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ABSTRACT: 

 

Favelas are the most common type of informal settlements found in Brazil. The Housing Secretariat, City Hall, Sao Paulo, has 

conducted surveys using Unmanned Aerial Vehicles (UAVs)  for the favelas to facilitate the slum upgrading projects and has taken 

the initiative to create a digital twin of the slum areas. This study illustrates the feasibility of developing a methodological workflow 

to create a digital twin by automatic 3D building reconstruction in slums from the UAV point cloud and the 2D building footprints 

with a continuous link for updating the building semantic information. This study focuses on facilitating data integration and updating 

the semantic information into the 3D model to provide additional information about the individual buildings in the slums. The 

assessments concluded that the proposed workflow is suitable for creating digital twins for slums based on the UAV and 2D cadastral 

data. However, the 3D slum model had a few limitations, which are discussed in this paper. 

 

 

1. INTRODUCTION 

People migrate to cities in search of opportunities; however, due 

to the lack of available space or housing in the cities, some people 

tend the occupy the available land and settle with or without legal 

aid, and this gives rise to an unplanned form of urbanization/the 

informal settlements (Salazar Miranda et al., 2021). 

In the 20th century, the government of Brazil attempted to 

eradicate the favelas to replace them with formal housing, but it 

had a lot of negative consequences (Duarte et al., 2021). Hence, 

in many cases, the slum upgrading projects were considered more 

appropriate than slum eradication as they focused more on 

improving the existing infrastructure than a physical intervention 

that might lead to relocation and cause the slum dwellers to lose 

their homes (Alliance, 2012; UN Habitat, 2018). 

To proceed with the activities related to slum upgrading, the 

slums need to be mapped to access information related to the 

buildings, road infrastructure and other urban utilities. However, 

favelas often remain neglected on the cadastral map (Temba, 

2014) due to their complex built environment, lack of 

accessibility, unsafe living conditions and an unhealthy 

environment to undertake the conventional methods of cadastral 

survey (Duarte et al., 2021). Remote sensing data such as aerial 

imagery can tackle most of the challenges, as it can be used to 

obtain precise information about the current situation in the slums 

(Kuffer et al., 2016). 

The Housing Secretariat in City Hall in São Paulo, Brazil, has 

conducted surveys using Unmanned Aerial Vehicles (UAVs) for 

the favelas to facilitate the slum upgrading projects and has taken 

the initiative to create a 3D model of the slum areas, which will 

be very beneficial for slum upgrading projects. Visualization of 

the favelas in 3D started as a game within a miniature urban 

world called “Morrinho” (or “Little Hill”) by the local teenagers 

a few years back. The 3D miniature model of Rio was made using 

bricks, wood, Lego and other recyclable materials (Projeto 

Morrinho, 2012). This model motivated the municipal urban 

development agencies to implement it in the formal property 

market and use the 3D models to develop the slum area (Angelini, 

2013). 

Prior to the development of this research, semi-structured 

interviews were conducted with the stakeholders to understand 

the requirements of the stakeholders and the challenges the 

experts are currently facing while working with the data for the 

slums. According to the experts, the 3D slum model is needed to 

improve project planning and development activities related to 

slum upgrading. A 3D slum model will reduce the time and effort 

of going to the location and conducting field surveys. The 

workflow was expected to be open source or cost-effective where 

the input data would be the point cloud, and the building footprint 

and the output would be the 3D model with semantic information 

related to the individual houses in the slums.  

This research develops a methodological workflow using the 

UAV photogrammetric point clouds and the cadastral data to help 

reconstruct the 3D buildings in the slums in Jardim Colombo, São 

Paulo, Brazil. In addition, this research also focuses on data 

integration to provide additional information about the individual 

buildings in the slums with implementation to update semantic 

information in the future to help create a Digital Twin of the slum. 

The generated 3D building model will be of immense help to the 

stakeholders, especially the government officials and the urban 

planners, to visualize how the houses are perceived in real life 

and would be helpful for the activities concerning slum 

upgrading. 

 

 

2. MATERIAL AND METHODS 

2.1 Study area and data description 

São Paulo, one of the wealthiest cities in Brazil, is also home to 

informal settlements, ‘Favelas’. The slum area selected for this 

study is Jardim Colombo, located in the municipality of São 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W4-2022 
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W4-2022-75-2022 | © Author(s) 2022. CC BY 4.0 License.

