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ABSTRACT: 

Human-environment interactions (HEI) are dynamic processes involving a wide range of research areas. The complicated interaction 

processes, with land cover change as an intermediate process, have been investigated for decades. Urban construction, as a type of 

human activity, is an important part of the HEI. Earth observation (EO) techniques offer disclosure of physical and chemical 

properties, from spectral information to chemical compositions, on the earth surface. These advanced technologies have been applied 

from space to the ground, covering smart urban construction, land cover monitoring and other topics under the scope of HEI. The 

aim of this paper is to review the significance and contribution of earth observation in HEI research. This paper summarised the 

utility of four types of earth observation regarding topics of urban construction and land cover monitoring under the scope of HEI. 

Furthermore, this paper reviewed four advanced techniques in earth observation, including Radar, unmanned aerial vehicles (UAVs), 

machine learning algorithms and advanced computing platforms like Google Earth Engine (GEE), which can lead to future 

development in smart urban construction and smart city design. 

* Corresponding author

1. INTRODUCTION

Human-environment interactions (HEI) are dynamic processes 

involving a wide range of research areas, and these complex 

processes have been investigated for decades (Kefalas et al., 

2019). Human-environment interactions in this research paper 

are interpreted by a compound relationship among human 

activities, land cover and the ecological environment. In this 

article, the word "environment", refers to the ecological 

environment, which includes abiotic elements from soil quality, 

water quality to precipitation and temperature, and biotic 

components from vegetation cover, agricultural production to 

biodiversity (Chang et al., 2019).  Human activities at a large 

spatial scale, such as urban constructions, industry development 

and government-level investment programmes can impose 

forces leading to land cover change in a short-term to a long-

term period (Desjeus et al., 2015; Gellrich and Zimmermann, 

2007). In this article, we mainly reviewed urban construction as 

a kind of human activity and discussed the smart urban 

construction enabled by earth observation. Land cover has 

intensive interactions with human activities, and it also works 

as a key intermediate variable in the HEI dynamic process 

(Wang et al., 2021). Changes in land cover from urban 

constructions could convey feedback to cities represented by 

the urban heat island effect (Song et al., 2014) and other 

potential landscape ecological changes. Apart from the human 

forces, land cover can also be influenced by natural features, 

including wind speed, humidity, precipitation and topography 

through a chronic geomorphology process (Dai et al., 2014). 

Furthermore, there are also dense interactions between human 

activities and the ecological environment. For instance, the 

aggregation of the construction industry can lead to air 

pollution and water pollution (Dong et al., 2019), and poor air 

quality would impose negative effects on an individual's health 

and finally lead to other social risks. Urban construction levels 

may vary on various landscapes at different places. Therefore, 

it is hard to investigate the potential relationships under human-

environment dynamics in a systematic way using fixed models. 

The evolutions of earth observation and remote sensing 

techniques enable environmental variables and land cover 

dynamics to be monitored from a more comprehensive global 

or a more detailed local view (Ustin and Middleton, 2021). 

Moreover, spatial analysis approaches for earth observation 

data reveal spatial patterns and make a spatial simulation for 

landscape management and decision making. 

Earth observation techniques offer disclosures of physical and 

chemical properties, from spectral information to physical 

compositions, on the earth surface. These advanced 

technologies have been applied from space to the ground, 

which include various topics in the human-environment 

interaction studies. This article aims to summarise and review 

contributions and significance of earth observation for HEI 

research from previous studies. Currently, there have been 

numerous valuable studies revealing humans' impact on the 

ecological environment (Jin et al., 2019), ecological 

environment's feedback to humans' society along with influence 

to humans' decision making (Zhai et al., 2020), and the role of 

earth observation in the environment monitoring and humans' 

