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ABSTRACT:

Estimating the spatio-temporal profile of a building’s construction using high-resolution satellite images is a critical problem since

it can be utilized for a variety of data-driven urban initiatives. One strategy to achieve this is to extract building footprints and

track them in multi-temporal data as observed in SpaceNet’s Challenges. Although several unique solutions have been presented

for this problem, this task can become extremely difficult for partially obscured buildings with densely overlapping boundaries,

such as those found in underdeveloped countries like Pakistan. Consequently, in this paper we propose a framework to address this

problem by merging built-up area segmentation with digital maps. In the first step, satellite image is passed to a deep learning model

that predicts segmentation masks over the built-up area following which building construction profiles are generated by overlaying

digital maps over these predicted masks. We compare the results with ground truth profiles and our results show that the proposed

method extracts building counts and construction profiles with an accuracy of 95%.

1. INTRODUCTION

Urban planning has become more crucial than ever because of

the rapidly changing urban environment and human develop-

ment patterns. To meet the demands of the present and future

communities, urban planners will need to be more data-driven

in their planning to enable optimal land and infrastructure solu-

tions. In this regard, constructing a spatio-temporal profile of

the development of buildings is vital since it is used in a vari-

ety of applications, such as urban sprawl analyses, population

estimation, mobile targeting, managing infrastructure deploy-

ment, and enhancing citizens’ access to services. Traditional

methods for these types of tasks are usually based on onsite

measurements and surveys that require a lot of human effort,

time, and resources. With the advancements in remote sensing

technologies, it is now possible to extract these spatio-temporal

profiles from high-resolution satellite images.

The task of extracting the spatio-temporal construction profile

of buildings has been tackled primarily by three types of meth-

ods. These include classical methods, building footprint extrac-

tion methods, and regression methods. A brief review of each

type of method will be provided in Section 2. Although the res-

ults of these methods are excellent and they have been used in a

variety of applications effectively, their performance is still un-

certain for developing countries like Pakistan. The main reason

for this is that these developing countries have diverse devel-

opment patterns, including a lot of partially occluded buildings

that are densely packed together. Therefore, the state-of-the-art

building extraction and object detection methods fail to perform

well. This problem is represented in Figure 1, where similar

segmentation models have been used for the very high resolu-

tion (V.H.R) images of USA, as well as the relatively low resol-

ution and densely packed areas of Pakistan. The buildings foot-

prints have been extracted easily and accurately for USA, while
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the model is unable to accurately detect building boundaries for

densely packed areas of Pakistan. In addition, the unavailability

of very high to ultra high-resolution images (0.1m - 0.01m per

pixel) publicly makes it difficult to extract building footprints

with high accuracy.

Figure 1. A comparison of building footprint extraction in dif-

ferent areas. On the left side, successful building extraction has 
been performed using deep learning models with high-resolution 
imagery in the USA (ESRI, 2020). On the right, similar methods 
have been applied but with much lower resolution and densely 

packed areas of Pakistan.

To overcome the above-mentioned problems, we propose a 
two-step novel approach that utilizes digital maps, along with 
state-of-the-art deep learning methods to establish spatio-

temporal building profiles at any given location. At first, we 
train a deep learning model based on DeepLabV3plus 
architecture ( Chen et al., 2018a) for semantic segmentation of 
built-up areas in satel-lite imagery. The built-up segmentation 
masks are then overlaid with digital maps to extract the 
construction profile for each building in that area. The details of 
our proposed methodology will be explained in Section 3. To 
obtain better results, we pre-pare a small dataset of 730 satellite 
images which include over 25,000 buildings spanning around 
57 sq. km of the land area of Lahore, the second largest city of 
Pakistan.

The main contributions of our work are: (1) We create a data-

set that allows us to capture the building patterns in complex
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urban scenarios, and (2) We develop a tool for extracting and

tracking building construction profiles in time-series. This tech-

nique could be employed by policy-makers and urban planners

for evidence based and data driven policy making.

The remainder of this paper is organized as follows. Section

2 highlights the diverse building extraction and object detec-

tion methods being used by different researchers followed by

methodological framework. Section 3 explains the end-to-end

pipeline used in this research for developing building construc-

tion profiles. After this, Section 4 quantifies the efficacy of

our proposed method by comparing the generated results with

ground truth data. Section 5 then delineates the main findings

of this research and explains how our proposed pipeline can be

used to estimate the growth in number of buildings in differ-

ent regions of Pakistan over the time. Finally, we conclude our

paper in Section 6 by outlining our contribution and providing

future research directions

2. RELATED WORK

In this section, we will discuss various approaches that have

been employed in existing literature for obtaining building pro-

files or estimating urban sprawl. As discussed earlier, three ma-

jor methods have been used to extract and count buildings from

satellite data, i.e., classical methods, building footprint extrac-

tion methods, and regression methods. Let us look into each

one briefly.

