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ABSTRACT: 

Shadow can be casted by daylight or any other light sources. We will not get a clear and quality image if it's hovered by the shadow. 

Shadows are frequently formed in high-resolution satellite imagery by the limitations of the imaging environment and the presence of high 

rise structures, and this scenario is true especially in metropolitan regions. Shadow is one of the noteworthy evils in remotely sensed imagery 

which hinders the precision of information extraction and change identification. To attenuate the effects of shadow in high resolution 

imagery regarding their supplemental functions, our paper suggests a novel algorithm for shadow masking built on computational methods. 

Firstly we transformed the images from RGB space to CIELCh space model, next we evaluated a modified  Specthem ratio,  and then used 

multilevel thresholding. We also created shadow masks for areas having vegetation, water, and soil. Shadow mask noise was decreased by 

morphological techniques. The ratio of lighting for the shadowed and unshadowed areas is utilized to create shadow masks, which are then 

used to remove shadows from the source photos. The thresholding approach creates an initial shadow mask during the shadow detection 

step, and the morphological filtering method is used to remove the noise and incorrect shadow regions. We also vectorized the raster data 

which can be further applied for various other studies.  

1. INTRODUCTION

Added intricate information on land coverings (e.g., towers , high 

rise structures, farmlands, bridges, roads, vegetation, etc) can be 

secured effortlessly from high-spatial-resolution (H S R) 

multispectral satellite remote sensing illustrations which the HSR 

satellites capture (such as GeoEye-1, IKONOS, WorldView-2, 

WorldView-3, QuickBird, etc.) (Finlayson et al. 2006, Tian et al. 

2016, Kang et al. 2017, Schläpfer et al. 2018, Zhao et al. 2015). 

Change detection, object recognition, and picture categorization are 

a few applications of HSR images that can be used, however, the 

shadows cast by land objects and clouds are unavoidable and have 

a more significant impact. High-resolution remote sensing has 

become increasingly popular and dominant in urban remote sensing 

during the past ten years (Rashed and Jürgens, 2010, Weng and 

Quattrochi 2018). However, shadows have a significant negative 

impact on medium and high-resolution remote sensing photos, 

especially in urban regions with plenty of tall structures, which 

causes considerable information loss for those images (Luo et al. 

2015 ). In addition to being used for the three-dimensional 

reconstruction of structures, accurate shadow extraction and 

information restoring in shadow areas also have significant 

applications in the classification of urban features, urban planning, 

road network extraction, impervious layer research, (Lorenzi et al. 

2012, Zhou et al. 2009, Sabri et al. 2019 ), etc.  

Colour tone is a potent descriptor in colour remote sensing images 

that not only streamlines and controls the distinguishing qualities of 

visual interpretation applications. Mankind describes a body's 

colour in terms of hue, saturation, and brightness characteristics,  
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which are specified by a number of  related  colour   models    like 

and CPU-intensive to the point of being ineffective for real-time 

image processing. HSV, HSL, and HIS  (hue      saturation intensity 

/ value). Numerous writers have provided multiple equations for the 

same colour space as a result of the abundance of distinct HSL class 

colour spaces in the resources and their machine dependencies. 

Even though they are excellent for user interfaces, particularly 

colour choice, those HSL-related colour spaces only approximate 

the illumination information in the image and sometimes confuse 

hue and lightness or saturation with it. A suitable colour space, such 

as the CIELAB-designed CIEL * a * b * (CIELAB) or its polar 

equivalent CIELCh, is necessary for accurate lightness calculations 

(CIE). This colour space describes all observable hues 

mathematically in 3 dimensions: ‘L’ is for lightness and ‘a’ and ‘b’ 

for the complementary hues of green - red and blue - yellow. The 

module is C in CIELCh, and the  angle of the [a, b] coordinate is 

‘h’. Boundary ambiguity, colour variations, different lighting 

conditions, weather effects, and other issues might make it difficult 

to distinguish between shadows. It has been observed that 

shadowed regions in color multispectral images hold the following 

properties:- 

• Lower brightness (intensity) as a result of the sun's

electromagnetic energy being obstructed (Tsai, 2006).

• Greater saturation with shorter blue - violet wavelengths

as a result of air scattering's Rayleigh effect (Polidorio  et

al., 2003).