development monitoring (Phiri et al., 2020). Furthermore, 

theories and models have been developed to explain the impact 

and consequence of human activities on the planet. Relevant 

topics include studies in the carbon cycle, nitrogen cycle 

(Erisman et al., 2013), climate change (Brody et al., 2018) and 

other topics relevant to environmental change. Among these 

topics, numerous issues, covering biology, environmental 

engineering, spatial engineering, urban planning and social 

science, are discussed based on datasets generated from earth 

observation and spatial techniques. Generalised earth 

observation includes data generated from monitoring stations 

and mobile technologies, which could represent natural factors 

(Gellrich and Zimmermann, 2007), social behaviours (Ristea et 
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al., 2020) and natural hazards (Bruneau et al., 2021). Apart 

from academic benefits from the earth surface properties 

disclosure, the value of earth observation can be added with the 

help of analytical methods with innovations. In general, these 

methods could further explore the value of earth observation 

data by providing valuable information about spatial 

relationship identification (She et al., 2017), spatial pattern and 

distribution analysis, spatial estimation to overcome the spatial 

limitation of field sampling as well as spatial decision making 

for governance policy. The rest of the article is organised as 

follows. The second section shows key topics of land cover, 

urban construction and the environments using earth 

observation under the scope of HEI. Earth observation data and 

analysis methods are explained in the third and fourth sections. 

Smart urban construction plays a key role of sustainable 

management in HEI research, and earth observation and spatial 

services make sustainable construction possible. Therefore, the 

relationship between earth observation development and smart 

urban construction is explained in the fifth section. The last 

section is the conclusion.  

2. IMPLEMENTATION OF EARTH OBSERVATION

TO LAND COVER AND URBAN ENVIRONMENT

Land cover is a key component in HEI research, which has 

already been investigated through earth observation techniques 

from multiple perspectives (Foley et al., 2005). We summarise 

earth observation-based land cover studies from three 

perspectives, including land cover change, land cover mapping, 

and land cover management and monitoring. Three types of 

land cover studies represent human's endeavour to identify 

reasons generating land cover change in the past (Gellrich and 

Zimmermann, 2007), human development in learning land 

cover compositions and patterns currently (Milenov et al., 

2014), and human's desire to manage land cover for a better life 

in the future. From a reasoning explanation perspective, 

investigations have been made to explore natural and social 

factors relevant to land cover change using earth observation 

data (Kefalas et al., 2019). From a mapping perspective, the 

spatial patterns of various land cover types, covering urban area, 

green space, forest, farming-pastoral ecotones, cropland, 

terracette, shoreline and other land covers for specific use, are 

figured out based on earth observation data using spatial 

approaches. From a land management perspective, soil 

properties and landscape metrics are intensively investigated. 

For soil properties, numerous researches have been taken to 

study soil moisture, above-ground carbon, soil nitrogen, soil 

organic matters, mineral chemicals and heavy metals. 

Furthermore, landscape metrics, as indicators revealing land 

patterns, are also utilised to show landscape design and 

ecological risk in urban and rural regions (Sahraoui et al., 2021). 

In HEI studies, earth observation has presented irreplaceable 

values for the above mentioned indicators. Generally, numerous 

land cover indicators and relevant spatial metrics are identified 

with the help of satellites from Landsat, MODIS, and Sentinel-2 

to commercial products and airborne-based photos. Soil 

property information can be collected from field sampling and 

ground in situ work.  

Landscape composition and land cover change are represented 

by spatial and aspatial patterns of land cover composition and 

the changes over a time period. Landscape composition and 

land cover change are critical concepts in earth observation and 

land cover management (Van et al., 2013). Landscape 

composition and its changes are considered a key median 

process when investigating human-environment interactions 

using earth observation data as summarised in this paper. The 

change of landscape composition is subjected to short-term or 

long-term human forces, including urbanisation and population 

change, governance policy for ecological restoration, economic 

development, and infrastructure development. Landscape 

change is also influenced by long-term natural forces caused by 

precipitation, topography, temperature, humidity and wind 

speed (Kefalas et al., 2019). The dominance of human force or 

natural force is determined by the development level of the 

study area. Human forces can be influential in the HEI 

processes in highly urbanised regions (Chen et al., 2019). As a 

process in human-environment interaction, land cover changes 

caused by urbanisation or vegetation recovery may lead to 

urban heat island effect or heat mitigation (Song et al., 2014). 

