
al., 2017b), PointConv (Wu et al., 2019), PointCNN (Li et al., 
2018), KPConv (Thomas et al., 2019), and ConvPoint (Boulch, 
2020). Besides the mentioned tasks, these networks can be used 
for point-wise feature extraction in an extended architecture. In 
the proposed approach, ConvPoint is used, as it defines 
convolutional filters for 3D point clouds, which have proven to 
be effective for feature extraction, and allows at the same time 
comparatively elegant network architectures. 
 
In recent years, more and more approaches based on neural 
networks have been proposed that reconstruct the geometry of 
3D building models. Mahmud et al. (2020) extract building 
footprints and pixel-wise heightmaps from single overhead 
images, and produce 3D block models of buildings with a 
median height. Alidoost et al. (2019) extract building roof lines 
and heights from images to construct block models as well as 
simple parametric models with standard roof shapes. Qian et al. 
(2021) propose a generative adversarial network (GAN) called 
Roof-GAN to construct the geometry of residential roof 
structures that are always aligned with the coordinate axes, 
which might be considered a limitation. A more thorough 
overview on Deep Learning approaches for 3D building 
reconstruction is given in (Buyukdemircioglu et al., 2021). 

3. NEURAL NETWORK ARCHITECTURE 

The neural network architecture proposed in this paper takes as 
input a cutout of an airborne laser scanning 3D point cloud 
consisting mainly of the roof points of a single building, and 
produces a pointwise segmentation of the roof faces as well as 
the necessary information to construct a 3D building model in a 
half-space representation. Following the two main objectives, 
the architecture consists of two main components, outlined in 
Figure 1, and explained in more detail below. As mentioned in 
the introduction, it is assumed that the buildings are simple, i.e. 
they feature a rectangular footprint, and a roof shape with a 
saddleback, hip, or pyramid roof.  
 
3.1 Roof Face Segmentation 

The first component of the neural network takes as input a 3D 
point cloud that can contain any number of points and assigns a 
label to each point. The objective thereby is that all points that 
belong to the same planar roof face get the same label, which 
allows to recognize the constituent parts of the building roof. 
This task is commonly considered a semantic segmentation at 
shape level and is also referred to as part segmentation. 
Although the segmentation of roof faces is not intended to be a 
primary output of the neural network, and should in the future 
also not be directly used in the construction of the 3D building 
model, itself, it is still required as an intermediary byproduct 
within the neural network, and is also critical to successfully 
train the network. 
 
Both semantic and part segmentation are essentially point-wise 
classification tasks. Since the three supported roof shapes have 
at most four faces, it is sufficient to differentiate between five 
classes, where four classes are used for the roof faces and one 
for all other points that do not actually belong to the roof. Since 
the network must somehow distinguish the roof points based on 
some geometry derived features, the four roof point classes are 
defined according to the orientation of the faces that the points 
lie within. Here, the face orientation is considered to be the 
horizontal component of the normal vector of the plane spanned 
by the face. If the normal vector is roughly directed to the 
northwest, northeast, southeast, and southwest, then the points 
of the corresponding faces are labeled with the class labels 1, 2, 
3, and 4, respectively, or with the class label 0 otherwise. Thus, 
the 360° of possible face orientations are divided into four 
quadrants, so that the class labels can be quickly assigned based 
on the signs of the x and y components of the normal vectors; 
although any other definition of four quadrants is also feasible. 
Obviously, difficulties in the correct prediction of roof classes 
are to be expected for those roof faces with an orientation 
exactly on or near the boundaries between two quadrants. 
 
For the roof face segmentation task, a simplified version of the 
part segmentation neural network of ConvPoint is used that 
defines continuous convolutional layers for 3D point cloud data 
(Boulch, 2020). These continuous convolutional layers perform, 
similar to the convolutional layers in convolutional neural 
networks (CNNs) for discrete 2D image data, a point-wise 
multi-scale feature extraction from increasing point 
neighborhoods when stacked in a multilayer architecture. 
Because the input point clouds being used in the experiments 
contain comparatively few points with at most 350 points, only 
three continuous point convolutional layers are used for both 
sampling and upsampling in a typical U-Net like architecture 
with skip connections for intermediate feature information. The 
(down)sampling layers of the encoder thereby pass 64, 16, and 8 
points to their next layers, and the upsampling layers of the
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Figure 1. Proposed neural network architecture for the 3D reconstruction of simple buildings from 3D point clouds  

(N input points, C-dim features, F sampled points per face, S slope angle classes). 
 
 
decoder similarly propagate the extracted features back to the 
original point cloud, which results in a feature vector for each 
input point. All layers are defined with 96 convolutional filters, 
therefore outputting 96 feature channels. Finally, the last layer 
is a point-wise linear layer that generates the five class scores 
for each point. For more details on the part and semantic 
segmentation network of ConvPoint, see (Boulch, 2020). 
 