• Higher values of hue due to the wavelength-dependent

strength shift in the shaded area compared to an unlit area

(Huang et al., 2004).

• A rise in entropy, a measure of the randomness of the

pixels there (Zhu et al., 2010).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W5-2022 
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W5-2022-143-2022 | © Author(s) 2022. CC BY 4.0 License.

 
143



In recent decades, a significant study has been performed on the 

identification of shadows in both multispectral  satellite    remotely  

perceived photos along with colour airborne imagery. A shadow 

identification technique was put out by (Huang et al. 2004) by 

creating an image model that showed that shadow regions had more 

hue values than the matching non-shadow unities. After the specific 

threshold was adopted to get the shadow entrant in agreement with 

the higher values of hue in shadow zones, 2 further thresholds were 

utilised in regards to the bluish and greenish elements to enhance 

the shadow intrant by removing the green and blue non-shadow 

items. The deduced shadow identification technique was initially 

focused on determining the blue and green non-shadow entity 

misclassification error in colour airborne photographs, despite the 

fact that thresholds were manually chosen. Huang et al. constructed 

a good imaging model despite the manual threshold selection. The 

shadow identification results of the two multispectral images, 

QuickBird and IKONOS, across the C1, C2, and C3 modules of the 

colour spaces C1C2C3, correspondingly, were also examined by 

(Sarabandi et al. 2004), who then proposed a C3 shadow detection 

approach. The C3-based method is capable of detecting the broad 

outline of significant shadow patches. However, the bulk of 

greenish nonshadow objects were mislabeled. Similar to this, 

Arevalo et al. (2006) created a region growing technique for High 

spatial resolution pan sharpening satellite remote sensing images 

and a semi automatic shadow recognition system based on the ‘C3’ 

section of C1-C2-C3 colour spaces. 

Comparative tests showed that the proposed shadow detection 

method outperformed the algorithms based on the R-G-B model by  

(Huang et al. 2004) and the ‘C3’ model by (Sarabandi et  al. 2004) 

in terms of accuracy and resilience. (Besheer  et  al.2015) suggested 

a modified-C3 (M C 3)  index by establishing an enhanced C1-C2-

C3 invariant colour spaces using near infrared  (NIR) band evidence 

in supplement to observable bands (i.e. red,   green,   and   blue 

bands) in the actual C1-C2-C3 constant colour spaces, taking into 

account all available bands of the multispectral image. Following 

that, a bimodal histogram threshold was used to segment the 

shadow. Compared to the C3 approach developed by (Sarabandi  et  

al. 2004) and (Arevalo et al. 2006), the performance of the MC3 

method was enhanced by taking the NIR component into account. 

Additionally, (Silva, et at. 2018, and Tsai 2006) produced an 

automatic shadow identification method that was property based 

and which used the ratio of hue upon intensity values, known as the 

spectral ratio index (SRI) shadow detection method, based on the 

Huang's imaging model (Huang et al. 2004) and the Phong lighting 

model (Phong 1975). An ideal threshold was then picked up 

automatically using the Otsu thresholding method (Otsu 1979). The 

SRI algorithm was evaluated by comparative experiments using 

colour aerial photos in the HIS, HSV, HCV, YIQ, and YCbCr 

invariant colour spaces. In HIS, YIQ, and YCbCr colour spaces, the 

comparison results demonstrated that the SRI shadow detection 

method produced greater shadow identification precisions, albeit 

some green grass in non-shadow areas were yet space (e.g., 

histogram equalization and box filter). Studies somewhat 

misclassified. After that, (Khekade et al. 2015) used a number of 

post-processing techniques to improve the shadow detection 

outcomes of Tsai's SRI algorithm; particularly in the YIQ invariant 

colour comparing colour aerial photographs to Tsai's original SRI 

images revealed that the upgraded shadow-detection method 

significantly reduced the shadow lapse issue from a pictorial 

perspective. (Chung et al. 2009) offered a modified ratio map based 

on Tsai's effective shadow detection technique, employing an 

exponent function for the SRI developed by Tsai, and presenting a 

successive thresholding strategy (STS) as opposed to just utilizing 

a global threshold. The suggested approach by (Chung et al. 2009) 

demonstrated increased performance in recognizing shadow in 

photos comprising lower brightness entities, according to 

experiments done on coloured aerial photographs. Inspired by 

(Chung et. al’s 2009) STS method. The logarithmic spectral ratio 

index (LSRI) algorithm was created by (Silva et al.2017) to 

improve the SRI approach of (Tsai 2006) exclusively in the 

CIELCh colour spaces by employing a natural log function to the 

initial ratio  map to condense the initial outputs. Multilevel 

thresholding was then used to segment the ratio map. By correctly 

identifying shadows and preventing the misclassification of dark 

areas, this modified ratio technique outperformed the initial method 

of ratio by  ( Tsai , 2006) and the method of STS by ( Chung   et  al. 