Typically, land covers are water bodies, urban and built-up, soil, 

cropland and vegetation, which can be monitored by remote 

sensing indexes. Normalised difference vegetation index 

(NDVI), enhanced vegetation index (EVI), normalised 

difference soil index (NDSI), soil adjusted vegetation index 

(SAVI) and difference vegetation index (DVI) and impervious 

surface fraction (ISF) are indicators generated from earth 

observation to monitor the composition of land covers. 

Landscape patterns and spatial metrics are other indicators 

representing morphology and general spatial pattern for urban 

studies (Herold et al., 2003). Typically, these spatial metrics are 

originally derived from land composition (types of land cover 

or land compositions). Landscape pattern and spatial metrics 

include patch number, total urban area, mean urban patch size, 

patch density, Shannon’s diversity index, interspersion 

juxtaposition index, landscape aggregation index and 

eccentricity (McCarty and Kaza, 2015). Land covers are further 

processed and translated into a new term named “patch”, which 

refers to homogeneous areas for a specific landscape property 

of research interest such as “industry region”, “residential 

region” and “green space”. These patch-based indicators are 

measurements for modelling forms of urban sprawl and 

quantifying shape and spatial patterns of vegetation in natural 

land cover. 

The construction industry works for the design and construction 

for infrastructures supporting our cities. These urban 

infrastructures include roads, dams, utility supply system, waste 

service system, green infrastructures and others. These 

infrastructures support our daily lives and future development. 

The construction activity, one of the representatives of human 

activities, is an important process of urbanisation and 

industrialisation. Therefore, population growth and urbanisation 

can be supported by the construction industry to some extent. 

Population change and urbanisation, which are the cause of 

environmental pollution, ecological risk and land cover change 

in HEI research, are interpreted as social change and urban 

development caused by human activities and construction 

industry aggregations (Dong et al., 2019). Population is usually 

indicated by population or population density in a certain area, 

and urbanisation is regarded as a phenomenon of human’s 

aggregation from rural regions to urban areas. Therefore, the 

urbanisation level can be transformed and measured by the 

proportion of urban population or other human activities 

indicators. Population-based data in HEI studies are accessed 

from census data published by governance authorities, and 

nighttime light earth observation data can also be utilised as 

ancillary data when measuring the urbanisation level. 

Under the help of earth observation development, ecological 

risk and environmental pollution can also be measured using 
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remote sensing and spatial techniques. Environmental 

sensitivity index (ESI), habitat quality (HQ) and ecological risk 

index (ERI) are three indicators highly relevant to 

environmental pattern and spatial metrics, demonstrating 

vulnerability of the ecological environment. As the ecological 

environment is a complex system composed of various spatial 

features with dynamic interactions, ESI, HQ and ERI are 

proposed based on human’s needs for evaluating the quality of 

the physical environment for the purpose of further sustainable 

development decision making. Currently, spatial studies have 

already verified strong relationships among landscape 

ecological risk, urban infrastructure development, governance 

policy and urbanisation level (Lin et al., 2019).  

The ecological and physical environment can also convey 

feedback to cities or urban areas when environmental 

degradation, such as environmental pollution or urban heat 

island effect, happens. In this article, the terminology 

“environmental pollution” refers to pollutants that are 

detrimental to an individual's health, covering but not limited to 

waste water, particulate matters, carbon dioxide, sulfur dioxide, 

nitrogen dioxide and aerosol optical depth. These 

environmental pollutants are relevant to governance policy, 

population and urbanisation, economic development, 

construction industry development, technology innovation, and 

landscape design. These pollutants can be measured through air 

pollution monitoring stations, and hourly updated through 

open-access platforms in most cases. For broad-area research, 

air pollutants can be more efficiently monitored by earth 

observation data using satellite or unmanned aerial vehicle 

(UAV). Current studies have demonstrated the feasibility of air 

pollutant monitoring using MODIS products (Zhang et al., 

2018), and other forms of air pollutants can be measured via 

UAV mounted with specific sensors (Lambey and Prasad, 

2021).  