3.2 Roof Face Parameters 

In the proposed approach, the geometric construction of the 3D 
building models is performed by using half-space modelling 
through the definition of planar half-spaces. This requires up to 
four plane equations per building for the respective roof faces. 
Since it is assumed that for each building the rectangular 
footprint is given by exactly four line segments, each of these 
planes can be determined by the direction of one line segment, a 
slope (or rotation) angle, and a 3D point through which the 
plane passes. Since the 3D point is easily determined using the 
roof face segmentation, e.g. as the mean location of all points 
that make up a roof face, the only missing information is the 
slope angle, which is to be determined by the neural network. 
Because it is generally difficult to precisely predict angles by 
regression, a similar approach as in (Qi et al., 2019) is taken, 
where bounding box angles are predicted as a combination of 
discrete angle classes and continuous correction values. 
 
The four slope angles of the roof faces are determined based on 
the point-wise features extracted by the U-Net module of the 
roof face segmentation. But not from all points of the input 
point cloud, but rather from four subsets of points, for which the 
roof face segmentation component predicted the points to 
belong to the respective faces. The slope of the northwest 
oriented face is, e.g., determined only from those points that are 
classified to belong to the northwest face. For each of the four 
face orientations, a total of 32 random points is sampled with 
replacement, i.e. points can be included several times in a 
subset. If no single point is predicted to belong to a particular 
face, then 32 points with coordinates (0,0,0) are used instead. 
 
Because it is not effective to flatten feature vectors originating 
from 3D point clouds, and apply fully connected layers in order 
to predict classes or regress values from it, we process each 
subset individually by a PointNet module (Qi et al., 2017a). 

Here, four PointNet modules are used, so that each module can 
specialize on a specific face orientation. In order to enable the 
PointNet modules to also extract geometric features in addition 
to the ones resulting from the ConvPoint feature extraction 
component, the 3D point coordinates are concatenated with the 
respective feature vectors. Each PointNet module consists of a 
shared multilayer perceptron with 64, 128, and 256 output 
channels, an average pooling layer, and three fully connected 
layers that output 128, 64, and S+2 channels, where S is the 
number of slope classes. Besides the classification of the slope, 
the PointNet module regresses one slope correction value, and 
one binary classification score that determines the existence of 
the roof face by a probability value when the sigmoid (logistic) 
function is applied. The binary classification value acts like an 
objectness score that is commonly found in object detection. 
 
3.3 Loss Function 

The neural network produces four kinds of outputs: the point-
wise roof face segmentation, four roof slope angle classes, four 
roof slope correction values, and four binary classifications that 
indicate the presence of the four roof faces, respectively. Thus, 
a multi-task loss function is used, which consists of four parts 
that are simply added up. For the roof face segmentation and 
slope classification, the mean cross entropy loss is used, for the 
roof slope correction values the mean absolute error (L1) loss, 
and for the binary roof presence classification the binary cross 
entropy loss. Since the two loss values for a roof face slope 
(class and correction) are only meaningful if the corresponding 
roof face does indeed exist, only the values of those faces are 
included in the loss function for which the binary values in the 
ground truth gives the value 1, thus indicating the presence of 
the roof faces. 
 