2009) in colour aerial photos. A comparable shadow detection 

technique was also published by (Ma et al. 2008) using the HSV 

colour space's normalized saturation-value index (NSVDI). The 

NSVDI technique was initially used to create a crude shadow-index 

view. The ultimate shadow view with a certain threshold was then 

created by segmenting the rough shadow index image. Despite 

leaving out some small shadow, this NSVDI approach did a good 

job of detecting large shadow in IKONOS multispectral photos. A 

shadow detector index (SDI) was also presented for the purpose of 

detecting shadows in HSR multi-spectral satellite remote-sensing 

imageries. The neighbourhood valley-emphasis  method ( NVEM ) 

was used to binarise the SDI index image to obtain the image of 

shadow after first analyzing the differences between typical non-

shadow and shadow, specifically for vegetation, in relation to blue 

and green elements. With the exception of a few minor hiccups, the 

SDI technique achieved excellent shadow detection accuracies and 

functioned well in differentiating shadow from vegetation. 

Although more and more shadow detection algorithms have been 

proposed in recent years for detecting shadow in colour aerial 

images and HSR multispectral satellite remote sensing images, 

there are still issues that need to be resolved with regard to shadow 

detection, most notably high small shadow omission and typical 

non-shadow misclassification (like bluish and greenish dark non-

shadow misclassification, as well as large dark non-shadow 

misclassification). As a result, shadow identification in HSR 

multispectral satellite remote sensing photos remains difficult. 

In our work, we present our shadow detection process in depth, 

reviewing every stage to produce a final shadow mask, and then we 

explain our shadow elimination process. 

2. SHADOW DETECTION APPROACH

The shadows appear in places where a source of light cannot 

directly reach because of an obstacle caused by another item. A 

shadow can be cast by an object itself. Shadow detection in this 

work is carried out in the LAB colour space. The RGB image is first 

transformed into its LAB equivalent, then into its polar 

representation, CIELCH. One of the approaches is then chosen for 

shadow detection based on the mean value of the image in the A 

and B planes. Finding characteristics of shadows is the basis for 

shadow detection. These characteristics are intended to distinguish 

shadows from the background and nearby objects.  

The technique for identifying shadows used in this study expands 

on Silva and Tsai's approach, which makes use of colour spaces that 
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Figure 1. Original image acquired form Worldview-3 for Bangalore, India. 

Sr. No Steps 

i RGB conversion to CIELab 

ii Conversion to CIELCH 

iii Flattening out the L and h channels 

iv Segmenting the shadow using the Specthem ratio as a threshold 

v Multiple thresholding using K - Means clustering algorithm 

vi Shadow mask morphological erosion 

vii Noise reduction through dilation 

Table 1. Shadow detection algorithm 

Table 2. K Means Clustering Algorithm 

Sr. No Steps 

i Mask should be divided into designated, connected areas. 

ii Obtain the shaded region using subMask. 

iii Take the subMask out of the dilated subMask. 

iv Use borderMask to get unshaded borders. 

v Calculate the ratio of illumination between the border and the shadow area. 

vi Based on Ratio, relight the pixels. 

vii Return Enhanced 

Table 3.  Shadow removal algorithm 

Sr.no. Steps 

i Decide how many clusters you want by entering the number K. 

ii Pick K centroids or random spots. 

iii Each data point should be assigned to its closest centroid, which will produce the K predetermined clusters. 

iv Based on the updated variance estimate, set a new centroid for each cluster. 

v Repetition of the third step is necessary to reassign every data point to the new centroid of each cluster. 

vi If there has been a reassignment, move on to step 4; if not, go to FINISH. 

vii Now, the model is finished. 
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separate light and chromaticity information (Tsai, 2006, Silva et 

al.2018). In our method, the updated Specthem Ratio image was 

segmented using multilayer global thresholding. This was 

motivated by (Chung et al's  2009) successive local thresholding 

proposal.  In addition, in our study the multilevel Otsu thresholding 

method is not used in view of the computational complexity and 

time cost incurred. As such, it is replaced by the K - Means 

clustering algorithm, which is another method to determine the 

multiple thresholds in a global context, which would give a close 

approximation to that of the multilevel Otsu thresholding method. 