Figure 1. Key topics under the scope of HEI 

Figure 1 summarises key topics under the scope of HEI. Human 

activities, land cover and the ecological environment are 

mutually related through various processes. Urban construction 

is a kind of human activity under the scope of HEI, which can 

lead to land cover change and environmental change. The rest 

of the article will show how earth observation data and analysis 

methods can be applied in HEI studies, and how earth 

observation development could lead to smart urban construction. 

3. EARTH OBSERVATION DATA FOR URBAN

CONSTRUCTION, LAND COVER AND THE 

ENVIRONMENTS 

As free open access data, Landsat and MODIS products have 

been widely and intensively applied in HEI research. Various 

land information from land cover properties, landscape metrics 

to land surface temperature and ecological risk indicators can 

be generated from Landsat and MODIS products. This derived 

information and indicators are valuable for most of the HEI 

research relevant to land cover status and construction design. 

They can be further processed via spatial or aspatial methods. 

Landsat and MODIS products, generally, can be utilised to 

identify spatial relationships among variables. These remote 

sensing products can also be used to explore spatial pattern and 

distribution, spatial estimation as well as spatial decision 

making in HEI studies. Advanced requirements in HEI can be 

fulfilled by commercial satellite or satellite mission for specific 

purposes. When mapping skinny land features, for instance 

streams and roads, spatial resolutions for Landsat or Sentinel-2 

are too coarse to provide valid information. High-resolution 

commercial products are able to help with those detailed 

mapping tasks (Biotto et al., 2009). Further, general 

commercial satellite image acquisition cost is lower than that of 

airborne-based or UAV (Lambey and Prasad, 2021). Moreover, 

Tropical Rainfall Measuring Mission (TRMM) for precipitation 

(Chen et al., 2018), and Shuttle Radar Topography Mission 

(SRTM) for topography information enable free access to 

global natural factors measured from satellites.  

Airborne-based earth observation data refers to remote sensing 

images captured from airborne or unmanned aerial vehicles 

(UAV). The variability of sensors mounted on airborne or 

UAVs determines the capability of Airborne-based earth 

observation data. Typically, airborne-based sensors support 

spectral detection from visible band to VNIR and SWIR. Active 

remote sensing, such as Lidar, is also undertaken on airborne. 

In HEI research, a couple of land cover monitoring, nighttime 

light collection and species statistics tasks are completed with 

the help of airborne remote sensing, as aerial images provide 

higher spatial resolutions compared with satellite images 

(Kuechly et al., 2012).  

Ground-based earth observation data is mainly composed of 

field sampling and monitoring stations. Field samplings, 

sometimes known as in situ data; typically refer to samples 

taken at a specific location, and analysing the physical or 

chemical properties of those samples in the lab later. This data 

collection methodology has been intensively utilised for soil 

property analysis, such as, heavy metal concentration, soil 

moisture, mineral chemistry, above-ground carbon and nitrogen. 

Although field sampling has time and budget requirements, as 

well as spatial limitation, more physical properties and 

chemical compositions from above ground to soil in-depth, 

could be comprehensively studied using this type of data.  

Apart from soil quality sampling, field sampling has been 

applied for water quality testing (Sun et al., 2016). Ground-

based earth observation data also includes data collected from 

monitoring stations. Ground monitoring stations are established 

mainly for natural factors monitoring and air quality monitoring. 

Natural factors from temperature and humidity to precipitation, 

as well as various air quality indicators can be measured from 

stations frequently (McCarty and Kaza, 2015). Some other 

stations are designed for specific monitoring tasks, such as 

forest soil carbon efflux (Crabbe et al., 2019) and water quality. 

The drawback of spatial limitation for missing values from the 
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field sampling and monitoring stations can be mitigated by 

spatial interpolation or remote sensing image complementary 

(Dang et al., 2018). 

