The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLVIII-4/W5-2022
https://doi.org/10.5194/isprs-archives-XLVIII-4-W5-2022-189-2022
https://doi.org/10.5194/isprs-archives-XLVIII-4-W5-2022-189-2022
17 Oct 2022
 | 17 Oct 2022

PROCEDURAL DIGITAL TWIN GENERATION FOR CO-CREATING IN VR FOCUSING ON VEGETATION

L. Thuvander, S. Somanath, and A. Hollberg

Keywords: Co-creation, Data Pipeline, Digital twin, Green Structures, GIS, Procedural Generation, Vegetation, Virtual Reality

Abstract. An early-stage development of a Digital Twin (DT) in Virtual Reality (VR) is presented, aiming for civic engagement in a new urban development located in an area that is a forest today. The area is presently used for recreation. For the developer, it is important both to communicate how the new development will affect the forest and allow for feedback from the citizen. High quality DT models are time-consuming to generate, especially for VR. Current model generation methods require the model developer to manually design the virtual environment. Furthermore, they are not scalable when multiple scenarios are required as a project progresses. This study aimed to create an automated, procedural workflow to generate DT models and visualize large-scale data in VR with a focus on existing green structures as a basis for participatory approaches. Two versions of the VR prototype were developed in close cooperation with the urban developer and evaluated in two user tests. A procedural workflow was developed for generating DT models and integrated into the VR application. For the green structures, efforts focused on the vegetation, such as realistic representation and placement of different types of trees and bushes. Only navigation functions were enabled in the first user test with practitioners (9 participants). Interactive functions were enabled in the second user test with pupils (age 15, 9 participants). In both tests, the researchers observed the participants and carried out short reflective interviews. The user test evaluation focussed on the perception of the vegetation, general perception of the VR environment, interaction, and navigation. The results show that the workflow is effective, and the users appreciate green structure representations in VR environments in both user tests. Based on the workflow, similar scenes can be created for any location in Sweden. Future development needs to concentrate on the refinement of buildings and information content. A challenge will be balancing the level of detail for communication with residents.