2.1 Classical Methods

Several classical methods that do not include deep models have

been proposed for estimating urban sprawl and population dens-

ity estimation. Most of these methods use Landsat’s images

to perform land use land cover (LULC) classification, and the

number of pixels per class gives a rough estimate of urban growth

( El Garouani et al., 2017; Shah et al., 2021; Sahana et al.,

2018). However, such methods cannot give a quality estim-

ate at a building level because of the low resolution (maximum

of 15m per pixel) of the Landsat images. In contrast to Land-

sat images, some methods also try to estimate urban sprawl

through population density estimates ( Zhang, 2003; Terzi and

Kaya, 2008), which are also rarely available for many under-

developed and developing countries. Moreover, linear model-

ing was applied on fine-resolution (1m per pixel) LiDAR data

along with satellite images to estimate building counts ( Silvan-

Cardenas et al., 2010), but again the approach is quite expensive

and non-scalable.

2.2 Building Footprint Extraction Methods

With the advent of remote sensing technology, researchers are

effectively employing computer vision techniques to extract build-

ing footprints. Several mathematical models have been pro-

posed so far ( Ok et al., 2013; Huang et al., 2014; Chen et

al., 2018b) for this purpose, but they require very high res-

olution images ( 0.01m per pixel) to give good results. To

overcome this issue, researchers began to use deep learning

approaches for the task of building detection and footprint ex-

traction. The availability of freely available datasets and open

challenges ( Wang et al., 2016; Maggiori et al., 2017; Ji et al.,

2018; ISPRS 2D Semantic Labeling Contest, n.d.; Van Etten et

al., 2018; Gupta et al., 2019 have also boosted the interests in

this area. The Space-Net challenges ( Van Etten et al., 2018), in

particular, have demonstrated the feasibility of extracting build-

ings from medium-resolution satellite images (1–4m per pixel).

Hence a lot of solutions, including segmentation along with

post-processing ( Yuan, 2018; Liu et al., 2018), instance seg-

mentation ( Wen et al., 2019; Zhao et al., 2018), generative ad-

versarial networks (GANs) ( Li et al., 2018; Shi et al., 2018),

customized networks ( Hui et al., 2019; Liu et al., 2019), and

graph-based networks ( Qin et al., 2018) have been proposed

in recent years. Moreover, trained models are also available

on ArcGIS ( ESRI, 2020) which can be used directly to extract

building footprints. However, as explained in Section 1, these

methods still struggle to deliver effective results for areas with

varying architectural designs, and tightly packed buildings with

no visible gaps between consecutive buildings.

2.3 Regression Methods

Apart from the above two methods that count buildings in an

area implicitly, several approaches in the literature directly count

the number of buildings from satellite images and other GIS

data. For example, micro-scale data for spatio-temporal model-

ing of building population estimation ( Greger, 2015) was done

for highly urbanized areas. A mathematical model was formu-

lated that tries to count the number of buildings by counting the

number of objects of a certain class in a desired region ( Meng

et al., 2021). A deep learning-based regression model was pro-

posed ( Shakeel et al., 2019) for counting built-up areas in satel-

lite imagery. To adapt the pre-trained building counting models

on the developed countries for the under-developing countries

with unlabelled data, counting consistencies have been used

( Zakria et al., 2021). Although these methods have proved

to be quite effective, most of these provide counts for a region

(either an image or a whole area) and do not provide within

region densities, i.e., estimating the construction profile at the

level of individual building.

3. METHODOLOGY

From the arguments in the preceding section, it is clear that the

deliberate or subliminal aim in existing literature is to generate

building profiles. Each suggested solution however has certain

limitations. For instance, some methods need high-quality data,

which prevents them from being extended to other areas, while

others provide urban growth detection at higher urban scales

and do not offer estimates at the individual building level. In

this section, we will go over our suggested methods for ad-

dressing these challenges. First, we will discuss the data re-

quirements, where we demonstrate how easily accessible data

can be used to solve the issue. Next, we will discuss the pro-

cess of model training, where we use the collected data to train

a deep learning model for built-up area semantic segmentation.

After that, we will describe the end-to-end pipeline we utilize

to predict the construction profile of each (individual) building.

The pipeline makes use of the trained model as well as addi-

tional data extracted from digitized maps.