Currently, mobile technology generates a new type of earth 

observation data published from Twitter, online mapping 

applications or other web-based social media. This type of earth 

observation data generally contains geographic location, 

happening event and occurrence time. The superiority of the 

immediate message sharing function from mobile technology 

enables real-time monitoring of rapid land cover change (Ristea 

et al., 2020). Nowadays, this new data type has been applied for 

hazard monitoring purposes (Bruneau et al., 2021). 

4. SPATIAL ANALYSIS METHODS FOR EARTH

OBSERVATION IN HEI 

To identify relationships among spatial variables, spatial 

statistical methods containing spatial regression models, GWR 

as well as bi-variable Moran's I can be used. Spatial regressions 

containing spatial lag, spatial error, or other advanced forms 

along with GWR are improved forms of analysis methods 

derived from standard regressions by introducing a spatial 

matrix. Bi-variable Moran's I enables one-to-one spatial 

relationship identification, and one response variable can also 

be tested with a compound explanatory variable representing 

multiple raw explanatory variables added based on a specific 

criterion (Balducci and Ferrara, 2018). Relationships among 

spatial variables can also be identified using aspatial methods 

covering non-spatial regression, multivariable linear regression 

and PCA (Chang et al., 2019). 

Spatial autocorrelation of spatial variables and topology 

features of land covers are two issues in EO-HEI. Spatial auto-

correlation could be visualised by Moran's I and Gi* (Chen et 

al., 2020), whereas land topology could be uncovered by digital 

image processing and spatial metrics. Spatial estimations in 

HEI mainly refer to spatial interpolation methods to overcome 

spatial limitation of ground samplings. Numerous Kriging-

based methods, as well as deterministic interpolations, are 

utilised to estimate soil quality and precipitation. Previous 

studies have shown that Kriging performs the best when 

estimating soil organic matters (Long et al., 2020). Spatial 

decision making in HEI includes identifying spatial factors that 

could influence policymaking, as well as recognizing and 

assessing influential consequences caused by spatial variables 

(Jackson, 2003). Spatial decision making can be known as a 

compound spatial issue at a different level. Spatial decision 

makings interpret results generated from spatial relationships, 

spatial patterns as well as spatial estimations, and draw a further 

conclusion for smart policy making purposes (Cheng et al., 

2019).  

5. DEVELOPMENT IN EARTH OBSERVATION AND

FUTURE SMART URBAN CONSTRUCTION

5.1 Development in Earth Observation 

In the future, changes might happen from data sources to 

analysis techniques and platforms. From a data source and 

platform evolution perspective, sentinel series products can be a 

potentially powerful competitor with MODIS and Landsat 

series products. UAV and radar images will share a huge 

proportion of this research area according to their irreplaceable 

advantages. Furthermore, as a geospatial processing platform 

that has already been developed and taken into research, the 

Google Earth Engine will also be a popular tool in HEI studies. 

From a data processing improvement perspective, image fusion 

has shown the potentiality in earth observation data pre-

processing and machine learning-based methods can be 

efficient approaches for spatial feature identification. 

Radar products and UAV images will also play a non-

neglectable role for HEI based on their unique features.  Due to 

the advantage of data acquisition cost and high usability, UAVs 

mounted with a variety of sensors are utilised to monitor air 

quality and coastal regions (Adade et al., 2021). Furthermore, 

the feasibility of UAVs also enables more frequent and higher 

spatial resolution observations for air pollutants monitoring 

based on the needs of research (Lambey and Prasad, 2021). As 

active remote sensing, radar techniques release and receive 

microwaves, which are not subjected to bad weather or other 

negative natural risks (Minh et al., 2020) Currently, radar has 

been applied for plateau and non-residential area mapping 

(Reinosh et al., 2020). Although low spectral variety and no 

current open-source platform for data sharing, UAVs and radar 

products have been applied to some HEI issues including land 

cover monitoring and air quality monitoring already due to their 

irreplaceable feasibility and utility. 