 

4. 3D BUILDING MODEL CONSTRUCTION 

The goal of this work is to construct geometric 3D building 
models from the neural network outputs, the given footprints, 
and under the previously postulated assumptions. For this 
purpose, half-space modelling is used, where a simple convex 
polyhedron is described as the Boolean intersection of multiple 
half-planes. See, e.g., (Kada et al., 2017) for a more thorough 
explanation of how half-space modelling can be applied for a 
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geometric 3D modelling of buildings. At least five half-spaces 
are defined for the main body, one for the building base, and 
four or more for the building sides (the facades). The half-plane 
for the building base is directed straight downwards and 
positioned at the lowest point of the building. This lowest point 
is currently determined from the input 3D point cloud, which 
sometimes leads to unnaturally low buildings as the point cloud 
often does not contain further façade or ground points besides 
the roof points. However, this problem is easily solvable by 
providing a base elevation of the building or by taking further 
3D points of the building’s surrounding into consideration, and 
it does not change the principle applicability and correctness of 
the approach. The other four half-planes for the building sides 
are oriented perpendicular to the four line segments that form 
the rectangular 2D building footprint and the base half-plane, 
and are positioned accordingly. To give the 3D building model 
more details, half-planes from the convex hull of the real 
footprint can be used instead of the generalized rectangular 
footprint, which is shown in the results. Footprints with concave 
shapes are also possible, but then require another processing 
step as shown in (Kada at al., 2017). 
 
For the building roof, up to four half-planes are generated from 
the neural network’s outputs. For each possible roof face, a half-
plane is only constructed if the neural network predicts its 
presence with a probability of at least 50%. The orientation of a 
half-plane for a roof face is determined by the rotation of the 
respective façade half-plane around the line of the line segment 
of the rectangular footprint by the predicted slope angle. And 
finally, the positions of these roof half-planes are calculated 
from the mean coordinates of all input points that are predicted 
by the roof face segmentation to belong to these faces. The 
intersection of the half-planes forms the geometric 3D building 
model in half-space representation, which can be converted into 
a boundary representation for visualization or further uses. 
 
 

5. EXPERIMENTS AND RESULTS 

5.1 Dataset 

The proposed neural network is trained and evaluated with the 
RoofN3D dataset (Wichmann et al., 2019), which consists of 
around 118,000 simple buildings with a single saddleback, hip, 
or pyramid roof each. For each building, the dataset includes a 
variety of information, including a 3D point cloud for the entire 
object, a 2D footprint polygon, a roof type, a segmentation of 
points into planar roof faces, their plane equations, and much 
more. Out of all contained buildings, only those were used that 
contain 100 to 350 points, which resulted in 67,383 buildings. 
Although the neural network is designed to take any number of 
input points, the rationale for limiting the number of points to 
this range is on the one hand to avoid selecting duplicate points 
in the first sampling layer of the ConvPoint module, and on the 
other hand to make sure that sufficient points are sampled from 
the often small hip faces that might otherwise get missed if the 
ratio between sampled and input points is very low.  
 
Before taken as input to the network, the 3D point cloud is 
brought into a local coordinate system by translating its center 
to the origin of this system. From the provided RoofN3D data, 
the class labels for roof face segmentation is derived according 
to the orientation of the roof faces in which they are located. 
Since we use random rotations around the upright axis for data 
augmentation, the class labels are adapted accordingly. No 
scaling is performed. From the half-plane equations of the roof 
faces provided by RoofN3D, the slope angle classes and their 

corrections are calculated for the existing faces, and the binary 
values for their presence taken. The possible range of 90° in the 
roof face slopes is divided into 18 classes of 5° angles, where 
the class always represents the angle in the middle of this range 
(e.g. 2.5° for the first angle class), which results in correction 
values in the interval [-2.5, 2.5). This seems a suitable 
compromise between the accuracy expressed by the resulting 18 
angle classes per se, and the still quite small number of classes. 
 
5.2 Network Training 

The training of the neural network is performed with the Adam 
optimizer and a learning rate of 0.001. When using a random 
subset of 85% of the buildings for training, it takes around 40 
epochs until no major improvements can be observed for the 
validation data. In the experiments, no signs of overfitting were 
observed. However, it cannot be completely ruled out that more 
epochs will not bring further improvements, since in particular 
the corrections of the roof slopes develop only very slowly. 
 
In the experiments it was observed that using average pooling as 
the symmetric function in the PointNet modules gives more 
accurate results and leads to a more stable training process than 
max pooling. When using max pooling, large fluctuations in the 
evaluation metrics between epochs were observed and 
eventually led to a divergence of the training process. 
 