3.1 Data Requirements

Two key data sources are required to use our suggested pipeline:

(i) RGB satellite images of the region/area of interest, and (ii)

geo-tagged digitized map data with the locations of all avail-

able plots in that area. We used satellite imagery from Google’s
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repository, which is freely available for academic usage. To cre-

ate a semantic segmentation dataset for our region, we label a

fraction of images using GIS tools. As a result, our deep model

works incredibly well for our areas. The digital map informa-

tion was taken from the openly downloadable housing plans for

about 350+ societies in Lahore, Pakistan. Let us now discuss

each individual step in detail.

3.1.1 Labelling The trained models for the developed world

do not perform well in segmenting out the built-up regions in

the under-developing nations as has been highlighted in the pre-

ceding sections. It is, therefore, necessary to gather segmenta-

tion data for these regions. To deal with this problem, we de-

velop a dataset by manually marking building footprints for a

portion of Lahore, a metropolitan city in Pakistan. We selec-

ted the region of the Defence Housing Authority (DHA) from

Lahore, which is roughly 57 sq. km in area. Using satellite

imagery, we manually map the footprints of 24,928 building

structures that are located in this region. Figure 2 displays the

overview of the markings in the indicated location. Since we

are working on multi-temporal data, therefore we also mark a

portion of historical images as well.

Figure 2. Details of the marked Area. The complete marked

area of Defence Housing Authority (DHA), Lahore, along with a

zoomed in look at the marked footprints

3.1.2 Extracting Segmentation Data The marked/digitized

polygons along with satellite image are then used to extract seg-

mentation data. The next step is to transform this data into tiny

images and masks so that they can be fed directly to the deep

model. For this, the entire region is divided into 300m x 300m

sized tiles from which images and their respective masks are

extracted. Additionally, we mask off the area’s component that

was not a part of the marked zone. Figure 3 depicts the mask-

ing procedure and tile extraction. We prepared a dataset of 740

images for the DHA region using this procedure.

3.1.3 Collecting Digitized Map Data The data gathered can

be leveraged to train the deep model and, in some way, be

used to make predictions about built-up regions. However, an-

other form of data—the geo-locations of the accessible plots in

the specified region of interest—is required for our pipeline to

make inferences at the scale of buildings. To do this, we first

gathered the society maps (in the form of images) for more than

350 societies in Lahore. After that, we vectorize these maps of

the societies using raster to vector conversion tools from the

GDAL package. Then, as shown in Figure 4, we extract the

center points from each polygon on the vectorized map, which

provides us with the Geo-locations of the available plots. Note

that the map includes information about plots of land only; it

Figure 3. Tiling of Images. Here we show our process of ex-

tracting images from Geo-tiff file. On left, grid of 300m x 300m 
is overlaid over the marked region. On the right, the extracted 
image (upper right) and it’s corresponding segmentation mask 

(lower right) from one of the tiles is shown. The black area shows 
the unmarked region.

does not indicate whether a particular plot of land has construc-

tion on it.

Figure 4. Extracting Geo-Locations. An example of one of the 
geo-referenced digitized map, along with the extraction of center 

points using raster to vector and other GIS tools.

3.2 Model Training

Once the data is obtained, we train a deep learning model based 
on DeepLabV3plus ( Chen et al., 2018a) architecture with Res-

net50 encoder for semantic segmentation of built-up regions. 
Since our dataset is really small, therefore training a deep net-

work like DeepLabV3plus, with millions of parameters, from 
scratch may lead to over-fitting. To prevent this potential prob-

lem, we initialize the model with pre-trained weights on the 
image-net dataset. After the initialization, we set the number 
of classes of the last convolutional layer to 2 (building or non-

building). Once this is complete, we unfreeze all the layers and 
then fine-tune the model using our small dataset. We train the 
model with a batch size of 4 and a learning rate of 0.00008, and 
we train it for 80 Epochs.

3.3 Proposed Pipeline

Once our deep model is trained, we have completed every re-

quirement for our proposed pipeline. Hence, we can now com-
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Figure 5. The Proposed Pipeline. The first step is the selection of AOI and providing its satellite image to the trained model through 
tiling. After that, the generated masks are merged, geo-referenced, and digitized into a vector file. In the end, the vectorized file is 
overlaid with the extracted geo-locations for that AOI, and profiles are developed. The green dots in the final image represent the 

construction of that specific building, while the red dots show that they weren’t constructed.

bine these collected blocks in an end-to-end manner and predict

the construction profiles of each individual plot in the provided

region. Our proposed pipeline is shown in Figure 5, where we

first pass images of our area of interest to the deep model. The

deep learning model returns us segmentation masks for each

of the passed images. We then apply a post-processing stage

where we simply merge these images, geo-tag the merged file,

and then digitize the merged raster to obtain vector/polygons

over the built-up regions. In the end, we overlay the plot loca-

tions extracted from digitized society maps with these predicted

polygons and develop the construction profiles of each building.