Consequently, our suggested strategy adopts these stages. (Table 

1): 

(a) Converting an image from the RGB model to the CIELAB

model to segregate the data about colour and intensity.

(b) Conversion of the CIELAB colour space to its polar equivalent,

CIELCh, allowing us to take use of the hue channel's greater hue

values in shadows.

(c) Image noise reduction by smoothing the L channel and h

channel.

(d) Using CIELCh instead of HSI colour space in the modified

specthem ratio computation of 
  ℎ+1

𝐿+1
. 

(e) Shadow segmentation applying the higher threshold discovered

by the multi-level application of the K-Means clustering algorithm

of thresholding on the spectrum ratio image.

(f) Morphologically eroding the shadow mask, and then dilating to

reduce noises and improve shadow region delineation.

2.1. Image transformation from RGB-space to CIELCh-space 

The RGB colour space used by colour multispectral images is 

converted to the CIELCh colour spaces, which is a polar form of 

the CIELAB colour spaces created by the Commission 

Internationale de l'Éclairage (CIE) to simulate how people see 

colour. As long as there is enough light, we see colour as being 

roughly constant regardless of the illuminant. 

The CIE tri-stimulus CIEXYZ is used to calculate the device-

independent CIELAB colour space. This colour space is not very 

obvious, regardless of the channel L getting a decent association 

with observed lightness (Ford and Roberts, 1998). In contrast, it's 

polar twin, the CIELCh space, uses illumination, chroma, and hue 

to define colours.  

In order to specify all visible colours using only positive values, the 

CIEXYZ colour space must first be converted from RGB to that 

format (Ford and Roberts,  1998). For the conventional 2o observer 

and D-65 illuminant, this transformation is represented by 

[
𝑋
𝑌
𝑍

]= [
0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041

] [
𝑅
𝐺
𝐵

]  (1) 

where the International Commission of Illumination (CIE) defined 

the "2o standard observer" as the typical human's chromatic 

reaction within a 2o arc inside the fovea. The CIE also specifies 

D65 as a standard illuminant that is often used. It is also known as 

a daylight illuminant because it roughly reflects the typical midday 

light in Western and Northern Europe (which is made up of both 

the light from the sun and the light reflected off of a clear sky). 

We derive the L, a, and b channels from the XYZ tri-stimulus in the 

manner shown below. (Ford and Roberts, 1998) 

L = {
116 (

𝑌

𝑌𝑛
)

1

3
 −16  𝑖𝑓

𝑌

𝑌𝑛
> 0.008856

903.3 (
𝑌

𝑌𝑛
)  𝑖𝑓

𝑌

𝑌𝑛
≤ 0.008856

 (2) 

a = 500 (𝑓 (
𝑋

𝑋𝑛
) − 𝑓 (

𝑌

𝑌𝑛
))  (3) 

b = 200 (𝑓 (
𝑌

𝑌𝑛
) − 𝑓 (

𝑍

𝑍𝑛
))  (4) 

where 

𝑓(𝑥) = {
𝑥1/3, 𝑖𝑓𝑥 > 0.008856

7.787 +  
16

116
, 𝑖𝑓 𝑥 ≤ 0.008856

 (5) 

The terms Xn, Yn, and Zn in the equations above relate to the 

referenced white, which has the values XYZ = {95.047, 100.00, 

108.883} for D65 illuminant with Y = 100.  

Simple geometric transformation can convert the CIELAB colour 

system's cartesian coordinates into the CIELCh colour space. 

C = √𝑎2 + 𝑏2  (6) 

h=atan2 (b,a) 

h= {
ℎ + 360°  𝑖𝑓 ℎ < 0°

ℎ − 360°  𝑖𝑓 ℎ ≥ 360°
 (7) 

where atan2 is a particular function found in several standard 

libraries that explains what happens when a = 0. 