 
75



 

Paulo, Bairro do Morumbi (District Villa Andrade), situated in 

the Paraisopolis Complex (Figure 1). Paraisopolis is the second 

largest favela community in São Paulo (Mion, 2018). This area 

was selected due to the availability of the data provided by the 

City Hall, São Paulo, Brazil. In one of the initial meetings with a 

representative from the City Hall, it was mentioned that the 3D 

slum models would play a significant role in various slum 

upgrading activities. Geographical coordinates of the area are 

Latitude (ϕ): 23°11'15.57 "S, Longitude (λ): 45°48'38.45 "W. 

The slum area is around 13.4 hectares, with 2156 houses. All the 

data needed for this research was provided by the City hall, São 

Paulo, Brazil (see Table 1). 

 

 
Figure 1: Study area 

 

Data Data format 

UAV point cloud .E57 (converted to 

.las) 

Orthophoto .ecw (GSD 

=3.8cm) 

Building polygons .shp (polygon) 

Contour lines .shp (polyline) 

Table 1: Information on data used 

 

2.1.1 UAV data 

 

The aerial images were captured by the experts from São Paulo 

(AmbGis, 2019) with the help of a drone, Phantom 4 pro (version 

1) with a 20 MP camera with a maximum image size (frame) of 

5472*3648. The image acquisition was carried out from 

13/05/2019 to 09/07/2019. The images were captured at a flying 

height of 120m with 80% longitudinal and 70% lateral overlap. 

The images captured had a Ground Sampling Distance (GSD) of  

3.8cm. The collected data were further processed to generate, a 

rectified orthomosaic and a Dense point cloud. The products were 

georeferenced to the SIRGAS 2000 coordinate system using the 

UTM projection for Zone 23 South. 

 

2.1.2 Vector data 

 

The Building footprints were delineated manually by the experts 

(AmbGis, 2019) from São Paulo on a scale of 1:500 to 1:200 in 

order to maintain the details using the generated orthomosaic 

with the help of GIS software. The generated shapefiles were 

validated by the field surveyors in São Paulo. During the survey, 

information regarding the construction material used for the 

buildings in slums, the number of floors and the identification of 

alleys was collected.  

 

Contour lines were extracted by the experts (AmbGis, 2019) from 

São Paulo from the Digital terrain model (DTM). After removing 

the non-terrain elements, the voids were filled in by creating a 3D 

model from the interpolation between the altimetric dimensions. 

The contour lines were generated with 1m spacing on a 1:500 

scale. 

 

2.2 Methodology 

The methodology of this study consists of four main stages; data 

acquisition, data pre-processing, 3D building reconstruction and 

implementation of semantic information and data visualisation. 

The methodology workflow using in this study is summarised in 

Figure 2 (Khawte, 2022). 

 

 
Figure 2: Methodology flowchart 
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2.2.1 Pre-processing point cloud and 2D datasets 

 

Since this research focuses on 3D building reconstruction, only 

building points in the point cloud are needed. The building points 

in the point cloud were obtained by clipping the whole point 

cloud with the building footprint shapefile using an ETL (Extract, 

Transform and Load) platform, FME (Feature Manipulation 

Engine). Traces of vegetation in the filtered point cloud were 

segmented manually. Dense Image Matching (DIM) point cloud 

is subjected to a lot of noise or outliers, which could take place 

due to ambiguities during the image matching. Due to this, the 

filtered point cloud was further cleaned using the noise filter. The 

point cloud was filtered by defining a radius for the nearest 

neighbours, and a plane fitted. The algorithm removes the points 

if it is too far from the fitted plan (CloudCompare version 2.6.1. 

user manual, 2015) e. This process was used to eliminate most of 

the irregularities on the roof of the buildings, such as vegetation, 

water tanks etc., which could increase the errors in the surface 

construction of roofs. 

 

The building footprint shapefile did not have the vertical 

coordinate/ Z coordinate. Hence, the building footprint shapefile 

was vertically rectified to the ground elevation to facilitate the 

3D building reconstruction process. The shapefile with contours 

was used to create a DEM raster using a local interpolation 

method using a GIS platform. The mean values of the pixels in 

the DEM lying inside the building the footprint shapefile were 

used as an attribute to define the Z value to rectify the shapefile 

vertically.  