GEE, existing as a new cloud-based geospatial data platform, 

will play a key role in the coming HEI studies from a big data 

handling perspective. Earth observation data can definitely be 

categorised into big data as the nature of earth observation 

coincides with the “3V” (volume, velocity and variety) big data 

definition. The cloud-based GEE platform, as Software as a 

service (SaaS), is designed to handle spatial big data tasks at the 

Petabyte level from raw datasets to final valuable products. 

From a data storage perspective, earth observation big data can 

be smartly and efficiently stored in such a giant cloud system 

via distributed networks. Furthermore, GEE, as an integrated 

and well-managed platform, also increases the accessibility and 

availability of various earth observation data from multiple 

sources all over the world. From a processing algorithm 

perspective, GEE application programming interfaces (APIs) 

make a better basic earth observation data processing algorithm 

code sharing and accessing environment possible, which saves 

time for experts and non-experts. Moreover, GEE 

computational infrastructure with high-speed parallel 

processing and distributed computing techniques is an efficient 

tool for manipulating advanced machine learning or image 

processing tasks (Tamiminia et al., 2020).  

The coming years might witness the prosperity of image fusion 

and machine learning evolution in future HEI research. 

Although not involved in current HEI research, image fusion 

does have the potential to be introduced in the future as the 

functionality of which is indeed beneficial. Image fusion for 

hyperspectral images (HSI) and multispectral images (MSI) has 

been commonly applied in earth observation studies for the 

purpose of improving HSI spatial resolution and MSI spectral 

resolution (Dian et al., 2021). The high-quality fused images, 

created with more detailed and precise geographical features, 

can be further utilised to monitor land cover change. 

5.2 Earth Observation and Spatial Tools Support Smart 

Urban Construction 

The construction industry is to serve and change the world by 

infrastructure development. These infrastructures include roads, 

bridges, utility supply systems, buildings, green infrastructures 
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and other forms of the built system supporting our modern 

societies physically and spiritually (Bansal, 2011). 

Understanding and recognizing the reality problem, establishing 

models and providing feasible solutions are key stages in the 

construction management. These key stages can be further 

broken down into multiple tasks from various disciplines 

including but not limited to spatial engineering, environmental 

engineering, civil engineering and humanity research (Chiu and 

Russell, 2011). Each of the tasks needs specific tools to provide 

a solution. Geographic information system (GIS) is an 

integrated system, designed to store and analyse spatial 

information using strategies from statistics and spatial science 

perspectives. The GIS software includes multiple computational 

functionalities including database management, spatial data 

visualisation, spatial data computation, construction scheduling, 

environmental modelling and safety planning. One of the goals 

of the GIS application is to provide scientific decision making 

for stakeholders (Worboys and Duckham, 2021). Therefore, the 

functionality of GIS software meets the demands of our current 

construction industry, and GIS has been applied in the 

construction management from planning, bidding and 

construction phases. The improvements and innovations in GIS 

technologies could stimulate the construction management 

decision making (Cheng and Chen, 2002).  

Even though the GIS software has been utilised in the 

construction management from multiple perspectives, there are 

three limitations to be bridged (Bansal, 2012). First, the GIS 

software and relevant strategies are tools for sustainable 

construction. However, this application has not been fully 

developed due to the complexity in interactions among multiple 

influential factors. Furthermore, the concept of sustainability is 

general and inclusive, and sustainability could be redefined in 

different scenarios. Second, risk assessment is a critical part of 

the construction process, and the utility of GIS functionality in 

construction risk assessment is not fully developed. The risk 

assessment from a sustainable development perspective can be 

further analysed using GIS with advanced functions. Third, the 

popularity of the GIS software and spatial functions in the 

construction management might be hampered by education 

background, working experiences and other social issues. 

Construction management is a field of multiple disciplines, and 

not all construction professionals are familiar with GIS with up-

to-date changes.  