2.2. Specthem ratio 

We determined the ratio between the hue and intensity values of the 

pixels throughout the picture segmentation process to produce 

shadows. Instead of the channels H and I from HSI suggested by 

Tsai (2006), we used the channels L and h  from the CIELCh space. 

Thus, our modified Specthem ratio is: 

Sr = 
(ℎ+1)

(𝐿−1)
(8) 

where Sr is the image of the Specthem ratio, and the channels  h 

and L have in the past been normalised to the [0,1] interval. 

The original image's hue to intensity ratio will draw attention to the 

heightened hue attribute of shadows with low luminance (intensity), 

meaning that the pixels in shaded areas will have greater values than 

those in unshaded areas. 

2.3. K-Means Clustering Algorithm 

To handle clustering issues in data science or machine learning, K-

Means Clustering which is an unsupervised learning algorithm 

process is used that divides the unlabeled information into various 

clusters. Here, K specifies how many pre-defined clusters must be 

produced during the operation. 
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It gives us the ability to divide the data into various groups and 

provides a practical method for automatically identifying the 

clusters in the unlabeled dataset without the requirement for any 

training. Each cluster has a centroid assigned to it because the 

algorithm is centroid-based. Reducing the overall distances 

between each data point and its matching clusters is the main 

objective of this technique. An unlabeled dataset is first used as the 

algorithm's input, after which it is divided into k clusters. The 

algorithm then repeats this process until it has no more clusters left 

to use. K should be set to a predetermined value for this method. 

The two major functions of the k-means clustering algorithm are: 

• Uses an iterative technique to choose the best value for K

centre points or centroids.

• Places every data point with the nearest k-center. A

cluster is formed by the data points that are close to a

specific k-center.

As a result, each cluster is distant from the others and contains data 

points with some commonality. The K-means Clustering Algorithm 

(Table 2) is explained in Fig. 2. 

Figure 2. K Means Clustering Algorithm 

2.4. Operations for morphology and noise reduction 

Often, thresholding results in some noise in the form of loose pixels 

in the segmented images. Given that the image is binary, one way 

to eliminate those pixels is to use morphological operations like 

Opening and Closing (Gonzalez and Woods, 1992). 

To remove noise and properly integrate boundaries (penumbra) in 

the shadow mask that has been segmented from the Specthem ratio, 

we perform morphological Closing. 

Closing operations are described as the enlargement of the image A 

by the structuring element B and the subsequent erosion of the 

outcome by B. Although it also removes holes, closing tends to 

smooth the edges of the object. 

3. SHADOW REMOVAL APPROACH

Each pixel in the binary mask created by the shadow detection 

method is roughly categorised as either being in a shadow or not. 

However, the penumbra region in an actual scene causes a gradual 

change in illumination, which needs to be taken into account. 

Calculations for an image with shadows include (Table 3): 

Ii = (kiLd +Le) Ri  (9) 

where Ii is the pixel value for the image with the shadow, Ld is the 

direct light intensity, and Le is the environmental light intensity. 

The reflectance of the pixel is represented by Ri, while its shadow 

status is represented by ki. 

Assuming that direct light strikes each pixel at the same angle, we 

can assume that each pixel is illuminated uniformly. In Eq. (9), if 

ki is 0, the pixel is in an umbra because it receives no artificial 

illumination; if ki is 1, the pixel is in a nonshadow region. Our 

shadow detection technique yields a hard shadow map with ki being 

either 1 or 0. 

Our shadow removal approach was created to be suitable for 

parallel computation and is an adaption of the work by Silva 

G.F.2018, Guo et al. (2013), and Ye et al. (2012). It is composed 

by: 

i. Marking shaded areas' connected components in virtue to

make separate submasks for every shaded area's

corresponding local handling.

ii. Estimating the lighting ratio of the shadow areas and their

borders in order to determine the co-efficient required to

make up for the absence of direct illumination in shaded

areas

iii. Relighting the shaded areas by multiplying pixels in

accordance with the shadow mask and the region

illumination ratio.

iv. Compensation of Penumbra .

Figure 3. Generated Shadow mask of the study are
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Figure 4. De-shadowed Image. 