 

2.2.2 3D building reconstruction 

 

The 3D building reconstruction with the point clouds is the most 

crucial step in this research. The 3D model was generated 

following the algorithm of  (Xiong et al., 2014; Xiong et al., 

2016), which used the 3D point cloud and the building footprints 

(2D cadastral data) to reconstruct the buildings as 3D polygons. 

The entire area was divided into three zones; zone 1, zone 2 and 

zone 3, each having 10, 5 and 11 sub-zones, respectively. The 

algorithm was applied to one sub-zone at a time to assist the 

process of 3D reconstruction. 

 

Point cloud segmentation is one of the important steps in defining 

the roof structure of the buildings by clustering the points that lie 

in the same planar face into one segment. The roof was 

segmented using the surface growing method, which uses a 3D 

Hough Transform to detect the planar seed surfaces in a 3D point 

cloud (Elberink and Vosselman, 2009; Vosselman et al., 2004). 

The surface growing method of segmentation has two stages; the 

determination of seed surfaces and the growing of the detected 

surfaces which lie in the same plane. A small set of nearby points 

that forms a planar surface is selected as a seed surface. The 

Hough Transform determines whether the points within the 

defined radius fit in the same plane. Then,  the surface growing 

stage begins. The segmentation parameters; seed neighbourhood 

radius, a growing search radius, maximum distance from the 

point to the surface, and a minimum number of points in a 

segment were then defined to help segment the roofs. 

 

2.2.3 Creation of the digital twin of the slums 

 

The 3D reconstruction techniques from point clouds often lead to 

the loss of semantic information in the resulting 3D model. The 

semantic information of the model helps the users to use the 3D 

model for various applications apart from just visualisation (Yao 

et al., 2020). An implementation that allows the dynamic update 

of the semantic information in the model is beneficial in real-time 

monitoring, obtaining remote access, and planning activities 

(Singh et al., 2021). To aid the creation of a digital twin, a direct 

link should be created between the 3D geometry and its metadata 

to exchange the information, which can be done using an ETL 

platform (Heaton and Parlikad, 2020). The national and regional 

government have started using the digital twin of the cities for 

urban planning. Hence a semantically-enriched 3D model 

enables the users to use the model for various purposes other than 

just 3D visualisation (Singh et al., 2021; Yao et al., 2020). A 

semantically enriched 3D slum model would facilitate the 

creation of a Digital Twin of the slums, which would help the 

planners with the slum upgrading.  

 

Every building of the generated 3D slum model was linked to the 

semantic attribute information using the ETL. This provides the 

users for continuous update of the digital twin model. The 

information related to the individual buildings in the slum 

environment was extracted from the attributes of the building 

footprint shapefile. Additional development was performed to 

achieve continuous updating of the semantic information.  The 

individual 3D slum buildings were linked to the information 

related to the construction material used, the area in m2, number 

of floors, house number, building height values, and terrain 

elevation values. A workflow was created to add new information 

about individual houses that could be updated if the house 

number was known. The model was exported as a KML (Keyhole 

Markup language) file and was visualised in Google Earth Pro 

along with the semantic information of the individual house. 

Visualising the results in Google Earth Pro was preferred as it is 

free, can be easily shared with the stakeholders, and provides a 

perception for any project which is location-based (Google Earth 

ProTM - Atlas Networking, 2022). 

 

 

3. RESULTS AND DISCUSSIONS 

3.1 Pre-processing of point cloud data 

The point cloud of the entire study area was clipped using the 

building footprint shapefile to obtain only the building points 

(non-ground) points, as seen in Figure 3. Since this research 

required only the building points, the effects of shadows and 

vegetation in the 3D reconstruction were minimised. The noise 

filter was applied to the entire point cloud by defining a spherical 

neighbourhood radius, considering the point density in that area 

(CloudCompare version 2.6.1. user manual, 2015) and fitting a 

plane (around each point of the cloud). The noise filter aided in 

decreasing the noise in the point cloud and this facilitated the 

segmentation and roof mapping process. The filtering also 

removed the unwanted roof furniture, such as water tanks and 

vegetation on the roof (Figure 4). However, filtering of 

vegetation in between the dense buildings caused occlusions 

within the building points, which was unavoidable, but its effect 

on the 3D building reconstruction was minimal.  