Earth observation based on remote sensing techniques can be an 

effective tool to measure the influential factors relevant to the 

sustainability issue. The sustainability in construction 

management includes but is not limited to air pollutant emission, 

land cover change and urban heat island effect. The 

implementation of earth observation application could make 

sustainability measurement feasible. For air pollutant emission 

evaluation, the Sentinel products and other commercial 

products can provide global measurement for air pollutant 

density with high temporal resolution. For land cover change 

monitoring, satellite-based and UAV-based images can monitor 

the change of land use and land cover with various images 

uncovering different physical properties. For the urban heat 

island effect assessment, remote sensing products with thermal 

infrared have been utilised in several metropolitans as case 

studies.  

The construction can be categorised into agricultural, 

residential, commercial, industrial and environmental. The 

industrial constructions, including infrastructures for mining, 

manufacturing, waste services and utility supplies, are critical 

to Australian society. The utility of these infrastructures 

contributes around 25% of the national GDP, but also 

contributes around 99% of the human-dominating air pollutant 

emissions (Department of Environment and Energy, Australian 

government, 2020). Considering the importance of economic 

contribution and environmental risk, there is a requirement to 

investigate and assess the sustainable construction of these 

three industries. Therefore, the development of earth 

observation and spatial tools can be a help to assess the 

sustainable construction for three industries using earth 

observation data and GIS techniques.  

The development of earth observation and spatial tools can help 

the implementation of smart urban construction by overcoming 

three gaps. First, in terms of the requirement of various 

sustainability features for urban areas, different sources of earth 

observation could provide measures of urban sustainability 

from socio-economic and environmental perspectives. Second, 

in terms of the risk assessment in sustainable construction, 

spatial tools, geography measures and big data analysis 

approaches could provide reliable sustainable construction 

analysis and deliver scientific decision makings. Third, in terms 

of the popularity of GIS and earth observation in the 

construction and urban design industry, the demand and 

development of GEE could popularise the application of spatial 

tools and earth observation. Furthermore, an advanced spatial 

methodology framework could provide more feasible 

suggestions, which are acceptable and understandable for 

experts from non-spatial fields.  

Figure  2. The development of earth observation techniques for 

a better smart urban construction purpose. 
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Figure 2 summarises how earth observation and GIS services 

could support smart urban construction and smart city 

development. New spatial methodology framework, GEE and 

earth observation data forms a mutually-enhanced system from 

the view of earth observation application. GEE works as a 

platform for sharing new remote sensing datasets and advanced 

spatial methodologies, and GEE could popularise the 

application of spatial services and remote sensing data from 

spatial experts to non-spatial experts. New forms of earth 

observation datasets are input for the innovative spatial 

methodology framework, and new spatial methods could 

explore more values of new earth observation data. Under the 

scope of smart city, the mutually-enhanced earth observation 

system enables sustainable urban constructions. This system 

could provide urban construction with measures of 

sustainability features from socio-economic and environmental 

perspectives, reliable sustainable construction analysis and 

popularised spatial services. Under the scope of HEI, the 

construction industry, as a type of human activity, plays a key 

role in HEI, and urban construction stimulates the process of 

urbanisation, industrialization, and population growth. The 

sustainable urban construction with earth observation as 

management tools could be beneficial to smart environment 

design and smart land cover management as well.  

6. CONCLUSIONS

This article summarises the contribution, potential and 

significance of earth observation for urban construction and 

land cover under the scope of HEI. This article shows the 

application of earth observation in construction management, 

land cover monitoring and environmental topics. This work also 

summarises important topics of applying earth observation in 

land cover monitoring, urban construction and environments. 

By utilising spatial methods, academic values of earth 

observation can be explored by numerous analysis methods. In 

general, earth observation could provide further valuable 

information regarding spatial relationship identification, spatial 

pattern and distribution, spatial estimation to overcome the 

spatial limitation of field sampling as well as spatial decision 

making for governance policy via spatial or aspatial methods. 

Finally, potential evolution that might occur in the coming HEI 

research and this advanced development can be dominated by 

three mutually enhanced technologies comprising spatial 

algorithms, the GEE platform and new earth observation data 

sources. The development of the earth observation and spatial 

framework system could help us achieve the smart construction 

and smart city design goals.  
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