We next describe each part of the proposed pipeline in detail.

3.3.1 Selection of AOI and tiling The first step in our pipeline

is the selection of an area of interest (AOI) and providing the

satellite image for that specific AOI. We extract 300m x 300m

tiles from this large image using the step mentioned earlier. For

a multi-temporal analysis like in our case, images at each of

the specified times are collected, and the process is repeated for

each of these images.

3.3.2 Inferences from the Model Once we have data in the

form of images, we pass these images to our trained deep model.

The model predicts a segmentation mask for each of these im-

ages, providing 1 for pixels labelled built-up and 0 otherwise.

These binary masks are saved for each image.

3.3.3 Merging, Geo-Referencing, and Digitizing Once masks

against each of the images have been predicted, the next task is

to apply post-processing methods to convert them to vectors/

polygons so that they can be used as an overlay layer for the

geo-locations of the plots. For this purpose, we employ tools

from the Geospatial Data Abstraction Library (GDAL). We use

the coordinates that were used to extract each tile for its geo-

referencing and then combine each of the geo-referenced tiles.

Once all tiles are geo-referenced, we vectorize this large image

with the help of the value assigned to built-up pixels. Hence, we

obtain a single vector file for our desired AOI that contains the

information of the ”built-up regions”. To use this information

to extract the construction profile of each building, we need to

go through one more step, which is described next.

3.3.4 Extracting building profiles The built-up regions ex-

tracted in the previous step can alone be utilized to formulate

many policies. However, they do not provide granular inform-

ation about the construction or non-construction of each indi-

vidual building in that area. Many footprint extraction methods

try to add some classic post-processing stages, but the results

are not good enough. We propose to solve this by formulat-

ing an easier problem than extracting footprints. We use the

plots’ geo-locations, extracted from the digitized maps, and as-

sign them labels based on their position with respect to the gen-

erated built-up regions. Each plot of land is considered to have

construction on it if it lies within any of the built-up regions, and

un-built otherwise. Mathematically, this is akin to assigning a

binary label yi to each plot of land such that.

yi = I(xi, r) ∀r ∈ R (1)

Here, i represents the time index while xi ∈ L is the location

of the ith plot in that area. r ∈ R is the built-up region extrac-

ted by our model, while I(a, b) is an indicator function showing

whether the point a lies within any of the regions in b or not. In

particular, I(a, b) = 1 if a ∈ b, and is equal to 0 otherwise.

Thus, yi ∈ [0, 1] is the estimated construction profile for that

building at a specific time. Using this straightforward mathem-

atical comparison, one can predict built-up labels for each of

the plots in a given area at a specific time. As a result, our tech-

nique can be utilized to produce spatio-temporal development

profiles of building construction for any specified metropolitan

region with ease.

4. ACCURACY ASSESSMENT

In this section, we measure the performance of our model us-

ing different performance metrics. We compare the generated

profiles from our pipeline, to the ground truth profiles. The

ground truth data is simply obtained by using (1), but instead

of predicted regions, we use ground truth building footprints as

an overlay layer. First, we will check the performance of the

model using a confusion matrix and afterward, we will see how

does the model performs in estimating total number of building
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counts for different spatial and temporal locations. In this way,

we can better know about efficiency of the model as well as its

consistency across spatial and temporal data.

4.1 Confusion Matrix

We use our ground truth footprints in (1) in place of predicted

regions R to establish the ground truth profiles of the buildings.

After that, we compare both predicted profiles and ground truth

profiles to create the confusion matrix. For example, if a spe-

cific building’s profile is labelled as built-up in ground truth,

while it was labelled un-built by our pipeline, than it is termed

as false negative, and so on. Using these settings, we obtain the

confusion matrix as shown in Table 1.

G
ro

u
n

d
T

ru
th

L
a
b

el

Predicted Label

P̂ N̂ Total

P 25893 2144 28037

N 2047 57292 59339

Total 27940 59436 87376

Table 1. The confusion matrix for building construction profiles. P̂  
and N̂ are the ground truth labels for built-up and un-built, 

respectively. P and N are the predicted la-bels for built-up and un-

built, respectively.