5.3 Evaluation 

The following quality metrics are reported for the evaluation of 
the four outputs of the proposed neural network: intersection 
over union (IoU) for roof face segmentation, overall accuracy 
(OA) for the roof slope classes, mean absolute error (MAE) for 
the roof slope corrections, and overall accuracy (OA) for the 
presence of roof faces. In addition, the resulting slope classes 
and corrections are transformed back to slope angles and the 
mean absolute error (MAE) is given compared to the original 
slope angles. Table 1 reports the results for two experiments: 
the first with a training data split of 85% for training, 10% for 
validation, and 5% for testing, and the second with a split of 
95% for training and 5% for testing with the rationale to have a 
larger portion of the dataset for training. The data set was split 
in a stratified fashion, so that approximately the same 
proportion of all three roof types are represented in each split. 
The validation split was used to determine the number of epochs 
needed to train the neural network and to experiment on the 
neural networks hyperparameters. In both experiments, the 
neural network was trained for 40 epochs. The achieved scores 
can be considered quite high, especially considering that the 
ground truth data was generated automatically and does not 
necessarily reflect the real situation. 
 
 

 85/10/5 95/0/5 
Segmentation (IoU) 0.8027 0.8023 
Slope classes (OA) 0.7653 0.7753 
Slope correction (MAE) 1.1227 1.1061 
Slope angle (MAE) 1.7429 1.8065 
Face presence (OA) 0.9573 0.9575 

Table 1. Scores for different training/validation/testing splits. 
 
For visual quality inspection, a random subset of 625 buildings 
from the testing data split were reconstructed as 3D models. The 
resulting roof face segmentation and the 3D building models are 
depicted in Figure 2. Both types of outputs show convincing 
and visually accurate results for most of the objects. This is
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Figure 2. Results from roof face segmentation (left) and the reconstructed 3D building models (right). 

 
especially true for building objects that can be clearly 
categorized into one of the three roof classes and where the 
existing faces are represented by seemingly sufficient points in 
the input 3D point cloud. Problematic are mostly buildings that 
do not that clearly belong to one of these roof shapes or where 
individual faces were not recognized. A further close-up view of 
the output is given in Figure 3. 
 
 
 

 
Figure 3. Examples showing results of roof face segmentation 

together with the resulting 3D building models. 

 
The mean absolute error of the predicted roof face slope angles 
of 1.8° seems to be sufficiently accurate so that the geometric 
3D building models fit quite well with the 3D point cloud. An 
example for a reconstructed building model with saddleback 
roof is depicted in Figure 4, which shows a very good fit of the 
two roof faces to the 3D input points.  
 
 
 

 
Figure 4. Side view of the roof face segmentation of a building 

with saddleback roof, and overlaid with the final 3D model. 

It is interesting to note that the roof face segmentation seems to 
generalize rather well. Roof points that are incorrectly labeled in 
the training data, and roof faces that are therefore missing, are 
still well recognized by the neural network. In the example of 
Figure 5, points of the hip faces on both sides of the roof are 
marked in the training data as (blue) outliers, but the neural 
network correctly detects the two (red and light green) faces and 
can also calculate the slopes correctly, so that a matching 3D 
building model with a hip roof is reconstructed. 
 
 

 
              (a)                            (b)                        (c) 

Figure 5. (a) Roof face segmentation of training data, (b) 
predicted segmentation, (c) reconstructed 3D building model. 

 

 
6. CONCLUSION 

In this paper, a neural network architecture is proposed capable 
of predicting geometric roof slope information and the presence 
of roof faces from 3D point clouds that allow the construction 
of 3D building models in half-space representation. Predicted 
half-planes seem to generally fit very accurately if a large 
enough number of points are found to belong to a roof face. It is 
shown that with such a reconstruction approach, primitives of 
simple buildings with saddleback, hip, and pyramid roofs can be 
predicted. Integrated into an object detection network that 
identifies and localizes building parts, the proposed module 
could be a stepping stone towards designing a Deep Learning 
based 3D building reconstruction architecture for objects with 
more complex shapes. 
 
The general reconstruction approach and the proposed neural 
network architecture are not limited to the three roof types that 
were used in the experiments. It would be quite easy to include 
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a flat roof point class to, e.g., also support flat and mansard roof 
types, and to train and predict other roof shapes having these 
five roof faces like pent, half-hip, broken-hip, etc. The only 
limitation is that the shape of the roof as well as the final 
building model must be convex. It is rather the lack of training 
and particularly testing data that limits further studies, since the 
RoofN3D dataset only contains buildings with these three roof 
types. 
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