4. RESULTS AND DISCUSSION

The original image that was used to gauge how well each 

implementation performed is shown in Fig. 1. To test the algorithms 

of our detection technique, it is equivalent to the input colour 

multispectral image obtained from urban regions. Fig. 3 depicts the 

shadow mask created from the source image. (Fig.1). We begin 

processing of the first Image by matching the multispectral imagery 

in RGB format (Fig. 1) to CIELCh spaces.  The zones of lower 

luminance are emphasized after using the Specthem ratio. The final 

mask is obtained after morphological and thresholding processes. 

Fig. 3 shows the final mask. The retrieved shadow is shown as white 

pixels. Using the shadow mask, we then estimate the ratio of 

illumination between the (unshaded) boundaries and shaded area. 

Lastly, we regenerate the shaded pixels to provide the deshadowed 

image as shown in Fig. 4. 

Figure 1 has good resolution and distinct shadows. The suggested 

method was capable to locate shadow patches in a grassy 

environment. Noise reduction deleted irrelevant dark areas. The 

masking technique still provides some challenges to the system, but 

it successfully differentiated the bottom tree from its shadow while 

accurately counteracting the shadows (Fig. 3). Some false positives 

are discovered, or some pixels are misclassified as shadow regions. 

Some building faces were recognised as shadows, causing false 

positives. In Fig. 4, most of the shadows in Fig. 3 have been 

eliminated, allowing us to identify the shaded objects. Even 

shadows were removed. We also observe that the buildings' non-

illuminated faces were relit. The absence of tree shadows is the 

most crucial thing to notice. We can observe that the trees' 

appearance is unaltered despite the absence of shadows.  

It can be seen that the Image 03 missed few shadows present in it. 

hat is brought on by the image's intricacy and low resolution. Due 

to the image's poor contrast, cast shadows (buildings without lights 

on their faces) and cast shadows (buildings casting shadows on a 

road) frequently overlap. The improved noise immunity of our 

suggested strategy led to greater performance. 

Using the CUDA Python code, we can see that each image's 

processing of shadow detection takes a longer amount of time. This 

results from the fact that memory transfers between the CPU and 

GPU, which are the primary bottlenecks in GPU programming. 

CUDA boosts performance even further when there are more 

calculations than shadow since the speed improvements outweigh 

the disadvantage of memory transfers. 

Shadow segmentation is not the only processing step taken into 

account when comparing sequential versus parallel solutions. 

Parallel implementations of stages like colour conversion, 

Specthem Ratio calculation, and morphological operations 

contribute to the increase in computational speed. 

5. CONCLUSION

We used a high resolution remote sensing image of a real scene, 

obtained through high resolution remote sensing image, with scene 

complexities. We initiated by mapping the RGB-formatted 

multispectral images into CIELCh space.  The low luminance areas 

were then highlighted in the Specthem Ratio images that we had 

generated earlier. To acquire raw masks, we then conducted 

multilayer thresholding. The final shadow masks were then created 

by applying morphology techniques, which preserved the shapes of 

the masks and reduced noise. After that, we applied the masks to 

carry out local processing in the shadowy areas. To relight the 

shaded pixels, we used the statistical data of their bounds, which 

were not shaded, to relight the boundaries.  

The strengths of each technique described in Silva et al. (2018), 

Chung et al. (2009), and Tai (2006) were examined in this work. 

Multilevel thresholding procedures and morphology were used to 

cover the brightness and chromaticity characteristics of the 

shadows. These procedures do away with the requirement for a 

priori knowledge of the surroundings, geometry, and location of the 

light source in order to reconstruct a 3D model, which can be time-  
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Figure 5. Vectorized image of the study area. 

and CPU-intensive to the point of being ineffective for real-time 

image processing. 

One can observe how the shadows are correctly detected in our 

suggested method, but dark parts that are not shadows are only 

marginally identified. It should be noted that false positives, or 

pixels that are mistakenly classified as shadows when they are not, 

have little impact in this type of image application. False negatives 

or unnoticed shadows would be the most dangerous scenario, which 

our strategy helps to reduce. To cut down on false positives, extra 

work on the thresholding technique might be required for some 

applications. 

When comparing GPU implementation with CPU implementation, 

we found speedups of about 6 times. This increase in processing 

speed demonstrates the method's potential for application in a real-

time monitoring system to boost the effectiveness of other 

algorithms. We also vectorized for further analysis (Fig 5) 
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