It is clear from the table that our model predicts the construction 
profiles with an accuracy of 95%. The precision & recall score 
is approximately 92%, which is excellent.

4.2 Spatial Consistency

In spatial consistency, we count the total number of constructed 
buildings in different areas and compare them with the ground 
truth count. In this way, the performance of our proposed pipeline 
in estimating building counts for a desired area can be evalu-

ated. For this purpose, we sub-divide the marked area into 12 
regions and we compare the total counts from model generated 
profiles with the ones generated from ground truth. To make 
calculations consistent over the size of regions, we divide the 
counts with the total number of plots of that region and we call 
it built-up ratio, as described in (2).

BR =

∑
N

i
yi

N
∀yi ∈ Y (2)

Here, BR is the output built-up ratio, Y is a set of profiles of

buildings in that area, and N is the size of set Y. In this way,

areas with 10,000 plots and 1000 plots can be evaluated using

the same scale. Using this equation, built-up ratios for both

ground truth and predicted profiles were calculated for each of

the 12 regions. The results of the evaluation are shown in Fig-

ure 6.

Figure 6. Spatial Consistency of the model: The results for spa-

tial consistency performance of our model. On x-axis, we have 
different regions of DHA and on y-axis we show the estimated 

and ground truth BRs for that region.

The model is performing extremely well in almost all cases, 
with an average deviation of ±0.01(or 1%) form ground truth 
built-up ratios.

4.3 Temporal Consistency

In temporal continuity, we perform the same analysis as in spa-

tial consistency, but here we change the temporal dimension 
while keeping the area constant. In this way, the performance 
of the model over different dates on the same area can be eval-

uated. As we had marked a portion of past images to incor-

porate historical data in training as well, therefore we used that 
to develop ground truth profiles for that portion. We apply our 
pipeline to 17 different dates distributed between the year 2010 
to the year 2020. The results for evaluation are shown in Figure 
7.

Figure 7. Temporal Consistency of the model: The results for 
temporal consistency performance of our model. On x-axis, we 
have images on different dates (dd/mm/yyyy format) for same 
regions (Phase 1) of DHA and on y-axis we show the estimated 

and ground truth BRs for that time.

The average deviation from ground truth built-up ratios is ap-

proximately ±0.007(or 0.7%), which is extremely good.

5. ANALYSES AND RESULTS

In this section, we will use our proposed pipeline to analyze 
and quantify urban sprawl of DHA from 2010 to 2021. Here, 
we will be counting the growth in the number of buildings over 
the years. Figure 8 shows the a change in one of the regions of
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Figure 8. Growth in Phase-5 DHA: The analysis results on one of the regions (Phase 5) of DHA. The left most image is for 2010, the 
center image is for 2014, and the last image is for 2020.

DHA over these years. We note that these type of visualizations

can be performed with only segmentation model or even with

the help of Landsat Images. However, to quantify the growth,

we need to further post-process our results using (1) and (2).

Let us now see quantified growth in number of buildings, as

well as the built-up ratios, for the area of DHA.

5.1 Estimating urban sprawl

We collect satellite images for 17 different dates for Defence

Housing Authority (DHA) to perform the urban sprawl ana-

lysis. We pass these images to our proposed pipeline and es-

timate building construction profiles for each of the mentioned

date. The complete analysis show that that the building count

for DHA was 14233 (built-up ratio 16.2%) in 2010, which has

now increased to 27967 (built-up ratio 32%) in 2020. This

shows that in only ten years, the number of buildings in DHA

have doubled, which is a significant rise. This results are shown

in Figure 9.

Figure 9. Urban Sprawl in DHA: The results of building counts 
(left) and built-up ratios (BRs) (right) with x-axis representing 

the date (dd/mm/yyyy format).

6. CONCLUSION AND FUTURE DIRECTIONS

Establishing construction profiles of buildings for a region is 
an essential problem in the process of collecting large-scale 
urban data; nonetheless, relatively few people have concen-

trated on directly tackling this problem. The suggested frame-

work is based on datasets that are publicly available. The accur-

acy assessments for our pipeline indicate excellent performance 
across a variety of evaluation metrics. As a consequence of this, 
the findings are relevant to the work of both researchers and 
urban planners. In addition, the framework can further be put 
to use in the execution of spatio-temporal sprawl assessments, 
as was covered in the preceding sections. However, the avail-

ability of society maps can become a bottleneck in the use of 
our pipeline for many places, such as the slums (katchi abadis) 
of South Asia. Hence, for future study, we intend to focus on 
extracting such information without including society maps or 
plots geo-locations.
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