 

The point clouds were analysed before and after filtering based 

on the number of points, point spacing, point density and internal 

accuracy. It showed that the number of points and the point 

density decreased after applying the noise filter and the point 

spacing increased, as seen in Table 2. The Root Mean Square 

Error (RMSE)/the standard deviation also decreased in the 

filtered point cloud compared to the original point cloud, 

suggesting that filtering helped increase the internal accuracy of 

the point cloud. There was an increase in the internal accuracy of 

the filtered point cloud as the unwanted noise over the roof 

structures was minimised, giving rise to a smoother surface, 

causing it easier to fit a plane. 
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3.2 3D building reconstruction 

3.2.1 Segmentation 

 

Segmentation is one of the first and most important steps in roof 

surface modelling. To facilitate the process of segmentation,  

several parameters have to be set, and these parameters depend 

on the spatial appearance of the objects in the laser data, such as 

the minimum size of the object to be detected, the point density 

of the point cloud etc. The seed neighbourhood radius was set to 

2m. The growing search radius was set to 1m since the average 

point spacing of the resulting filtered point cloud was around 0.2-

1m. The maximum distance of a point to the surface was set to a 

default of 0.3m. The minimum segment size was set to 30 as the 

minimum segment size was dependent on the point density, 

which had an average value of (15-20 points/m2) (Xiong et al., 

2015). The segmentation results are shown in Figure 5. 

 

 
Figure 3: Left: Point cloud covering entire area, Right: Filtered point cloud only with building footprints 

 

 

 
Figure 4: Left: Original point cloud with water tanks and roof furniture, Right: Filtered point cloud eliminated the waters tanks 

and outliers from the roof 

 

 

Points  Point spacing (m) Point density (m2) Internal accuracy (RMSE) 

Original 

Point cloud 

Filtered 

Point cloud 

Original 

Point cloud 

Filtered 

Point cloud 

Original 

Point cloud 

Filtered 

Point cloud 

Original Point 

cloud 

Filtered 

Point cloud 

4,652,938 1,695,544 0.16 m 0.26 m 38.49 m2 14.31 m2 0.0108 0.0083 

0.0293 0.021 

0.0541 0.037 

0.0338 0.0245 

0.0270 0.0228 

Average Internal accuracy (RMS) 0.0310 0.0227 

Table 2: Comparison of the original and filtered point cloud 
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Figure 5:Left: Optimal segmentation, Right: segmentation map 

3.2.2 3D model 

 

The final 3D model obtained is shown in Figure 6. Out of the 

total of 2156 buildings, 2146 buildings were correctly modelled.  

Around ten houses were not modelled perfectly. This was due to 

noise filtering errors or the occlusions of vegetation covering the 

roofs of the houses. The model was generated directly in a vector 

format of a 3D polygon shapefile. 

3.3 Digital twin of slums 

To go toward the regular updating of the digital twin, a workflow 

for semantic information updating was further developed using 

an ETL platform. To implement the semantic information in the 

3D model, all the buildings from each sub-zone were combined 

and aggregated into a single zone. A counter was used to create a 

unique ID for the 3D buildings. The 3D geometries of the 

buildings were transformed into 2D geometry polygons. The 2D 

building footprints were converted into points.  A transformer 

was used to pass the attributes from points (obtained from the 2D 

shapefile) to polygons (obtained from the 3D shapefile).The 

resulting attributes were then merged into the original 3D 

geometries using the unique ID which was set for the 3D 

buildings. The three zones were processed separately and merged 

as an entire area.  A conditional clause was applied to facilitate 

the future update of new semantic information. 

 

The information related to construction materials, area of the 

house (m2), house number, and the number of floors was used 

from the building footprint shapefile and was updated in the 

model. The model was visualised in Google Earth. 

Implementation was made to update any semantic information 

related to any individual house in the future based on the details 

of the house number. Figure 7 shows the final results of the 

model.  

 

 

3.4 Limitations 

Due to the noise in the UAV point cloud, some erroneous spikes 

were observed, as seen in Figure 8. Few areas displayed more 

errors than others and needed to be filtered again by increasing 

the neighbourhood radius of the filtering algorithm to 

approximately 1m. In this case, the process of 3D reconstruction 

was repeated. The generated model still required post-processing 

using GIS software which needed manual editing. The errors in 

the 3D models were seen around the edges of the model. This 

could be due to the errors in the image matching. The presence 

of vegetation between the dense houses also affected the 3D 

model creation. In such a condition, the buildings were wrongly 

modelled, or some buildings (a total of ten buildings) were not 

modelled. The irregular roof structures in most buildings in the 

slums gave rise to non-smooth surfaces during the creation of the 

models, which is due to the errors in segmentation (over-

segmentation). 

 

3.5 Evaluation of the model 

A qualitative approach, including semi-structured interviews 

with the stakeholders, was used to evaluate the proposed 

 
Figure 6: The generated 3D slum model 

 

 
Figure 7: The final 3D model of the buildings in the slums 

updated with the semantic information 

 

 
Figure 8: Errors in the 3D reconstruction of buildings in 

the slums : a) Erroneous spikes on the edges of the 

building, b) Error in the 3D building generation due to 

presence of vegetation c) Irregular roof structures 
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workflow. Five interviewees were questioned on the feasibility 

of the methodology, usability and fitness of the model, and 

satisfaction with the method used for visualisation. The interview 

was then followed by a few questions related to the strengths and 

limitations of the model.  

Four out of five participants remained neutral regarding the 

algorithm's feasibility for practical applications, and three out of 

five participants agreed that the software was open source and 

cost-effective. Four out of five participants strongly agreed that 

the presented level of details of the 3D model is sufficient for the 

buildings in the slum. The comment on the geometry of the 

building model was debatable as two participants disagreed, two 

remained neutral, and one agreed that it was satisfactory. All four 

agreed on the possibility of inputting the semantic information 

into the model and were satisfied with the method used for 

visualising the model. 

All the participants were asked whether "The presented 3D slum 

model can be used for applications related to slum upgrading 

activities (Yes/No)". Three participants responded affirmatively 

as, “The 3D slum model could be used to visualise the existing 

buildings and gather information, which would be helpful for the 

urban planners for slum upgrading and would help to share the 

data easily with the slum dwellers”. Two participants responded 

negatively as "The cartographic accuracy of the model was not 

guaranteed and hence could not be used for land regularisation".  

 

 

4. CONCLUSIONS 

The main goal of the current study was to develop a 

methodological workflow to automatically reconstruct a 3D slum 

model using the data from the UAV and the 2D footprint in São 

Paulo, Brazil. The study also aimed at developing a method to 

input and update the attribute information in the generated 3D 

model to facilitate the creation of a digital twin of the slum. The 

results of this study indicated that the suggested semi-automatic 

method could be used to create a semantically-enriched 3D slum 

model efficiently. 

Some limitations caused by the algorithm Xiong et al. (2014, 

2016) could be further explored. Over-segmentation of the roofs 

was observed due to irregular roof structures, which gave rise to 

erroneous spikes in some regions near the edges of the buildings 

due to the noise in the point cloud. It was seen that some areas in 

the point cloud had more noise and needed to be filtered more, 

possibly due to the errors in image matching. Most areas needed 

manual post-processing to eliminate the spikes and get a clean 

model. It was also observed that the algorithm could not handle 

processing a large area at once, so the area had to be clipped into 

smaller areas for better results of 3D reconstruction. Around ten 

houses were not modelled due to vegetation between the houses 

or canopy over the roofs. 

This research used a qualitative evaluation method for the 

generated 3D slum. The semi-structured interviews were carried 

out with the stakeholders to evaluate the model. The interviews 

helped to gain insight into how the generated 3D model is useful 

to the stakeholders for practical use. From the interviews, it can 

be concluded that the resulting 3D model of the favela could be 

used in meetings with the slum dwellers to aid in exchanging 

information between the planners and the residents, as the model 

can be easily visualised and shared using Google Earth Pro. 

5. RECOMMENDATIONS 

For future work, in-depth research should be conducted to find a 

reasonable approach to tackle unwanted spikes automatically. 

The automatic detection and removal of the unwanted spikes in 

the model will save much time in obtaining a spike-free model. 

Furthermore, future researchers can also work on developing 

methods for automatic extraction of the rooflines from the 

orthophotos. Future researchers working on developing a 3D 

slum model can conduct fieldwork and use the field data to 

validate the results. Therefore, the methodology used in this 

study is recommended to be tested with other study areas and 

other datasets (such as point clouds obtained from ALS) to 

understand its interoperability.  
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